On the notions of structure species in the senses of Tsalenko, Sonner, and Blanchard

Aslanbek Naziev¹

 1 Department Math&MathTeach, Faculty Physics&Mathematics, Ryazan State University, RU, a.naziev@rsu.edu.ru

Blanchard [1] introduced the concept of structure species on a category very close to the concept of structure species in the sense of Bourbaki [2], and proved that the concept introduced by him is equivalent to the concept of structure species in the sense of Sonner [3]. According to Sonner, a structure species on a category \mathcal{X} is an univalent functor $F: \mathcal{Y} \to \mathcal{X}$ such that for any object Y of the category \mathcal{Y} and any isomorphism $j: F(Y) \to ??$ into \mathcal{X} there exists an isomorphism $i: Y \to ?$ in \mathcal{Y} such that j = F(i). Finally, Tsalenko [4] introduced the notion of structured category over the category \mathcal{X} , meaning by this the ordered pair (\mathcal{Y}, F) , formed by the category \mathcal{Y} and univalent functor F from \mathcal{Y} to \mathcal{X} . It is clear that if $F: \mathcal{Y} \to \mathcal{X}$ is the structure species in Sonner sense, then (\mathcal{Y}, F) is a structured category over \mathcal{X} in the sense of Tsalenko, and that the converse, generally speaking, is incorrect. Nevertheless, the following theorem holds.

Theorem 0.1. Let $F: \mathcal{Y} \to \mathcal{X}$ be an univalent functor. Then there exist the category $\hat{\mathcal{Y}}$, the structure species (in the sense of Blanchard) $\hat{F}: \hat{\mathcal{Y}} \to \mathcal{X}$ and the equivalence (U, V) between the categories \mathcal{Y} and $\hat{\mathcal{Y}}$ such that $\hat{F} \circ U = F$ and $V \circ U = 1_{\mathcal{X}}$.

Corollary 0.1. Let \mathcal{Y} be a category with a generator (respectively, with a cogenerator). Then there is the structure species Σ on the category of sets such that the category \mathcal{Y} (respectively, \mathcal{Y}^{op} , the dual to \mathcal{Y}) is equivalent to the category of all Σ objects and Σ -morphisms.

References

 A. Blanchard, Structure species and constructive functors, Canad. J. Math. 26(5) (1974), 1217–1227.

- [2] N. Bourbaki, Éléments de Mathématique, Livre I, Theorie des Ensembles, Chapitre IV, Structures, Hermann, Paris, 1957.
- [3] J. Sonner, Lifting unductive and projective limits, Canad. J. Math. 19(5) (1967), 1329–1339.
- [4] M. Sh. Tsalenko, Functors between structurized categories, Mat. Sb. (N.S.) 80(122) 4(12) (1969), 533-552.