Software Development Optimisation Theory
Defined with Graphs

Molan Gregor! and Molan Martin?

1Comtrade Digitral Services, Comtrade Research Group, http://comtrade.ai
2Comtrade Gaming, Ljubljana, Slovenia, http://www.comtradegaming.com/

The aim of the software development process is to produce the best possible
product with the given resources (money, time). As a part of the development process,
quality assurance must also be rationalized. To do so, an abstract space is defined
(software testing space), where software product is presented using graph theory. Test
graph presents software product with all its functionalities. Test cases in a test graph
are connections between vertices and vertices represent unit tests. Test suite and test
phase are defined as subgraphs of test graph. The weights in test graph represent the
cost and value of implementation for functionality. The first optimization algorithm
(A1), designed as the first step in the optimization of the software testing process,
eliminates duplicated test cases. The second algorithm (A,) alters the quantity of test
cases for a given test phase. It is the method of drastically reducing the testing cost
while jeopardizing the quality of the product. The third algorithm is a construction
of an Optimal Test Phase (OTP), it is A3 - OTP Construction. This optimization
means that a maximum quality, given the resources, is reached. Depending on the
circumstances algorithms A; and A,, and A; and A3 can be used together.

References

[1] M. J. Harrold, “Testing: a roadmap,” in ICSE 00: Proceedings of the Conference
on The Future of Software Engineering. New York, NY, USA: ACM, 2000, pp.
61-72.

2] S. A. Sarcia, G. Cantone, and V. R. Basili, “Adopting curvilinear component
analysis to improve software cost estimation accuracy model, application strategy,
and an experimental verification,” 2008.

[3] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skele-
tons using branching-time temporal logic,” pp. 52-71, 1982.

[4] J. P. Queille and J. Sifakis, “A temporal logic to deal with fairness in transition
systems,” 1982, 1382758 217-225.

[5] G. Fraser and F. Wotawa, “Property relevant software testing with model-
checkers,” SIGSOFT Softw. Eng. Notes, vol. 31, no. 6, pp. 1-10, 2006.

[6] V. Okun and P. E. Black, “Issues in software testing with model checkers,” 2003.

[7] D. R. Kuhn and D. R. Wallace, “Software fault interactions and implications
for software testing,” IEEE Trans. Softw. Eng., vol. 30, no. 6, pp. 418-421, 2004,
998624.

[8] R. C. Bryce, A. Rajan, and M. P. E. Heimdahl, “Interaction testing in model-
based development: Effect on model-coverage,” pp. 259-268, 2006.

[9] S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla, and A. G. Koru, “Pri-
oritizing user-session-based test cases for web applications testing,” in ICST '08:
Proceedings of the 2008 International Conference on Software Testing, Verifica-
tion, and Validation. Washington, DC, USA: IEEE Computer Society, 2008, pp.
141-150.

[10] C. B. Rene and J. C. Charles, “The density algorithm for pairwise interaction
testing: Research articles,” Softw. Test. Verif. Reliab., vol. 17, no. 3, pp. 159182,
2007, 1286488.

. U. Bryce and C. J. Colbourn, “Prioritized interaction testing for pairwise cov-

11l R.C. B d C. J. Colb “Prioritized i i ing f irwi
erage with seeding and contraints,” Information and Software Technology Journal
(IST, Elsevier), vol. 48, pp. 960-970, 2006.

[12] K. Rick, L. Yu, and K. Raghu, “Practical combinatorial testing: Beyond pair-
wise,” IT Professional, vol. 10, no. 3, pp. 19-23, 2008, 1373181.

[13] R. Kuhn and R. Kacker, “Automated combinatorial test methods,” pp. 22-26,
2008.

[14] Wikipedia-Software-Testing, “Software testing — wikipedia, the free encyclope-
dia,” 2018, [Online; accessed 13-April-2018].

[15] IEEE, “Ieee standard for software test documentation,” 1998.

[16] Jakobsson, “Free software project management howto,” SoberIT - Software Busi-
ness and Engineering institute, Tech. Rep., 2003. [Online|. Available: http://www.
soberit.hut.fi/T-76.115/02-03/palautukset/groups/pmoc/de/vmodel . pdf

[17] B. Marick, “New models for test development,” 1999.

[18] B. M. Hill, “V-model testing: Process model configuration using svg,” Benjamin
Mako Hill, Tech. Rep., 2008. [Online]. Available: http://mako.cc/projects/
howto/

[19] M. Molan and G. Molan, “Estimations of actual availability,” 3-6 September
2001 2001.

[20] J. Lukasiewicz, “O logice trjwartos’ciowej (in polish),” Ruch filozoficzny, vol. 5,
pp. 170-171, 1920, "English translation: On three-valued logic, in L. Borkowski
(ed.), Selected works by Jan Lukasiewicz, NorthHolland, Amsterdam, 1970, pp.
87-88.”.

[21] Wikipedia-Hirschberg’s-Algorithm, “Hirschberg’s algorithm — wikipedia, the
free encyclopedia,” 2014, [Online; accessed 13-April-2018]. [Online]. Available:
http://en.wikipedia.org/wiki/Hirschbergs_algorithm

[22] D. S. Hirschberg, “A linear space algorithm for computing maximal common
subsequences,” Commun. ACM, vol. 18, no. 6, pp. 341-343, Jun. 1975. [Online].
Available: http://doi.acm.org/10.1145/360825.360861

(23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

