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H. Poincaré (1882) attempted to describe a plane crystallographic group in the
Bolyai-Lobachevsky hyperbolic plane H2 by appropriate fundamental polygon. This
initiative he extended also to space. B. N. Delone (Delaunay) in 1960’s refreshed this
very hard topic for Euclidean space groups by the so-called stereohedron problem: to
give all fundamental domains for a given space group, with few partial results.

A. M. Macbeath (1967) completed the initiative of H. Poincaré in classifying the
2-orbifolds by giving each with a signature. That is by a base surface with orientable
or non-orientable genus, by some singular points on it, as rotational centres with given
periods, by some boundary components, in each with given dihedral corners. All these
are characterized up to an equivariant isomorphism, also indicated in this talk. There
is a nice curvature formula that describes whether the above (good) orbifold, i.e., co-
compact plane group (with compact fundamental domain) is realizable either in the
sphere S2, or in the Euclidean plane E2, or in the hyperbolic plane H2, respectively.

Our initiative in 1990’s was to combine the two above descriptions. Namely, how
to give all the combinatorially different fundamental domains for any above plane
group. Z. Lučić and E. Molnár completed this by a graph theoretical tree enumeration
algorithm. That time N. Vasiljević implemented this algorithm to computer (program
COMCLASS), of super-exponential complexity, by certain new ideas as well.

In the time of the Yugoslav war we lost our manuscript, then the new one has been
surprisingly rejected (?!). Now we have refreshed our manuscript to submit again and
that is to appear as [1]. Here we intend to present a report on it, also with some new
problems.
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Math. Natur. Kl. Sitzungsber. 2194 (1985), 63–78.

[3] A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376–378.

[4] J. H. Conway, The orbifold notation for surface groups, in: Groups, Combina-
torics, and Geometry, LMS Lecture Notes 165, Cambridge, 1992, 438–447.

[5] L. Danzer and E. Schulte, Regulre Inzidenzkomplexe I, Geom. Dedicata 13 (1982),
295–308.

[6] B. N. Delone, Theory of planigons, Izvestiya Rossiiskoi Akademii Nauk. Seriya
Matematicheskaya 23(3) (1959), 365–386 (in Russian).

[7] B. N. Delone, N. P. Dolbilin and M. I. Shtogrin, Combinatorial and metrical
theory of planigons, Tr. Mat. Inst. Steklov 148 (1978), 109–140 (in Russian), Proc.
Steklov Inst. Math. 4 (1980), 111–141 (in English).

[8] A. W. M. Dress, Presentation of discrete groups, acting on simply connected
manifolds in terms of parametrized systems of Coxeter matrices, Adv. Math. 63
(1987), 198–212.

[9] D. Huson, The generation and classification of tile-k-transitive tilings of the eu-
clidean plane, the sphere and the hyperbolic plane, Geom. Dedicata, 47 (1993),
269296.
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