


Applied Biostatistical Principles and Concepts

The past three decades have witnessed modern advances in statistical mod-
eling and evidence discovery in biomedical, clinical, and population-based 
research. With these advances come the challenges in accurate model stipu-
lation and application of models in scientific evidence discovery regarding 
patient care and public health improvement.

Applied Biostatistical Principles and Concepts provides practical knowl-
edge on evidence discovery in clinical, biomedical, and translational science 
research. Biostatistics is conceived as an information science aimed at assess-
ing data variation, which may arise from natural phenomenon such as sex, age, 
race, and genetic variations or due to measurement or observation errors. The 
process of quantifying sample variations requires random variable, implying 
probability or unbiased sample, exploratory or descriptive statistics, and infer-
ential statistics in quantifying uncertainties through estimation, confidence 
interval method, as well as hypothesis testing via p value method. Since reli-
able and valid data are required for setting clinical guidelines in enhancing  
therapeutics and improving patient and public health, clinicians and health-
care providers who play a fundamental role in the task force for clinical and 
public health guidelines development require basic knowledge of research 
methodology, namely, design, conduct, analysis, and interpretation. The con-
cepts and techniques provided in this text will facilitate researchers’/clinicians’ 
design and conduct studies, then translate data from bench to clinics in an 
attempt to improve the health of patients and populations. Suitable for both 
clinicians and health or biological sciences students, this book presents the 
reality in the statistical modeling of clinical, biomedical, and translational 
data with emphasis on clinically meaningful difference as effect size prior to 
random error quantification through p value, since p value, no matter how 
small, does not rule out uncertainties in our findings, and is not the measure 
of evidence but remains in large part a function of sample size, thus enhanc-
ing findings generalizability.

Laurens Holmes Jr. was trained in internal medicine, specializing in immunology 
and infectious diseases prior to his expertise in epidemiology-with-biostatistics. 
Over the past two decades, Dr. Holmes had been working in cancer epidemiol-
ogy, control, and prevention. His involvement in evidence discovery emphasizes 
reality in statistical modeling of clinical, biomedical, and translational research 
data. With his concentration in survival data modeling, he is committed to clini-
cal and biologic relevance of data prior to statistical significance as evidence 
against the null hypothesis and not the measure of evidence. In survival model-
ing, he advocates and stresses the importance of treatment effect heterogeneity 
and its application in drug development and therapeutics.
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Clinical medicine or surgery continues to make advances through evidence 
that is judged to be objectively drawn from the care of individual patients. The 
natural observation of individuals remains the basis for our researchable for-
mulation of questions and the subsequent hypothesis testing. Evidence-based 
medicine or surgery depends on how critical we are in evaluating evidence in 
order to inform our practice. These evaluations, no matter how objective, are 
however never absolute but probabilistic, as we will never know with abso-
lute certainty how to treat future patients who were not a part of our study. 
Despite the obstacles facing us today in attempting to provide an objective 
evaluation of our patients since all our decisions are based on the judgment 
of some evidence, we have progressed from relying on expert opinion to using 
the body of evidence collected from randomized, controlled clinical trials, as 
well as prospective and retrospective cohort investigations.

Conducting a clinical trial is termed the “gold standard,” as it yields more 
reliable and valid evidence from the data relative to nonexperimental or 
observational designs; however, its reliability and validity depend on how well 
the trial is designed and conducted before outcomes from data collection, 
analysis, results, interpretation, and dissemination. The designs and the tech-
niques used to draw statistical inferences are often beyond the average clini-
cian’s understanding. A text that brings hypothesis formulation, analysis, and 
interpretation of the results of the findings is long overdue and highly antici-
pated. Statistical modeling, which is fundamentally a journey from sample to 
the application of findings, is essential to evidence discovery.

The text Applied Biostatistical Principles and Concepts has filled this gap, 
not only in the way complex modeling is explained but in the simplification of 
statistical techniques in a way that has never been presented before. This text 
has been prepared intentionally at the rudimentary level so as to benefit clini-
cians who do not have sophisticated mathematical backgrounds or previous 
advanced knowledge of biostatistics as applied statistics in health and medi-
cine. Biomedical researchers who want to conduct clinical research, as well 
as consumers of research products, may also benefit from the sampling tech-
niques, estimation, confidence interval method and hypothesis testing with 
p value method and their relevance to scientific evidence discovery, as well 
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as the simplified approach to statistical modeling of clinical and biomedi-
cal research data. It is with this expectation and enthusiasm that we recom-
mend this text to clinicians in all fields of clinical and biomedical research. 
Our experience with biomedical research and how the findings in this arm are 
translated to the clinical environment signals to us the need for the applica-
tion of biologic and clinical relevance of findings before statistical inference. 
The examples provided by the authors to simplify research methods are famil-
iar to orthopedic surgeons as well as clinicians in other specialties of medicine 
and surgery.

Though statistical inference is essential in our application of the research 
findings to clinical decision-making regarding the care of our patients, with-
out clinical relevance or importance, it can be very misleading and even 
meaningless. The authors have attempted to deemphasize p value in the inter-
pretation of clinical and biomedical research findings by stressing the impor-
tance of confidence intervals, which allow for the quantification of evidence. 
For example, a large study, because of a large sample size that minimizes vari-
ability, may show a statistically significant difference while in reality the dif-
ference is too insignificant to warrant any clinical importance. In contrast, a 
small study, as frequently seen in clinical trials or surgical research, may have 
a large effect of clinical relevance but not be statistically significant at (p > 
0.05). Thus, without considering the magnitude of the effect size with the con-
fidence interval, we tend to regard these studies as negative findings, which 
is erroneous, since absence of evidence, simply on the basis of an arbitrary 
significance level of 5%, does not necessarily mean evidence of absence.1 In 
effect, clinical research results cannot be adequately interpreted without con-
sidering the biologic and clinical significance of the data before the statistical 
stability of the findings (p value and 95% confidence interval), since p value, 
as observed by the authors, merely reflects the size of the study and not the 
measure of evidence.

In recommending this text, it is our hope that this book will benefit clini-
cians, research fellows, clinical fellows, postdoctoral students in biomedical 
and clinical settings, nurses, clinical research coordinators, physical therapists, 
and all those involved in clinical research design and conduct and the analysis 
of research data for statistical and clinical relevance. We are convinced that 
knowledge gained from this text will lead to the improvement of our patients’ 
care through well-conceptualized research. Therefore, with the knowledge 
that no book is complete, no matter its content or volume, especially a book 
of this nature, which is prepared to guide clinicians on sampling, statistical 
modeling of data, and interpretation of findings, we assert that this book will 
benefit clinicians who are interested in applying appropriate statistical tech-
nique to scientific evidence discovery.

Finally, we are optimistic that Applied Biostatistical Principles and Concepts 
for Clinicians will bridge the gap in knowledge and practice of  clinical 
and biomedical research, especially for clinicians in busy practices who are 
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passionate about making a difference in their patients’ care through scientific 
research initiatives.

Freeman Miller, MD
Director, Cerebral Palsy Program and Gait Analysis Laboratory

Nemours/A.I. DuPont Hospital for Children, Wilmington, Delaware

Reference
	 1. D. G. Altman, J. M. Bland, Absence of evidence is not evidence of absence, BMJ 
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The past three decades have witnessed modern advances in statistical mod-
eling and evidence discovery in biomedical, clinical, and population-based 
research. With these advances come the challenges in accurate model stipula-
tion and application of models in scientific evidence discovery. While applica-
tion of novel statistical techniques to our data is necessary and fundamental 
to research, the selection of the sample and the sampling method that reflects 
the representativeness of that sample to the targeted population is even more 
important. Since one of the rationales behind conducting research is to gen-
erate new knowledge and apply it to ameliorate life situations, including the 
improvement of patient and population health, sampling, sample size, and 
power estimations remain the basis for such inference. With the essential rel-
evance of sample and sampling technique to how we come to make sense out 
of data, the design of a study transcends statistical technique, since no sta-
tistical tool, no matter how sophisticated, can correct the errors of sampling.

This text is written to highlight the importance of appropriate design 
before analysis by placing emphasis on subject selection and probability sam-
ple, and of the randomization process (when applicable) before selection of 
the analytic tool. In addition, it stresses the importance of biologic and clini-
cal significance in the interpretation of study findings. The basis for statistical 
inference, implying the quantification of random error, is a random sample. 
When studies are conducted without a random sample—as often occurs in 
clinical and biomedical research—it is meaningless to report the findings with 
a p value. However, in the absence of a random sample, the p value can be 
applied to designs that utilize consecutive samples and a disease registry, since 
these samples reflect the population of interest and hence present a represen-
tative sample, justifying inference and generalization.

Essential to the selection of the test statistic is the understanding of the 
scale of the measurement of the variables, especially the response, outcome, 
or dependent variable, the type of sample (independent or correlated), the 
hypothesis, and the normality assumption. In terms of the selection of a sta-
tistical test, this task is based on the scale of measurement (binary), type of 
sample (single, independent), and the relationship (linear). For example, if  
the scale of the measurement of an outcome variable is a binary and repeated 
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xvi  Preface

measure, but normality is not assumed, the repeated-measure logistic regres-
sion model remains a feasible model for evidence discovery in using the inde-
pendent variables to predict the repeated outcome. 

This book presents a simplified approach to evidence discovery by recom-
mending the graphic illustration of data and normality tests for continuous 
(ratio/interval scale) data before the statistical test selection. Unlike current 
texts in biostatistics, the approach taken to present these materials is very 
simple. First, this text uses applied statistics by illustrating what, when, where, 
and why a test is appropriate. Where a selected parametric test violates the 
normality assumption, readers are presented with a nonparametric alterna-
tive. However, the use of non-parametric test remains a misnomer since all 
samples no matter the test involves inference from the population parameter. 
The rationale for the test is explained with limited mathematical formulae 
and is intended to stress the applied nature of biostatistics in biomedical and 
applied research.

