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We have derived algorithms for on-line training of the recurrent neural networks
using approximate recursive Bayesian estimation of unknown probabilty density func-
tion of its state, represented as concatenated vector of synaptic weights and neuron
activities. Joint estimation of synaptic weights and neuron activities generalizes the
heuristic known as teacher forcing, which enables filtering out the noise from date
during the training. Optimal solution of the recursive Bayesian estimation for recur-
rent neural natworks is intractable, due to the nonlinearty of the network dynamics,
therfore approximate solutons have to be considered. We have derived a class of
derivative free algorithms for on-line training of recurrent networks, using Stirlings
interpolation formula and the Unscented transformation. For the case when the non-
Gaussian (multi modal or heavy tailed) noise is present on training data, we have
derived learning algorithms using Gaussian mixture as the approximation of proba-
bility density function of the RNN state. Finally, we have used statistics, recursively
updated during sequential Bayesian estimation, to derive criteria for growing and
pruning of synaptic connections and hidden neurons in recurrent neural networks.
The performance of the proposed learning algorithms is demonstrated on problems
of chaotic and nonstationary time series prediction, blind signal separation and de-
convolution and dynamic system identification.
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