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Our aim is to study geodesic mappings and their generalizations. The generaliza-
tions we mean holomofphically-projective and F -planar mappings. The fundamental
terms and facts it is possible to find in monography [6].

In our study we find new form of a fundamental equations of above mentioned
mappings. Those equations are appropriate for (pseudo-) Riemannian spaces of sec-
ond order approach. We also refined fundamental equations of F -planar mappings,
see [3, 4].

Geodesic and holomorphically projective mappings of spaces with equiaffine con-
nection onto (pseudo-) Riemannian and Kählerian spaces were studied in [5, 9], see
[6]. Those questions are connected to metrizability of a manifolds with affine connec-
tion. It was proved by É. Cartan that manifold with affine connection is projective
equivalent to manifold with equiaffine connection as locally as globaly, see [2]. Above
mentioned results are acceptable for projective and holomorphically projective metriz-
ability of spaces with affine connection.

Holomorphically projective mappings were studied for parabollical Kähler spaces
as well [7].

We also studied geodesic mappings of special spaces, for example semisymmetric
projective Euclidean spaces [8].

J. Mikeš [6] studied F -planar mappings of spaces with equiaffine connection onto
(pseudo-) Riemannian manifolds. Those questions are connected to metrizability as
well. F ε

2 -planar mappings was studied in [1].
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[8] P. Peška, J. Mikeš and A. Sabykanov, On semisymmetric projective euclidean
spaces, Proceedings 16th Conference on Applied Mathematics (APLIMAT 2017),
Bratislava, 2017, 1182–1188.
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