Attempts have been made in this book to present the most commonly 
used statistical model in biomedical or clinical research. We believe that, 
while no book is complete, we have covered the basics that will facilitate the 
understanding of scientific evidence discovery. We hope this book remains a 
useful guide. It is our intention to bridge the gap between theoretical statis-
tical models and reality in the statistical modeling of biomedical and clini-
cal research data. As researchers, we all make mistakes; we believe we have 
learned from our mistakes during the past three decades and hence the need 
to examine the flaws and apply reality in the statistical modeling of biomedi-
cal and clinical research data. We hope this text results in increased reliability 
in conduct, analysis, and interpretation of clinical and translational research 
data, which is our intent and primary goal.



In preparing this book, so many people contributed directly or indirectly to 
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cal research came from my interaction with research fellows at the Nemours 
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tistical stability. They are Drs. Richard Bowen, Kirk Dabney, Suken Shah, 
Tariq Rahman, George Dodge, Pete Gabos, Freeman Miller, Richard Kruse, 
Nahir Thacker, Kenneth Rogers, William Mackenzie, Sigrid Rajaskaren, 
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utilized, as often encountered in clinical and biomedical research, it is meaningless to report the findings with
p value.



Scientific evidence discovery “Statiscalase”: 
Inference, p value, and statistical significance

The notion of applied biostatistics reflects an information science. In this 
application, biostatistics or statistics in general fundamentally involves the 
principles and procedures or methods utilized in collecting, processing, classi-
fying, summarizing, and analyzing data, as well as inference from the sample. 
As an information science, biostatistics is concerned with generating reliable 
and valid information termed inference, implying drawing conclusions on the 
population based on the sample studies (measurements and observations).

In clinical, medical, and translational research, we are interested in improv-
ing the care of our patients as well as the health of the public through reliable 
and valid evidence discovery, implying drawing valid and reliable inference 
from the sample studied. While the target population comprises all patients, 
our samples represent a subpopulation but our intent is to apply the conclu-
sion of our findings to the target population or all patients (past, present, and 
future). Therefore, a reliable inference implies that we select subjects who meet 
the study criteria to be included in the sample. The requirement is indicative 
of a need to assess an unbiased sample, implying equal and known chance or 
probability for patients to be included in the sample termed “representative 
sample.” With such sample, we ensure the generation of a random variable that 
allows for the quantification of random error through probability value (p).

Clinical and biomedical researchers often ignore an important aspect of evi-
dence discovery from their funded or unfunded projects. Since the attempt is to 
illustrate some sets of relationships from the data set, researchers often do not 
exercise substantial time in assessing the reliability and validity of the data to 
be utilized in the analysis. However, the expected inference or the conclusion to 
be drawn is based on the analysis of the unassessed data. It is after overcoming 
the reliability and validity limitations that one should begin to contemplate the 
analytic procedures, which again depends on the scale of measurements of the 
outcome and independent or predictor variables. The basic steps to be applied 
to statistical analysis must include though not limited to (a) assessment of data 
for reliability and validity; (b) variables definition including measurement scale; 
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xxii  Introduction

(c) examination of the distribution of the variables and establishment of uni-
variable, also termed univariate distribution pattern; and (d) examination of 
the basic associations among variables, also termed bivariate association. This 
final step, which could be time-consuming, allows us to understand the data 
structure upon which the complex associations such as multivariable regres-
sion model will depend. These steps are valuable given that researchers who 
advance to regression model without examining their data lose substantial 
information that is necessary in presenting useful argument on the performed 
study in relation to similar initiatives in the past.

Biostatistics is about health and biological samples, and presenting a book 
in this field to clinicians is challenging, especially given the limited involve-
ment of clinicians in understanding how evidence from the studies they have 
directed is derived. We can improve biomedical and clinical knowledge by 
involving key personnel in such research into how evidence is derived from 
the collected data of the studies with which we are affiliated. This disinterest 
is constantly reflected in how proposals are written and submitted for fund-
ing as well as how manuscripts on inferential studies are submitted to peer-
reviewed journals for consideration for publication.

Biostatistical involvement in evidence discovery in identifying risk factors in 
diseases and in examining the effectiveness or efficacy of treatment in improv-
ing care requires appropriate inference from the data. In this context, a biosta-
tistical technique is required for the test of hypothesis and for random error 
quantification, implying the degree of precision or the degree of risk one is tak-
ing in drawing conclusions from the data. Additionally, biostatistical thinking 
enables the formulation of appropriate probability distributions based on the 
assumption of stochastic behavior, implying chance, probability, or random-
ness. As clinicians and biomedical researchers involved in statistical analysis, 
our data have inherent error (systematic or random), and the intent of analy-
sis remains the assessment of information that contains error and to examine 
precision by assessing the chance or likelihood or erroneous inference and to 
quantify random error or the rule played by chance. Therefore, all attempts at 
analysis are to make sense of data. For example, if asthma symptoms occur in 
patients with higher IgE and lower IgG4 concentration, it is possible for the 
IgE level to be elevated and IgG4 to be depressed without asthma symptoms. 
With appropriate biostatistical reasoning, one can identify certain patterns in 
the data with frequencies and percentages and observe associations with bivari-
ate approach, thus making sense of the data before complex modeling.

The desire to improve evidence discovery is what motivated this book and 
specifically the growing lack of understanding of the function of p value in 
evidence discovery among clinical and biomedical researchers. Statistics is 
about sampling, since it is not feasible to study the entire population. We 
assume that a random sample represents our study population, enabling us to 
draw inferences about the target or source population.

Whatever the approach utilized to obtain evidence from the observed data, 
the central tendency theorem holds true to our observations. This theory is 
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addressed in this book as measures of central tendency or location and disper-
sion. The rationale behind summary statistics, such as mean, median, and 
mode, is presented with clear distinction on when to apply variance, standard 
deviation (SD), and standard error of the mean (SEM) to the summarized 
data. Interestingly, the relationship between SEM and sample size is illus-
trated using hypothetical data.

Sample characterization: Data visualization

Appropriate data collection is necessary for a valid estimation, implying the 
knowledge of the population, sample, parameter (population characteris-
tics), and statistic, which reflects the feature or characteristics of the sample. 
Specifically, statistic remains the estimate of population parameter. While 
investigators have a tendency of testing hypothesis without examining the 
data graphically, one recommends the visual examination of the data via 
graphs, tables, as well as descriptive or summary statistics before hypothesis-
specific analysis. The selection of the hypothesis testing technique (parametric 
vs. nonparametric) depends, as stressed throughout in this book, on rationale 
and assumptions on the distribution (normal or nonnormal probability) of 
the random (probability sample) variable of interest as well as on the assumed 
relationship between variables and the scale of measurement of the random 
variable. These criteria for hypothesis testing are described in detail later in 
the text.

Random sample

With unbiased or random sampling, we can ensure that our sample is repre-
sentative of the targeted population, provided a sufficient number of sam-
ples are drawn. This observation implies that while randomization balances 
the baseline prognostic factors between treatment groups in an experiment, 
imbalance is expected to remain unless the sample size is sufficient to balance 
the between-group confounding factors. Unless sampling is appropriate and 
unbiased, statistical tests remain meaningless. Applied Biostatistical Principles 
and Concepts delves into sampling techniques and cautions against the use of 
a statistical model without thoughtful consideration of sampling. We need to 
clearly describe the method used to recruit patients/subjects into our study 
and apply a feasible sampling technique and randomization process or use 
consecutive samples in our attempt to examine the hypothesis of interest.

Sampling, p value, and confidence interval

Where sampling was not applied and consecutive samples were not used in 
the selection of study subjects, this text recommends clinicians and biomedi-
cal researchers describe the results of the study without reference to random 
error quantification with p value or confidence interval for precision. Such 
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studies are classified as descriptive, implying an inability to generalize such 
findings to the targeted population, given the assumption of a nonrepresenta-
tive sample.

While analysis of the data used to draw inferences requires a systematic 
process in the collection, the scales of measurement are extraordinarily 
important before the selection of the statistical technique. Equally important 
in the consideration of the test statistic is the distribution, implying the shape 
and spread of the data as well as the effect size expected to be detected. This 
text examines the normality of the data before the technique to be applied 
in the evidence discovery. Since clinical studies are conducted to improve the 
care of patients and small sample sizes often result in the inability to detect an 
effect difference that is not due to chance, having adequate statistical power 
is extremely important before conducting a study. We recommend a priori 
power analysis before the prospective study and nested case–control studies 
and reserve post hoc power analysis for retrospective designs.

Factors influencing statistical power (sample size, effect size, 
variability)

This text considers the factors that influence power estimation, namely, sam-
ple size, effect size, and variability. Simply, as the sample size increases, power 
increases. Therefore, as effect size decreases, we need to increase the sample 
size in order to achieve a sufficient power, while decreasing the variability 
around the data results in an increase in the statistical power.

Hypothesis testing

Hypothesis testing is central to inferential statistics. The test depends on the 
type of design, the relationship, the groups, and the sample independence. 
The organization of this text reflects the importance of sampling architecture 
in evidence discovery.

BOX 0.1  NEGATIVE RESULTS AND THE POWER OF A STUDY

•	 Power and sample size estimations are necessary in inferential 
designs or studies—absence of evidence does not mean evidence 
of absence.

•	 The statistical power of a study can be increased not only by 
increasing the sample size but also by reducing the measure-
ment error, hence reducing variability (SEM, SD). 

