Hilbert matrix on mixed norm spaces

Boban Karapetrović¹

¹Faculty of Mathematics, University of Belgrade, bkarapetrovic@matf.bg.ac.rs

We prove that the Hilbert matrix operator H is bounded on the mixed norm space $H^{p,q,\alpha}_{\nu}$ if and only if $0 < \kappa_{p,\alpha,\nu} < 1$, where $\kappa_{p,\alpha,\nu} = \nu - \alpha - \frac{1}{p} + 1$. In particular, Hilbert matrix operator H is bounded on the weighted Bergman space $A^{p,\alpha}$ if and only if $1 < \alpha + 2 < p$ and it is bounded on the Dirichlet space \mathcal{D}^p_{α} if and only if $\max\{-1, p-2\} < \alpha < 2p-2$. Also, it is well known that the norm of the Hilbert matrix operator H on the Bergman space A^p is equal to $\frac{\pi}{\sin \frac{2\pi}{p}}$, when $4 \le p < \infty$, and it was also conjectured that

$$\|H\|_{A^p \to A^p} = \frac{\pi}{\sin\frac{2\pi}{p}},$$

when 2 . Following [1] we prove this conjecture.

References

- V. Božin and B. Karapetrović, Norm of the Hilbert matrix on Bergman spaces, J. Funct. Anal. 274 (2018), 525–543.
- [2] M. Jevtić and B. Karapetrović, Hilbert matrix on spaces of Bergman-type, J. Math. Anal. Appl. 453 (2017), 241–254.
- [3] B. Karapetrović, Norm of the Hilbert matrix operator on the weighted Bergman spaces, Glasg. Math. J. (to appear).