Some numerical radius and norm inequalities in Hilbert space operators

Mohsen Erfanian Omidvar¹

 $^{1}\mbox{Department}$ of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran, erfanian@mshdiau.ac.ir

Let $\mathcal{B}(\mathcal{H})$ denote the C^* -algebra of all bounded linear operator on a complex Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$. For $A \in \mathcal{B}(\mathcal{H})$ let $\omega(A) = \sup\{|\langle x, Ax \rangle| :$ $||x|| = 1\}$, $||A|| = \sup\{||Ax|| : ||x|| = 1\}$ and $|A| = (A^*A)^{1/2}$ denote the numerical radius, the usual operator norm of A and the absolute value of A, respectively. It is well know that $\omega(\cdot)$ is a norm on $\mathcal{B}(\mathcal{H})$, and that for all $A \in \mathcal{B}(\mathcal{H})$,

$$\frac{1}{2} \|A\| \le \omega(A) \le \|A\|.$$

It is shown that, if $A \in \mathcal{B}(\mathcal{H})$ is a hyponormal operator. Then,

$$\omega(A) \le \frac{1}{2\left(1 + \frac{\xi_{|A|}^2}{8}\right)} |||A| + |A^*|||,$$

where $\xi_{|A|} = \inf_{\|x\|=1} \left\{ \frac{\langle (|A|-|A^*|)x,x \rangle}{\langle (|A|+|A^*|)x,x \rangle} \right\}.$

References

- A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45(4) (2015), 1055–1064.
- [2] R. Bhatia, Matrix Analysis, Springer-Verlag, Berlin, 1997.
- [3] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. **39**(1) (2008), 1–7.