•	 Small studies are likely to yield negative results.
•	 Negative results should not be reported with statistical sig-

nificance without the power estimation.
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Single-sample hypothesis testing

This text deals with hypothesis tests involving a single sample. For example, 
if  a study is conducted to determine whether or not vitamin D serum con-
centration in children with osteogenesis imperfecta is comparable to the gen-
eral population of children, a single-sample t test is considered appropriate, 
assuming continuous (interval/ratio) scale of measurement of vitamin D and 
normally distributed data. Violations of normality require the appropriate 
inference to be drawn using a nonparametric alternative to a single-sample 
t test, which is a signed-rank test.

Two-sample hypothesis testing

Hypothesis testing involving two samples is common in clinical and biomedi-
cal research. The choice of appropriate technique will depend on the normal-
ity of the test, the scales of measurement of the outcome or the dependent 
variable, and the sample independence.

Independent sample

Consider a study conducted to examine the effect of drug A or serum lipid 
concentration in children. Assume the serum lipid is measured on a continu-
ous scale, the two groups (drug A vs. placebo) are independent samples, and 
the serum lipid concentration meets the normality assumption. What would be 
the appropriate test to use in this design? The appropriate statistical test is the 
independent sample t test; however, if the normality assumption is violated, as 
would likely be observed with small sample size, and the data tend to be ordinal, 
a nonparametric alternative is required—namely, the Mann–Whitney U test. In 
addition, since the independent sample t test is computed by dividing the differ-
ence between the two means by the standard error of the mean difference, equal 
variance is assumed. The violation of the equal variance assumption requires 
the result of the independent sample t test to be reported with unequal variance.

Correlated or paired sample

If  the sample is a paired sample, implying a single sample with data on serum 
lipid concentration obtained before and after treatment (within-sample effect), 
then the appropriate test is paired sample or correlated t test provided the nor-
mality assumption is not violated. The violation of the normality assumption 
requires the use of a ranking test—namely, the nonparametric equivalent to 
a paired t test, mainly the Wilcoxon rank-sum test. If  the serum lipid level 
is measured on a dichotomous scale (upper and lower concentration), a chi-
square test of  independence remains an appropriate test statistic. However, if  
the expected cell count is less than two, a small expected cell count compensa-
tion is required using Fisher’s exact or Yates.
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More-than-two-samples hypothesis testing

Consider a study proposed to examine the effect of drug X, drug Y, and a 
placebo on urinary insufficiency in older men with prostate cancer. If  cre-
atinine urine concentration is measured on a continuous scale and normality 
is assumed, then the analysis of variance (ANOVA) is an adequate test. The 
violation of the normality test or the ordinal scale of measurement justifies 
the use of a nonparametric alternative, namely, the Kruskal–Wallis test. If  a 
single sample is involved (drug X only is tested for urinary insufficiency) and 
normality is assumed, a repeated-measure analysis of variance (RANOVA) is 
the required test. When RANOVA is not possible because of the normality 
assumption or ordinal nature of the scale of measurement, the Friedman test 
remains a nonparametric alternative to RANOVA.

Linear relationship hypothesis testing

The hypothesis test pertaining to a linear relationship involves both normal 
and nonnormal data. Consider a study conducted to examine the correlation 
between vitamin D and calcium serum concentration; if both variables are nor-
mally distributed and there is no prespecified independent and dependent vari-
able, the Pearson correlation coefficient is the required test to determine whether 
or not the correlation coefficient (r) is significantly different from zero (0). If one 
of the variables violates the normality assumption and the log transformation 
of the variables fails to achieve normality, a nonparametric alternative to the 
Pearson correlation coefficient is recommended, namely, the Spearman rank cor-
relation coefficient (rho). This text stresses the importance of correctly interpret-
ing correlation coefficient findings, implying that the lack of significant r or rho 
does not necessarily imply a lack of relationship but that the relationship is not 
linear. A graphic illustration of the data will reveal the nature of the relationship.

A linear relationship may also involve a prediction, implying a regression 
model requiring the use of X (independent/predictor variable) to predict Y 
(outcome/response variable). Consider a study performed on the effect of a 
drug Z in lowering plasma glucose level. If  normality is assumed, especially of 
the plasma glucose level (response variable), a simple linear regression model is 
an appropriate inferential statistical tool. Where the normality assumption is 
violated, a robust simple linear regression model is recommended. Where more 
than one independent variable is required in the linear prediction of the out-
come, a multiple linear regression model (not a multivariate linear regression) 
is required. Because of multiple comparisons, caution is required in the build-
ing of this model, especially the role of type I error tolerance in addressing 
multiple comparisons, as well as the interpretation. 

Binary outcome

Consider a study proposed to examine the effect of a drug A in treating angina 
pectoris, with angina coded as 0 = absence and 1 = presence representing the 
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outcome or response variable, while drug A is measured in a categorical scale 
(low, moderate, and high dosage). If  the intent of the study is to predict the 
odds of recovery or improvement after administration and follow-up, then 
the design requires the use of a statistical tool with a binary outcome and 
independent binary, dichotomous, categorical, or continuous variables. The 
appropriate regression model in this vignette is the unconditional univariable 
logistic regression model. This test does not assume the shape of the distribu-
tion of the data—hence, the sigmoid model categorized as the generalized 
linear model. Other logistic regression models that are feasible depending on 
the organization of the data and specific designs include conditional, ordinal, 
multinomial, and polynomial logistic regression models.

Repeated-measure logistic regression is performed if  the outcome variable 
is repeated for each participant in a study and the intent is to account or adjust 
for multiple measure from each participant. An example of this can be illus-
trated in a study conducted to determine the effect of drug A on heart rate; 
heart rate is recoded into a binary variable, and measurement is obtained six 
times from each participant. In gait analysis studies, it is not uncommon to 
obtain multiple measures of knee gait velocity or knee range of motion, and 
so on. To determine the effect of intervention on these gait parameters, dichot-
omized into normal and abnormal, the repeated-measure logistic regression 
model is adequate, correcting or accounting for multiple measures. STATA fits 
this model by setting the repeated-measure variable with xtset var and then 
xtgee var var, reflecting the binomial as probability distribution and logit 
as the link function in the model. For example, in the previous illustration with 
knee gait velocity being predicted by cerebral palsy geography: xtset cp 
(panel variable), then xtgee KneeRom i.cpGeo, family (binomial) 
link (logit). These models are discussed in this text, given the wide use 
and reporting of logistic regression in medical literature.

Time-to-event data (survival analysis)

Often, biomedical and clinical researchers attempt to examine the outcome 
of cancer treatment using survival as the response variable, and such design 
requires the use of  time-to-an-event data. L. Holmes, Jr. et al. (2008) per-
formed a retrospective cohort study to determine the effectiveness of androgen-​
deprivation therapy (ADT) in prolonging the survival of  older men with 
locoregional prostate cancer.1 Since the response variable was measured on a 
binary scale and the independent variable (ADT) was measured on a binary 
scale, a univariable Cox proportional hazard model was used to determine the 
crude and unadjusted effect of  ADT on CaP survival. This is a semipara-
metric model, and the shape of the distribution of the data is not assumed. 
As is often the case, a meaningful model involves the examination of other 
variables that might also contribute to survival. To address this situation, a 
multivariable Cox regression proportional hazard model is required with the 
purpose of simultaneously controlling for the effect of  potential confounders, 
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such as tumor size, Gleason score, tumor stage, and primary therapy (radical 
prostatectomy) in the association between ADT and prostate cancer survival.

Time series analysis

Forecasting is not common in biomedical and clinical research. Time series 
are used to predict the response variable from the independent variable and to 
establish time trends. Consider a study to determine prostate cancer screening 
and treatment outcomes based on the presence of male physicians in the US 
Senate and the House of Representatives from 1966 to 2012. This evidence 
could be discovered using a time series regression, such as the ARIMA model. 
This is a regression model with the number of male physicians over time as 
the independent variable and the number of men screened for prostate can-
cer as the dependent variable. The multivariable model is built to account 
for other factors that may influence screening besides physician presence in 
the US Senate or House of Representatives. As it is an uncommon model in 
medicine, this topic is not discussed in this book; there are specific texts 
in biostatistics wherein the time series is discussed in detail.

Panel/Longitudinal/Cross-Sectional Time-Series Data 
Analysis/Modeling: Poolability, Fixed and Random Effect

We often encounter data with multiple entries, such as repeated measures at dif-
ferent time periods. In effect such data have individual (group) effect, time effect 
or the combination, implying fixed effect, random effect, and both, respectively. 
Panel data examine the group that reflects individual-specific effects, time effects, 
or the combination in order to assess heterogeneity or subgroup effect that may 
not be observed in poolability context. The referenced effects are either fixed or 
random. In a fixed effect model, we assess if the intercepts vary across group or 
time period. However, the random effect examines the differences in error vari-
ance component across individual or time periods. The poolability application, 
implying the absence of individual effect or time-specific effect (μi – 0) uses the 
ordinary least square method (OLS), which generates the parameter estimates: 
yμ = α= Xμ β + εμ. (μi – 0). Where the data violates exogeneity assumption, that 
the expected value of disturbance is zero or that disturbances are not correlated 
with regressor, then the random effect estimator is biased, requiring the applica-
tion of panel data model, thus the use of fixed and random effect models.

Stata, a statistical software used to perform all the analyses in this text, fits 
the model for both panel and pooled estimator: xtpois and xtbreg are used to 
provide these estimators.

