On certain sums involving the Riemann zeta-function $\zeta(s)$

Aleksandar Ivić¹

¹Serbian Academy of Sciences and Arts, Belgrade, aivic_2000@yahoo.com

A discussion involving the evaluation of the sum

$$\sum_{T < \gamma \le T+H} |\zeta(\frac{1}{2} + i\gamma)|^2$$

and some related integrals is presented, where γ denotes imaginary parts of complex zeros of the Riemann zeta-function $\zeta(s)$. It is shown unconditionally that the above sum is $\ll H \log^2 T \log \log T$ for $T^{2/3} \log^4 T \ll H \leq T$. Under these conditions it is also shown that

$$\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^2 S(t) \, \mathrm{d}t \ll H \log T \log \log T,$$
$$\int_{T}^{T+H} |\zeta(\frac{1}{2}+it)|^2 S^2(t) \, \mathrm{d}t \ll H \log T (\log \log T)^2,$$

where $S(T) = \frac{1}{\pi} \arg \zeta \left(\frac{1}{2} + iT \right)$. This generalizes the results of [1].

References

 A. Ivić, On sums of squares of the Riemann zeta-function on the critical line, in "Proceedings of the Session in analytic number theory and Diophantine equations (Bonn, January–June 2002)", eds. D.R. Heath-Brown and B.Z. Moroz, Bonner Mathematischer Schriften Nr. 360, Bonn 2003, 17 pp.