A Nyström method for approximating the solutions of an integral equation arising from a problem in mathematical biology

M. C. De Bonis¹, M. P. Stanić², and T. V. Tomović²

¹Department of Mathematics, Computer Sciences and Economics, University of Basilicata, Italy, mariacarmela.debonis@unibas.it

²Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Serbia, stanicm@kg.ac.rs, tomovict@kg.ac.rs

We consider integral equations of the following type

(1)
$$f(x) \int_0^1 k(x-y)dy + \int_0^1 k(y-x)f(y)dy = g(x), \quad 0 < x < 1.$$

where k is a given convolution kernel, q is a known function and f is the unknown.

The above integral equation is of interest because it arises from a problem in mathematical biology [1].

We propose to approximate the solutions of (1) by a Nyström method using the Gauss-Legendre quadrature rule. The stability and the convergence are proved in uniform spaces of continuous functions. Finally, numerical tests showing the effectiveness of the method are presented.

References

 S. P. Eveson, An integral equation arising from a problem in mathematical biology, Bull. Lond. Math. Soc. 23(3) (1991), 293–299.