Confounding

One of the issues in validation of a biomedical and clinical research is to 
assess whether associations between exposure and disease derived from the 
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observed data are of a causal nature or not (due to systematic error, random 
error, or confounding). Confounding refers to the influence or effect of an 
extraneous factor(s) on the relationships or associations between the expo-
sure and the outcome of interest. Nonexperimental studies are potentially 
subject to the effect of extraneous factors, which may distort the findings of 
these studies. To be a confounder, the extraneous variable must be a risk fac-
tor for the disease being studied and associated with the exposure being stud-
ied but not be a consequence of exposure. Consequently, confounding occurs

	 a	 When the effects of the exposure are mixed together with the effect of 
another variable, leading to a bias.

	 b	 If  exposure X causes disease Y; Z is a confounder if  Z is a known risk 
factor for disease Y, and Z is associated with X, but Z is not a result of 
exposure X. 

p Value and measure of evidence

While statistical inference is essential in our application of the research find-
ings to clinical decision-making regarding the care of our patients, statistical 
inference without clinical relevance or importance can be very misleading and 
even meaningless. This textbook has attempted to deemphasize the p value in 
the interpretation of epidemiologic or research findings by stressing the impor-
tance of confidence intervals, which allow for the quantification of evidence. 
For example, a large study due to a large sample size that minimizes variability 
may show a statistically significant difference, while in reality, the difference is 
too insignificant to warrant any clinical importance. In contrast, a small study, 
as frequently seen in clinical trials or surgical research, may have a large effect 
size of clinical relevance but not be statistically significant at p > 0.05. Thus, in 
not considering the magnitude of the effect size with the confidence interval, 
we tend to regard these studies as negative findings, which is erroneous, since 
absence of evidence, simply on the basis of an arbitrary significance level of 
5%, does not necessarily mean evidence of absence.2 In effect, clinical research 
results cannot be adequately interpreted without first considering the biologic 
and clinical significance of the data before the statistical stability of the find-
ings (p value and 95% confidence interval), since p value, as observed by the 
authors, merely reflects the size of the study and not the measure of evidence.

Role of random error

Assuming a random sample was taken from the population studied, is this 
sample representative of the population? Is the observed result influenced by 
sampling variability? Is there a recognizable source of error, such as the qual-
ity of questions, a faulty instrument, and so on? Is the error due to chance, 
given no connection to a recognizable source or error? Random error can be 
minimized by
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	 1	 Improving design
	 2	 Enlarging sample size
	 3	 Increasing precision, as well as by using good quality control during the 

study implementation

It is important to note here that the sample studied is a random sample and 
that it is meaningless to apply statistical significance to the result designs that 
do not utilize random samples.

Null hypothesis and types of errors

The null hypothesis states that there is no association between the exposure 
and the disease variables, which, in most instances, translates to the statement 
that the ratio measure of association = 1.0 (null), with the alternate hypoth-
esis stated to contradict the null (one-tail or two-tail)—that the measure of 
association is not equal to 1.0. The null hypothesis implies that the statistics 
(mean, odds ratio [OR], relative risk [RR]) being compared are the results of 
random sampling from the same population and that any difference in OR, 
RR, or mean between them is due to chance. There are two types of errors 
that are associated with hypothesis testing: type I (rejecting the null hypoth-
esis when it is in fact true) and type II (failing to reject the null hypothesis 
when it is in fact false).3

Significance level (alpha)

The test statistics that depend on the design as well as the measure of the 
outcome and independent variables yield a p value. The significance level, or α 
(alpha), is traditionally set at 5% (0.05), which means that if  the null hypoth-
esis is true, we are willing to limit type I error to this set value.4 The p value 
(significance level) is the probability of obtaining the observed result and more 
extreme results by chance alone, given that the null hypothesis is true. The 
significance level is arbitrarily cut off at 5% (0.05). A p < 0.05 is considered 
statistically significant, implying that the null hypothesis of no association 
should be rejected in favor of the alternate hypothesis. Simply, this is indicative 
of the fact that random error is an unlikely explanation of the observed result 
or point estimate (statistically significant). With p > 0.05, the null hypothesis 
should not be rejected, which implies that the observed result may be explained 
by random error or sampling variability (statistically insignificant).5

Confidence interval and precision

Confidence interval (CI) is determined by quantification of precision or ran-
dom error around the point estimate, with the width of the CI determined by 
random error arising from measurement error or imprecise measurement and 
sampling variability and some cutoff  value (95%). CI simply implies that if  a 
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study were repeated 100 times and 100 point estimates and 100 CIs were esti-
mated, 95 out of 100 CIs would contain the true point estimate (measure of 
association). It is used to determine statistical significance of an association. 
If  the 95% fails to include 1.0 (null), then the association is considered to be 
statistically significant.

The CI reflects the degree of precision around the point estimate (OR/RR/
HR). If  the range of RR or OR (point estimate) values consistent with the 
observed data falls within the lower and upper CI, the data are consistent with 
the inference, implying the rejection of the null hypothesis. Therefore, when 
the null value (1.0), implying no association, is excluded from the 95% CI, one 
can conclude that the findings are statistically significant. Consequently, such 
data are not consistent with the null hypothesis of no association, implying 
that such an association cannot be explained solely by chance. 

Application of CI in assessing evidence

Whereas large studies may not necessarily convey clinical importance, small 
studies are often labeled “nonsignificant” because of the significance level 
being greater than 0.05. This is attributed to the low power of these studies, 
which preclude a detection of statistically significant difference. The mag-
nitude of effect (quantification of the association) and 95% CI, which may 
appear to be wide, indicating considerable uncertainty, are reliable interpreta-
tions of small and negative findings. The p-value interpretations of such stud-
ies are misleading, clearly wrong, and foolhardy.6

Biostatistical reasoning reflects the degree upon which evidence discovered 
from the observed data is generalizable across targeted populations. Being 

BOX 0.2  REALITY IN STATISTICAL MODELING OF 
BIOMEDICAL AND CLINICAL RESEARCH DATA

•	 Descriptive statistics should be applied when data violate the 
probability sampling assumption.

•	 One should simply describe the data without p value and/or CI.
•	 A nonparametric test should be used when data are distribution-

free and when study size is small, even with ratio or interval 
scales data (cardinal or continuous variables).

•	 It is meaningless to apply a p value to studies that did not apply 
probability sampling (random sample) in the selection of study 
participants and hence did not assess random variables.
•	 Exceptions are large sample claims/administrative data, 

research registries, disease registries, and consecutive 
sample.

•	 These data are assumed to be representative of the popula-
tion of interest.
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able to use appropriate test statistics or statistical techniques/procedures to 
make sense of the data collected during the course of our research is funda-
mental to evidence discovery. This ability depends on a careful understanding 
of the scale of measurement of our variables, especially the response variable, 
the sampling technique used, the type of study design (experimental or non-
experimental), and the power of the study. Where probability sampling was 
not applied or consecutive patient studies undertaken to reflect the sample 
representativeness, it is not meaningful to quantify random error (p value) 
and estimate precision (confidence intervals).

BOX 0.3  MODEL SPECIFICATION

•	 Tabular analysis, such as M-H or chi-square, should be per-
formed before the regression model.

•	 Appropriate model specification is required for credible evi-
dence from data. 

•	 Background knowledge of exposure, disease, confounders, effect 
measure modifiers, and the relationship between exposure and 
disease are essential for model selection.

•	 Model check is necessary for appropriate interpretation of 
evidence. 

BOX 0.4  REALITY IN STATISTICAL INFERENCE 
AND RESULTS INTERPRETATION

•	 p Values should not be overemphasized in the presentation of 
epidemiologic study findings. 
•	 The p value, no matter how small, does not rule out alternative 

explanations for the obtained results—bias and confounding. 
•	 p Values do not measure evidence but partially reflect the 

size of the study.
•	 The interpretation of the biologic and clinical relevance of the 

findings precedes statistical inference or stability.
•	 One should examine the magnitude of effect or point esti-

mate and provide a clinical/public health interpretation 
before random error quantification.

•	 Results should be presented with the point estimate, such as 
HR, RR, OR, and confidence interval (lower and upper 95% 
or 99%). 
•	 Why is the preference for CI to p value in reporting preci-

sion or random variability?



Introduction  xxxiii

The fundamental thinking in inferential statistics is the assumption that 
observations represent random samples drawn from the population of 
patients, implying known and equal probability for all patients in the popula-
tion to be included in our samples. This is important in deciding the targeted 
population to whom the study findings should apply, implying knowledge 
of the actual population the samples represent. The source of the sample is 
important for adequate generalization since in/outpatient subjects in a clini-
cal investigation rarely represent the random sample of the population of 
patients with a given condition as a whole.
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This book presents the tools for evidence discovery by appealing to reality 
in the statistical modeling in biomedical and clinical research. The chapters 
that follow should assist you as a reader in understanding design and infer-
ence in order to appraise published medical and biomedical literature as well 
as facilitate the implementation of your own research protocol and making 
sense of your data. It will remain our hope that these words are not dead but 
active in the process of the acquisition of knowledge of evidence discovery.
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Section I

Design process

The design process that involves the type of study based on the research 
question or the clinical or biological phenomenon to be investigated and the 
sample is extremely important in accurate and valid evidence discovery. The 
clinicians’ or researchers’ inability to apply a representative and unbiased 
sample tends to create inconsistent findings across studies. In effect, design 
transcends statistical models, and no matter the statistical tool used in the 
data analysis, the errors of sampling cannot be corrected. This section deals 
with the types of research designs and their applications in the selection of 
test statistic.

Research project

Design

Conceptualization

AnalysisConduct

Experimental
Nonexperimental

Sample
Sampling techniques

Protocol
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1.1 � Introduction

Biomedical and clinical research remain tools to understanding disease path-
ways, treatment modalities, and outcomes of care. While knowledge of bio-
medical sciences and clinical medicine is significant for advances in this field, 
the generation of such knowledge requires solid and reliable design processes 
as well as adequate statistical techniques. Biomedical and clinical research is 
conducted primarily to enhance therapeutics, implying the intent to improve 
patients’ care. The application of this concept in biomedical sciences, pub-
lic health, and clinical medicine signaled a departure from nihilism, which 
claimed that disease improved without therapy. The scientific medical discov-
eries on pellagra, diabetes mellitus, and antibiotics like penicillin and sulfon-
amide provide reliable data on medicinal benefits in therapeutics. Today, with 
biomedical and clinical research, clinical investigators applying reliable and 
valid research methodologies can demonstrate the efficacy and effectiveness 
of agents and devices, competing therapies, combination treatments, com-
parative effectiveness, and diagnostic and screening criteria for most diseases.

