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We will review recent and new results on billiards within confocal quadrics and
their dynamical, geometric, and arithmetic properties. By connecting these questions
with the analysis on Riemann surfaces, in particular elliptic and hyperelliptic curves,
we construct solutions to the Painlevé VI and Schlesinger equations on isomonodromy
deformations. We map the billiard dynamics within confocal conics to rectangular
billiard dynamics, which leads to a novel concept in the ergodic theory, “the genericity
along the curves” (Fraczek, Shi, Ulcigrai). By developing a bridge toward the theory
of extremal polynomials and Pell’s equations, we derive fundamental properties of
the billiard dynamics, winding numbers and frequency map. As an application, we
provide a detailed description of periodic trajectories in an arbitrary dimension d with
small periods T , d ≤ T ≤ 2d, emphasizing the cases d = 3, d = 4. In part, the results
are joint with Milena Radnović and in part with Vasilisa Shramchenko. The results
are obtained as parts of grants 174020 MPNTR and NSF 1444147.
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[5] V. Dragović and M. Radnović, Poncelet Porisms and Beyond: Integrable Bil-
liards, Hyperelliptic Jacobians and Pencils of Quadrics, Frontiers in Mathematics,
Birkhauser/Springer, Basel, 2011, ISBN 978-3-0348-0014-3.
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