Improved estimates for the best constant in a Markov L_2 -inequality

Geno Nikolov¹ and Rumen Uluchev¹

¹Department of Numerical Methods and Algorithms, Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", geno@fmi.uni-sofia.bg, rumenu@fmi.uni-sofia.bg

Here we present new two-sided estimates for the best (i.e., the smallest possible) constant $c_n(\alpha)$ in the Markov inequality

$$\|p'_n\|_{w_\alpha} \le c_n(\alpha) \|p_n\|_{w_\alpha}, \quad p_n \in \mathcal{P}_n,$$

where \mathcal{P}_n is the set of algebraic polynomials of degree at most n, $w_{\alpha}(x) := x^{\alpha} e^{-x}$, $\alpha > -1$, is the Laguerre weight function, and $\|\cdot\|_{w_{\alpha}}$ is the associated L_2 -norm,

$$||f||_{w_{\alpha}} = \left(\int_{0}^{\infty} w_{\alpha}(x)|f(x)|^{2} dx\right)^{1/2}.$$

Our approach is based on the fact that $c_n^{-2}(\alpha)$ equals to the smallest zero of the n^{th} degree polynomial Q_n in a sequence of polynomials orthogonal with respect to a measure supported on $[0, \infty)$ and defined by an explicit three-term recurrence relation. We employ computer algebra to evaluate the seven lowest degree coefficients of Q_n and to obtain thereby bounds for $c_n(\alpha)$. This work is a continuation of a recent investigations [1], where estimates for $c_n(\alpha)$ were proven on the basis of the four lowest degree coefficients of Q_n .

Acknowledgments. This research is partially supported by the Bulgarian National Research Fund under Contract DN 02/14.

References

 G. Nikolov and A. Shadrin, On the L₂ Markov inequality with Laguerre weight, in: Progress in Approximation Theory and Applicable Complex Analysis' (N. K. Govil et al., eds.), Springer Optimization and Its Applications 117, Springer Verlag, Berlin, 2017, pp. 1–17.