In claiming the advantage of therapeutics in medicine (complementary 
versus traditional), there is a need to understand the biological theories and 
the complexities of disease among clinical investigators, who may be expert 
physicians, as well as other healthcare providers and those who are indeed 
researchers. While understanding the biological and clinical importance 
of a disease is essential in formulating the research question, the clinician 
is also expected to acquire statistical reasoning. The combination of these 
two models enhances the analysis and the interpretation of the data from 
clinical research. Therefore, in clinical research, there is an investigator (clini-
cal) who examines the formal hypothesis or establishes the biology based on 
work in the clinical settings (experience, observation, and data), as well as 
another investigator (biostatistician/epidemiologist) whose contribution is to 
generalize observations from sample to target population, as well as com-
bine empirical (observation and data) and theory-based knowledge (prob-
ability and determinism) with the understanding of the results of the study. 
Despite these distinctions, effective clinical and biomedical research involves 
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4  Applied biostatistical principles and concepts

the understanding of these two models of thinking or reasoning by the inves-
tigators, clinicians, and epidemiologists/biostatisticians. Without this integra-
tion, our effort toward the design and interpretation of research findings is 
limited, since making reasonable, accurate, and reliable inferences from data 
in the presence of uncertainty remains the cornerstone of clinical research 
results utilization for improving the healthcare of future patients. In stressing 
the essence of this integration, one is not claiming the relevance of statisti-
cal reasoning over biological and clinical importance, since clinical research 
thinking is fundamentally biologic, clinical, and statistical.

The approach to biomedical and clinical research involves research con-
ceptualization, the design process, and statistical inference. In biomedical sci-
ences, for example, the research conceptualization may involve therapeutics 
in mice or rats with cancer, and because of the similarities to human malig-
nancies, these findings would be translational, and hence generalization (bio-
logic) to human malignancies without a formal statistical model can be made. 
The design process may involve treated and untreated mice, with a follow-up 
time to determine the survival difference in the two groups. The statistical 
inference, given that adequate numbers (sample size and power estimations) 
of mice were studied, involves the use of Kaplan–Meier’s survival estimates, 
as well as the log-rank test for the equality of survival in these two groups. 
Finally, statistical stability is examined in ruling out random variation using 
p value (significance level) and 95% confidence interval (precision). A simi-
lar approach is utilized in clinical research that involves human subjects or 
patients in clinical settings. The research conceptualization in this context 
involves the clinical investigator or clinician utilizing his or her experience in 
the management of patients with malignancy (e.g., leukemia), observation, 
and data to formulate hypotheses regarding therapeutics. A case–comparison/
control design could be applied here in which the treated group (cases) is 
placed on the new drug X, while the comparison group (control) is placed on 
a standard care drug Y and both are followed for the assessment of outcome 
(death or biochemical failure). The statistical inference and the interpretation 
of the results are similar to the example with mice and malignancy therapeutics. 
There are excellent books in study designs, including one by the author of this 
book.

Historically, central to clinical research and therapeutics is the concept of 
disease screening and diagnostic testing. We can view the disease diagnosis 
as well as the diagnostic test as key elements in the ascertainment of sub-
jects for clinical research. Inappropriate patient ascertainment may result in 
selection, information, and misclassification biases (discussed in subsequent 
chapters). This historical concept remains valid in research conduct and is the 
main material elaborated in this chapter. The sensitivity, specificity, predictive 
values, and likelihood ratios are described with examples. Thus, the validity 
of the results obtained in clinical research depends on how adequately the 
subjects were identified and assigned to treatment (experimental design or 
clinical trial) or followed after exposure (nonexperimental design).
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1.2 � Why conduct clinical research?

Conducting research in biomedical, clinical, and public health involves a 
response to a health or health-related issue. Thus, research conducted com-
mences with question formulation, which is followed by design plans to answer 
the question, data collection and analysis, the drawing of conclusions from 
the results or findings, and then information sharing through publication or 
dissemination. For example, a reason to conduct research may be to under-
stand the natural history of a disease, such as unicameral bone cyst, which is 
a benign tumor of the bone. Another example of the natural history of a dis-
ease is the Swedish prospective cohort study of men diagnosed with prostate 
cancer (CaP) and followed for 10 years without specific treatment (watchful 
waiting or observational management) for CaP. In the latter example, with 
the primary end point being cause-specific mortality (prostate cancer dead), 
the experience of this group was compared and a 10-year relative survival 
of 87.0% was reported.1 The natural history of disease refers loosely to the 
collectivity of the actual sequence of events since this phenomenon (actual 
sequence of events) can vary widely among patients.2 In more concrete terms, 
we normally refer to the natural history of a disease as the assessment of the 
actual sequence of events for many patients in order to obtain some estimates 
of these events. In this respect, the natural history of a disease can be charac-
terized using measures of disease occurrence, such as case fatality, mortality 
rate, median survival time, and so on. Research may also be conducted to 
relate laboratory data or information with screening, diagnosis, treatment, 
and prognosis. A researcher/investigator may wish to use the laboratory value 
for blood glucose level, for example, to screen, diagnose, and determine the 
prognosis of diabetes mellitus. Finally, a natural history of a disease may be 
studied in a randomized, placebo-controlled clinical trial, where treatment is 
allocated to one group, while the other group (control) is given the placebo. 
The result in the control group without the treatment represents the natural 
history of the disease studied.

The primary reason to conduct research in clinical medicine is to address 
questions pertaining to screening, diagnosis, treatment, and outcome of care 
(prognosis), with the ultimate goal being the improvement of patients’ care 
(Figure 1.1). This effort involves protocol development and management/
coordination, recruitment and data collection/entry, data management and 
analysis, and making sense of the data through interpretation and inference.

The biomedical or clinical researcher should have a clear idea of the con-
cept to be measured. This step allows the investigator to clearly address the 
research questions. The statement of such questions must reflect the scale of 
measurement of the variable—such as nominal, ordinal, interval, or ratio. 
The reliability of the variables to be measured (if  questionnaires are used to 
collect information) has to be examined on the basis of the stability of the 
response to the question over time—a sort of test and retest reliability. As 
is often seen in clinical research involving radiographic measures, reliability 
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could be measured by examining the agreement between two observers or sur-
geons (interrater reliability). Very important is the validity or accuracy of the 
measure, which is simply the extent to which the empirically observed asso-
ciation between measures of the concepts agree with the testable hypothesis 
about the association between variables assessed.

1.3 � Study subjects

Biomedical research may involve animals as well as human subjects. For 
example, biomedical researchers may be interested in finding out if  a certain 
drug (n34) enhances programmed cell death (apoptosis) in transgenic mice 
induced with neuroblastoma. A case–control nonexperimental epidemiologic 
design may be proposed for this investigation. The issues to be addressed 
include study subject selection since the control (mice not administered n34) 
must be comparable to the treatment mice (n34 mice). Since these mice are 
genetically homogeneous, such selection is feasible, minimizing selection bias, 
sampling, and generalization errors.

1.4 � Subject selection

Investigators must select samples that are representative of the patient pop-
ulation, implying performing the investigation on number of patients large 
enough to minimize random error (increased sample representativeness) in 
the generalization of the study findings to the targeted population of patients. 
One must stress the importance of sampling design since the generalizability 
of the results of a study is dependent on the accuracy of the sampling design. 
Additionally, inference remains invalid if  drawn from an erroneous sampling 
design. An example of a study sample would be children with adolescent idio-
pathic scoliosis (AIS) who have undergone posterior spinal fusion for curve 
deformities correction between 2000 and 2011. Well-structured inclusion 

Want to know if treated  uncontrolled asthma responds 
to a certain oral immunotherapy (OIT) medication (IgE 
desensitization and IgG4 elevation)

Issue in 
pediatrics
asthma

Asthma diagnosis

Clinical
decision: treat or
not with OIT?

Unknown treatment for uncontrolled
asthma 

Figure 1.1  Rationale for research conduct and process.
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and exclusion criteria are essential in appropriate subject selection. The pur-
pose of this is to ensure that the study findings are reasonably generalized. 
Therefore, criteria should be selected in such a manner that the generalization 
of the study findings to the targeted population is feasible.

1.5 � Sampling

Biomedical and clinical researchers must determine a priori who should be in 
the sample. Reason behind sampling, among others (research complexity and 
efficiency, limited resources), include increasing precision (minimize sampling 
variability) and ensuring accuracy of the estimates, such as the mean or pro-
portion. Commonly used probability sampling techniques include the simple 
random sample, systematic random sample, and stratified sample, as well as 
the cluster sample. It is, however, important to note that while appropriate 
probability sampling technique is essential in lessening sampling variability, 
completely eliminating it is impossible, and there remains the possibility of 
random variability, hence the need to quantify such errors (random) by prob-
ability value ( p).

The utility of findings from an inferential study depends on appropri-
ate sampling. Sampling as a desirable approach in research is based on the 
rationale of appropriate samples representing the target population. While 
study size may be influenced by the available resources, the study sample must 
reflect the characteristics of the targeted population. A sample is described 
as a subset of the targeted population, which is always desirable, given the 
impossibility of studying the entire population. In clinical research, the study 
sample rarely meets the requirement for probability sampling. In this context, 
convenient (subjects who meet criteria and are accessible to investigators) and 
consecutive (the entire patient population over a long period of time) samples 
are often used.

Inferential studies that quantify random error require probability sam-
pling. This approach ensures that the study sample represents the targeted 
population and that data derived from such sampling techniques reflect the 
true experience in the population that the study sample was drawn from. 
These techniques include the simple random sample, stratified sample, sys-
tematic sample, and cluster sample.

1.6 � Generalization

When studying physical phenomena, we can apply the findings easily without 
determining how to reasonably apply the findings to geographic locations in 
which the phenomena were not observed. However, biologic or biomedical 
studies differ because of the heterogeneity of species and the changing envi-
ronmental conditions. Can we generalize the findings of a study based on a 
consecutive sample? This question requires the investigators’ determination 
as to whether the sample is comparable to the probability sample to justify 
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generalization. For example, if  the investigator estimates that the consecutive 
sample was large enough to minimize random error (representative sample), 
then such a study finding could be generalized to the target population with 
the assumption that the sampling technique used is similar to the probability 
sampling technique. In contrast, if  the consecutive sample is judged not to 
minimize random error, such a finding should not be generalized. These stud-
ies’ results should be presented with descriptive statistics, without any attempt 
to quantify random error.

1.7 � Sample size and power estimations

While this issue is discussed in detail in subsequent chapters, the importance 
of understanding the essence of the study size needed for a research project 
needs to be mentioned early. Sample size estimation is important at the begin-
ning of the design of a research project. In inferential or analytic studies, the 
findings require generalization. This process involves a clear statement of the 
null and alternative hypotheses, indicating the direction of the test, selecting 
the test statistic based on the scale of measurement of the outcome and inde-
pendent or predictor variables, clinically reasonable effect size, variability, and 
the statement of type I error tolerance and type II error. Given the importance 
of power, adequate sample size is necessary in order to avoid missing a real 
difference and concluding that there is no difference. Subsequent chapters will 
provide details in specific statistical test settings (t test, chi-square, correlation 
coefficient, logistic regression, and survival analysis) for how to estimate the 
study size. However, researchers must plan to address loss to follow-up by 
compensating for the attrition rate, as well as to increase the study size while 
utilizing multivariable statistical modeling to adjust for confounding at the 
analysis phase of the research.

1.8 � Screening (detection) and diagnostic 
(confirmation) tests

Clinical or medical research also involves designs that examine the effect of 
testing on outcome. Simply, a screening or diagnostic test is beneficial if  sur-
vival is prolonged among those screened for the disease compared to those 
who are not screened. Remarkably, the outcome of diagnostic tests is not the 
mere diagnosis or disease stage or grade of tumor, as in the Gleason score used 
in prostate cancer clinical assessment, but involves the mortality or morbidity 
that could be prevented among those who tested positive for the disease.

The benefit of a diagnostic test depends on whether or not there are proce-
dures and treatment in place to follow up the true positives (patients or indi-
viduals with the symptoms who test positive for the disease). For example, to 
determine whether or not screening for prostate-specific antigen (PSA) pro-
longs survival or reduces the risk related to prostate cancer, investigators may 
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compare the rates of PSA among patients who died of prostate cancer with 
controls who did not.

Medicine is a conservative science, and the practice of clinical medicine 
involves both art and science. The process upon which clinical diagnosis  is 
achieved remains complex, involving history, a review of the system, physical 
examination, laboratory data, and neuroimaging, as well as probability 
reasoning. The screening test is performed in individuals who do not have the 
symptoms or signs of a disease or a specific health condition3—for example, 
the use of PSA in asymptomatic (no signs or symptoms of prostate cancer dis-
ease) African-American men, 40 to 45 years of age, to assess the presence or 
absence of prostate cancer in this population. A diagnostic test is performed 
in clinical medicine to acquire data on the presence (+ve) or absence (−ve) of 
a specific condition.4 The questions are as follows.

1.8.1 � Why conduct a diagnostic test?

A diagnostic test is performed to confirm the presence of a disease following 
symptoms of an illness. For example, a 21-year-old Caucasian female pres-
ents with mild fever and frequent and painful urination that is relieved after 
voiding the bladder. The physician suspects cystitis and recommends urinaly-
sis for bacterial pathogen isolation. The test confirms E. coli (Gram-negative 
bacterial pathogen). The above example is illustrative of a diagnostic test, 
which simply confirms the diagnosis of bacterial cystitis in this hypothetical 
illustration.

1.8.2 � When is a diagnostic test performed?

A diagnostic test could also be performed (1) to provide prognostic informa-
tion for patients with a confirmed diagnosis of a disease, such as diabetes 
mellitus (DM), for example, a blood glucose level in patients with DM; 
(2) to monitor therapy to assess benefits or side effects, for example, to assess 
pseudoarthrosis among patients with AIS who underwent spine fusion to cor-
rect curve deformities; (3) to confirm that a person or patient is free from a 
disease, for example, though not a very reliable marker of prostate cancer 
prognosis, PSA level to assess prostate cancer remission in men diagnosed 
with locoregional CaP and treated for the disease with radical prostatectomy 
and radiation therapy.

1.8.3 � What is a screening test, and what are the possible results?

Screening is an effort to detect disease that is not readily apparent or risk fac-
tors for a disease in an at-risk segment of the population. This test can result 
in four possible outcomes or results: (1) true-positive—positive test result 
given the presence of disease; (2) false-positive—positive test in the absence 
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of disease; (3) false-negative—positive test in the absence of disease;  and 
(4) true-negative—negative test in the absence of disease.

Diagnostic tests, results, and implications of screening depend on both the 
prevalence of the disease and test performance (Table 1.1). For example, rare 
diseases are associated with relatively frequent false positives relative to true 
negatives, and common diseases are associated with relatively frequent false 
negatives relative to true negatives. A screening test is generally inappropriate 
when the disease is either exceedingly rare or extremely common.

1.8.4 � What are the measures of a diagnostic and screening test?

Measures of the diagnostic value of a test are its sensitivity and specificity. 
These parameters have important implications for screening and clinical 
guidelines.5

Sensitivity refers to the ability of a test to detect a disease when it is pres-
ent. This measures the proportion of those with disease who are correctly 
classified as diseased by the test

	 Sensitivity a a c= ÷ +( )

This implies subjects with true-positive test results: (a)/(subjects with true-
positive results + subjects with false-negative test result (a + c)). A test that is 
not sensitive is likely to generate a false-negative result (c). The false-negative 
error rate is given as follows:

	 False-Negative Error Rate Pr T D+ c (a c)= − = ÷ +( )|

This is otherwise termed beta error rate or type II error.
There is a relationship between sensitivity and false-negative error rate:

	

Sensitivity [a/(a c)] False-Negative Error Rate+ + == − +
= ÷ + =

Pr (T D )

[c (a c)] ( )

|

1 0 100. %

Table 1.1  A 2 × 2 contingent table illustrating diagnostic test results

Test result

Population (target)

Disease Nondisease or disease-free

Positive a b
Negative c d

Abbreviations:	 a = true positive, b = false positive, c = false negative, and d = true 
negative. Sensitivity = a/a + c; specificity = d/b + d; positive predictive value (PPV) = 
a/a + b; negative predictive value = d/c + d; false-positive rate = c/a + c; false-
negative rate = b/b + d.
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Specificity refers to the ability of a test to indicate nondisease (disease-free) 
when no disease is present. This is the measure of the proportion of those 
without disease who are correctly classified as disease-free by the test. 
Specificity is derived in this way:

	 Specificity d/ b d= +( )

This implies subjects with true-negative test results (d)/(Subjects with true-
negative result + Subjects with false-positive (b + d)). A test that is not spe-
cific is likely to generate false-positive results (b). The false-positive error rate 
is as follows:

	 False-Positive Error Rate Pr (T D ) b (b d)= + − = ÷ +|

There is a relationship between specificity and false-positive error rate:

	 Specificity (d/b d) False-Positive Error Rate (+ + bb/b d) ( )+ = 1 0 100. %

1.8.5 � What are predictive values?

Predictive values refer to (1) the probability of having the disease being tested 
for if  the test result is positive and (2) the probability of not having the dis-
eases being tested for if  the result is negative.6

BOX 1.1  RELATIONSHIP BETWEEN DISEASE PREVALENCE, 
SENSITIVITY, SPECIFICITY, AND PREDICTIVE VALUE

•	 There is a relationship between disease prevalence, sensitivity, 
specificity, and predictive values.

•	 The prevalence simply means the probability of the condition 
before performing the test (i.e., pretest probability).

•	 The predictive values refer to the probability of the disease 
being present or absent after obtaining the results of the test.

•	 Using the 2 × 2 table, positive predictive value (PPV) is the pro-
portion of those with a positive test who have the disease (a /(a + 
b)) while the negative predictive value (NPV) is the proportion of 
those with a negative test who do not have the disease (d /(c + d)).

•	 The predictive values will vary with the prevalence of the dis-
ease or condition being tested for.

•	 Therefore, the probability of the diseases before (prevalence) 
and the probability of disease after (predictive value) will be 
interrelated, with the differences in predictive values driven by 
the differences in the prevalence of the disease.
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1.8.6 � What are the types of predictive values?

There are two types of predictive values used in diagnostic/screening tests:

Positive predictive value (PPV): the probability of a test being positive 
given that the disease is present. Mathematically, positive predictive 
value is as follows:

	
PD or PPV a/ a pT D pD a/ a b+ = + + − − { } = +( ) ) { }|

where PD+ = True positives/{True positives + False positives}. Using 
Bayes’s theorem, PPV is the probability that an individual with a 
positive test result truly has disease, which is the proportion of all 
positives (true and false) that are classified as true positives. PPV is 
thus the probability that a positive test result truly indicates the pres-
ence of disease.

Negative predictive value (NPV) or PD− is the probability of disease 
absence after a negative test result. Mathematically, negative predic-
tive value is as follows:

	 NPV True negatives/{True negatives False negati= + vves} d/(d b)= +

Using the Bayesian theorem: PD− = [Specificity × (1 − Prevalence)]/
{[Specificity × (1 − Prevalence)] + [Prevalence × (1 − Sensitivity)]}.

1.8.7 � What is disease prevalence, and how is it related 
to positive predictive value?

Prevalence is the probability of the disease, while sensitivity, in comparison, is 
the probability of a positive test in those with the disease:

	 Prevalence {a c}/{a b c d}= + + + +

Using the Bayesian theorem: PD+ = (Sensitivity × Prevalence)/{[Sensitivity × 
Prevalence] + [(1 − Specificity) (1 − Prevalence)]}. Remember that sensitivity 
remains the probability of a positive test in those with the disease − {a/a = c}.

1.8.8 � What are likelihood ratios?

Likelihood ratio (LR) is the probability of a particular test result for an indi-
vidual with the disease of interest divided by the probability of that test result 
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from an individual without the disease of interest. There are two types of 
likelihood ratios:

	 1	 Likelihood ratio positive (LR+) refers to the ratio of the sensitivity of a 
test to the false-positive error rate of the test. Mathematically:

	 LR+ = + +[a/(a c)/[b/(b d)]

The LR+ = Sensitivity/(1 − Specificity).
	 2	 Likelihood ratio negative (LR−) refers to the ratio of the false-negative 

error rate to the specificity of the test. Mathematically:

	 LR− = + +{ ( )} { ( )}c/ a c / d/ b d

The LR− = (1 − Sensitivity)/Specificity.

1.8.9 � What is the measure of the separation between positive 
and negative tests?

The ratio of LR+ to LR− refers to the measure of separation between the 
positive and negative test. Mathematically:

	 LR to LR ratio LR+/LR+ − = −

This is an approximation of the odds ratio: OR = ad/bc, using the two-
by-two contingent table. Odds ratio: odds of exposure in the disease/odds of 
exposure in the nondisease. For example, the odds of disease (lung cancer) = 
probability that lung cancer will occur (P)/probability that it will not occur 
(1 − P).

Vignette 1.1: Consider 160 persons appearing in a deep-vein thrombo-
sis (DVT) clinic for a lower extremities Doppler ultrasound study. If  
24 out of 40 subjects with DVT tested positive for DVT, and 114 out of 
120 without DVT tested negative, calculate (1) sensitivity, (2) specificity, 
(3) false-positive error rate, (4) false-negative error rate, (5) positive pre-
dictive value, (6) negative predictive value, (7) likelihood ratio positive, 
(8) likelihood ratio negative, (9) ratio of LR+ to LR−, and (10) the 
prevalence of DVT. Generate a two-by-two contingent table, and per-
form the computation.
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1.8.10 � What is multiple or sequential testing?

Multiple or sequential testing refers to (a) parallel testing (ordering tests 
together). The idea is to increase sensitivity, but specificity is compromised. 
There are four possible outcomes in parallel testing:

	 1	 T1 + T2+ (disease is present)
	 2	 T1 + T2− (further testing)
	 3	 T1 − T2+ (further testing)
	 4	 T1 − T2− (disease is absent)7

(1) Sensitivity (net) = (Sensitivity T1 + Sensitivity T2) − Sensitivity T1 × 
Sensitivity T2. (2) Specificity (net) = Specificity T1 × Specificity T2. (3) Individual 
tested positive on either test is classified as positive. (4) Appropriate when 
false-negative is the main concern.

Serial testing refers to using two tests in a series, with test 2 performed only 
on those individuals who are positive on test 1.8

1.8.11 � Disease screening: Principles, advantages, and limitations

Population screening refers to early screening and treatment in large groups to 
reduce morbidity or mortality from the specified disease among the screened. 
Screening for disease control or mortality reduction involves the examination 
of asymptomatic or preclinical cases to correctly classify the diseased as posi-
tive and nondiseased as negative (Table 1.2).9

Computation: (1) Sensitivity = 24/40 = 0.6 (60%); (2) Specificity = 
0.95 (95%); (3) FP error rate = b/(b + d) = 6/120 = 0.05 (5%); (4) FN 
error rate = c/(a + c) = 16/40 = 0.4 (40%); (5) PPV = 24(a)/30(a + b) = 
0.8 (80%); (6) NPV = 114(d)/130(c + d) = 0.88 (88%); (7) LR+ = {a/
(a + c)} = Sensitivity/{b/(b + b)} (False-positive error rate) → 0.6/0.05 = 
12.0; (8) LR− = False-negative error rate {(c/(a +c)/Specificity {d/(d + 
b)} → 0.4/0.95 = 0.42; (9) LR+ to LR− ratio = LR+/LR− = 12/0.42 = 
28.57; and (10) Prevalence of DVT = (a + c)/(a + b + c + d) → 40/160 = 
0.25 (25%). False-positive error rate (alpha error rate or type I error 
rate) simply refers to an error committed by asserting that a proposition 
is true, when it is indeed not true (false). If  a test is not specific, this will 
lead to the test falsely indicating the presence of a disease in nondisease 
subjects. The rate at which this occurs is termed the false-positive error 
rate and is mathematically given by B/(B + D). The false-positive error 
rate is related to specificity: FP rate + Specificity = 1.0 (100%).
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1.8.12 � Diagnostic or screening test accuracy/validity

This refers to the ability of the test to accurately distinguish those who do 
and do not have a specific disease.10 Sensitivity and specificity are tradition-
ally used to determine the validity of a diagnostic test (Figure 1.2). Sensitivity 
is the ability of the test to classify correctly those who have the disease or 

Table 1.2  Screening and diagnostic test

Test parameters Estimation Interpretation

True positive (TP) A (2 × 2 table) Number of individuals with the 
disease who have a positive test 
result

True negative (TN) D (2 × 2 table) Number of individuals without the 
disease who have a negative test 
result

False positive (FP) C (2 × 2 table) Number of individuals without the 
disease who have a positive test 
result

False negative (FN) B (2 × 2 table) Number of individuals with the 
disease who have a negative test 
result

Sensitivity = True-positive 
rate (TPR)

TP/(TP + FN) The proportion of individuals with 
the disease who have a positive test 
result

1 − Sensitivity = False-
positive rate (FPR)

FN/(TP + FN) The proportion of individuals with 
the disease who have a negative 
test result

Specificity = True-
negative rate (TNR)

TN/(TN + FP) The proportion of individuals 
without the disease who have a 
negative test result

1 − Specificity = False-
negative rate (FNR)

FP/(TN + FP) The proportion of individuals 
without the disease who have a 
positive test result

Positive predictive value TP/(TP + FP) The probability that a patient with 
a positive test result will have the 
disease

Negative predictive value TN/(TN + FN) The probability that a patient with 
a negative test result will not have 
the disease.

Likelihood ratio of a 
positive test result (LR+)

Sensitivity/
(1 − Specificity)

The increase in the odds of having 
the disease after a positive test 
result

Likelihood ratio of a 
negative test result (LR−)

(1 − Sensitivity)/
Specificity

The decrease in the odds of having 
the disease after a negative test 
result

Notes:	This table is based on a 2 × 2 contingency table, where the disease is represented in the column, 
while the test results are on the row. Bayes’ theorem refers to posttest odds, which are estimated 
by: pretest odds × likelihood ratio. These are the odds of having or not having the disease after 
testing. Accuracy of the test is measured by (TP + TN)/(TP + TN + FP + FN) and is the prob-
ability that the results of a test will accurately predict the presence or absence of disease.
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specific/targeted disorder. Sensitivity is represented by a/(a + c) in a two-by-
two contingency table (Table 1.3). “SnNout” is used to describe sensitivity, 
meaning that when “sen”sitivity is high, a “n”egative result rules “out” diag-
nosis. Specificity is the ability of the test to classify correctly those without 
the disease as nondiseased. Specificity is represented by d/(b + d). “SpPin,” 
which is used to describe specificity, implies that a very high specificity with a 
positive result effectively rules in the diagnosis.

The predictive value of the test addresses the effectiveness of the test in 
accurately identifying those with the disease and those without. The posi-
tive predictive value of the test addresses the following question: if  the test 
result is positive in an individual, what is the probability that such individual 
has the disease? This is estimated by a/(a + b). The negative predictive value 

Patient with
disease and tested

positive?

Yes NoSensitivity
a ÷ (a + c)

Patient without
disease and tested

negative for
disease

Yes

Specificity:
d ÷ (b + d)

False positive
b ÷ (b + d)

False negative
c ÷ (a + c)

Specificity + false
(+VE) error rate =

1.0 (100%)

Sensitivity + false
(–VE) error rate =

1.0 (100%)

Figure 1.2  Screening and diagnostic test.
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addresses the probability of an individual with a negative test being disease-
free. This is estimated by d/(c + d). The false-positive error rate is estimated 
by 1 − specificity = b/(b + d). The false-negative error rate is estimated by 1 − 
sensitivity = c/(a + c). Prevalence = (a +c)/(a + b + c + d). LR+, which is the 
likelihood ratio for a positive test, is estimated by sensitivity/(1 − specificity). 
LR−, which is the likelihood ratio for a negative test, is estimated by (1 − 
sensitivity)/specificity. The posttest probability is estimated by posttest odds/
(posttest odds + 1), where pretest odds are estimated by prevalence/(1 − 
prevalence) and posttest odds are estimated by pretest odds × likelihood ratio.

1.8.13 � What is a receiver operating characteristic (ROC) curve?

The ROC, which is derived from electronics, was used to measure the ability of 
the radar operators to differentiate signals from noise. The ROC curve is the 
graphic approach to illustrating the relationship between the cutoff point that 
differentiates positive and normal results in a screening test. This curve is con-
structed by selecting several cutoff points and using them to determine the sen-
sitivity and specificity of the test. The graph is then constructed by plotting the 
sensitivity (true positive) on the Y axis as a function of 1 − specificity (false-
positive rate/proportion) on the X axis [sensitivity versus (1 − specificity)]. 
The area under the ROC curve provides some measure of the accuracy of the 
test as well as being useful in comparing the accuracy of two or more tests. 
Simply, the larger the area, the better or more accurate the test. In interpret-
ing the area under the ROC curve (0.5–1.0), 1.0 is indicative of perfect test, 

Vignette 1.2: Consider a population of 2000 people, of whom 200 have 
unicameral bone cysts and 1800 do not. If  160 with the disease were 
correctly identified as positive by the test, 40 were not. Of the 1800 
who did not have the disease, 1600 were correctly classified as negative. 
Calculate (1) sensitivity, (2) specificity, (3) positive predictive value, and 
(4) negative predictive value.

Solution: (a) Sensitivity = a/(a + c); substituting: 160 ÷ 200 = 80%; 
(b) Specificity = d(d + b) =1600 ÷ 1800 = 89%; (c) Positive predictive 
value = a/(a + b) = 160 ÷ 360 = 44.4%; and (d) Negative predictive value = 
d/(c + d) = 1600 ÷ 1640 = 97.6%.

Table 1.3  2 × 2 contingency table

Disease (+) Disease (−)

Test (+) (A) TP (B) FP
Test (−) (C) FP (D) TN
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while 0.5 represents a poor test; this implies that an ideal test is that which 
reaches the upper left corner of the graph (all true-positive without false-
positive results).

1.8.14 � What is the relationship between disease prevalence 
and predictive value?

There is a positive relationship between disease prevalence and predictive 
values; thus, the higher the prevalence in the population at risk or screened 
population, the higher the positive predictive value.

1.8.15 � Advantages and disadvantages of screening

Screening is most productive and efficient if  it is directed at a high-risk pop-
ulation. Screening of a high-risk population may motivate participants to 
follow recommendations after the screening and seek medical services given 
positive test results. In terms of disadvantages of screening, if  the entire popu-
lation is screened and the condition is infrequent (low prevalence), this will 
imply wasting resources, yielding few detected cases compared to the effort 
invested in the screening.

1.8.16 � Issues in early disease detection

1.8.16.1 � What are the benefits of screening?

Screening for a disease allows for detection, implying early diagnosis, timely 
treatment, and good prognosis. For example, the diagnosis of malignancy at an 
early disease stage or favorable tumor grade enhances and prolongs survival.

1.8.16.1.1  EARLY DISEASE DETECTION

The natural history of a disease involves (a) a preclinical phase, which is 
the phase that may be termed the biologic or psychological onset, but the 
symptoms have not yet occurred; (b) a clinical phase, which is the period 
after the symptoms have occurred; (c) a detectable preclinical phase, which 
is the natural stage of the disease where the disease is detected by screening; 
(d) lead time, which is the interval by which the time of diagnosis is advanced 
by screening and early detection of the disease relative to the usual time of 
diagnosis; and (e) a critical point, which refers to a point in the natural history 
of the disease in which the condition is potentially curable, implying optimal 
treatment potential. The inability to identify a critical point in natural history 
of disease, screening, and early detection calls into question the benefit of 
screening. Effectiveness of screening includes (a) mortality reduction in the 
high-risk population screened, (b) reduction in case fatality, (c) increase in the 
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percentage of asymptomatic cases, (d) minimized complications, (e) reduction 
in recurrent cases or malignancies, and (f) improvement in the quality of life.11

Issues in screening include (1) sensitivity and specificity of the screening 
test as well as the predictive values, (2) false-positive test results, (3) cost of 
early detection, (4) emotional and physical adverse effects of screening, and 
(5) benefit of the screening.12

1.8.17 � Biases in disease screening and detection

Biases include referral bias, also referred to as volunteer bias; length-biased 
sampling associated with prognostic selection, which refers to a selection bias 
in which screening involves the selection of cases of disease with better prog-
noses;13 lead-time bias; and overdiagnosis bias.

1.8.17.1 � What is lead-time bias?

Lead-time bias refers to the apparent increase in survival time after diagnosis 
resulting from earlier time of diagnosis rather than later time of death.

1.8.17.2 � What is length bias?

This is a form of selection bias and refers to the tendency in a population 
screening effort to detect preferentially the longer, more indolent cases of any 
particular disease.

Vignette 1.3: Consider a new screening program for prostate cancer 
(CaP) in County X. The CaP screening program used a test that is effec-
tive in screening for early-stage CaP. Assume that there is no effective 
treatment for CaP, and as such, the screening results do not change the 
natural history or course of CaP. Second, assume that the rates observed 
are based on all known cases of CaP and that there are no changes in 
the quality of death certification for CaP. With these assumptions, what 
will be the influence of this screening test on the incidence and preva-
lence proportion during the first year of this program and what will be 
the influence of this screening on the case-fatality and mortality rates of 
CaP during the first year of CaP screening?

Solutions: (a) There will be an increase in both incidence rate and 
prevalence proportion. (b) There will be a decrease in case-fatality rate 
while the mortality rate will remain constant because of the assumption 
that changes have not been observed with respect to the quality of death 
certification.
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1.8.18 � Disease screening, diagnostic tests, and clinical reasoning

1.8.18.1 � What is clinical reasoning?

The process by which clinicians channel their thinking toward probable 
diagnosis is classically thought of as a mixture of pattern recognition and 
“hypothetico-deductive” reasoning.14 The reasoning process depends on med-
ical knowledge in areas such as disease prevalence and pathophysiological 
mechanisms. Teaching on the process of reasoning, as diagnostic tests pro-
vide new information, has included modifications of Bayes’s theorem in an 
attempt to get clinicians to think constructively about pretest and posttest 
possibilities.15

Clinical decision-making is guided by and large by statistical and epidemio-
logic principles, as well as biologic and clinical reasoning. The understand-
ing of the former is the purpose of this book, which is not intended to place 
statistical stability in results interpretation over sound biologic theories and 
clinical judgment in clinical research conceptualization, design, conduct, and 
interpretation of results. A sound clinical judgment comes with experience, but 
such experience, in order not to be biased, ought to be guided by some statisti-
cal and epidemiologic principles, including though not limited to probability 
concepts (sensitivity, specificity, and predictive values), Bayes’s theorem, and 
risk and predisposition to disease. Therefore, since clinical decision-making 
involves some risk acceptance, the understanding of probability serves to guide 
alternatives to treatment while assessing the risk and benefit of therapeutics.

As sound clinical reasoning (avoiding biases) continues to shape therapeutics, 
there remains the necessity of clinicians being able to appraise clinical and sci-
entific literature for evidence; the volumes of clinical and epidemiologic studies 

Vignette 1.4: A forty-eight-year-old Asian-American woman presents 
with a hip fracture. She has a history of metabolic fracture and had 
been previously diagnosed with osteoporosis. The clinical scenario 
involves the estimation of the probability of hip fracture in this individ-
ual, and the clinical impression on previous cases indicates the common 
presentation of this condition in this subpopulation—age, concurrent 
diagnosis of osteoporosis. The probability of response to treatment is 
dependent on the response of similar patients in the past, indicative of 
statistical reasoning. Although not a very good example to illustrate 
the application of  a diagnostic test, the risk inherent in this case could 
be seen in the diagnosis of hip fracture resulting in a false-positive or 
false-negative test result. Also, the natural history of hip fracture may 
influence the clinical judgment in terms of the planned therapeutics. 
Clinical reasoning is also brought into question when considering alter-
native treatment.16
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become the basis of clinical decision-making. Clinicians must understand how 
outcome studies are conducted and how the results obtained from these studies 
can be used in clinical decision-making involving care improvement and patient 
safety. The intent is not to train physicians or clinicians to become statisticians 
but to refine the already available skills in order to provide evidence-based care 
that is optimal through the utilization of results from internally (biases, con-
founding, random error) and externally (generalizability) valid studies.17

1.9 � Balancing benefits and harmful effects in medicine

Clinicians are interested in knowing about the impact of treatment or inter-
vention on individual patients. A large impact, relative to a small one, is of 
interest to both the clinician and his or her patient. The relative risk (RR) and 
absolute risk (AR) are two concepts that are extrapolated to determine risk 
in the individual patients. The absolute risk reduction (ARR) is used to assess 
whether the benefit of treatment outweighs the adverse effects.

We present these concepts in detail in the chapter on the measure of dis-
ease association and effect, but it is sufficient to provide a basic understand-
ing of relative risk reduction (RRR), ARR, number needed to treat (NNT), 
and number needed to harm (NNH) here. Simply, the RRR refers to the 
difference in event rates between two groups, implying a proportion of event 
rate in  the control or untreated group.18 Suppose 40 patients had recurrent 
cystitis out of 100 patients treated initially with erythromycin (control group) 
and 30 patients had recurrent cystitis out of 100 patients treated initially with 
erythromycin plus amoxicillin (treatment group). What is the RRR? The 
RRR is the absolute risk difference (40% to 30%) divided by the event rate in 
the control group (40%):

	 RRR = Absolute risk difference (ARD)/Event rate inn the control (ERC)	

where ARD = Event rate in the control − Event rate in the treatment group. 
Substituting: 40–30/40 = 25%. This means that recurrent cystitis was 25% 
lower in the treatment group compared to the control.

What is the ARR? Also termed risk difference, it is the arithmetic differ-
ence between two event rates expressed as the ERC minus the event rate in the 
treatment (ERT). Substituting, ARR = ERC − ERT = 40% − 30% = 10%.

The NNT simply reflects the consequences of treating or not treat-
ing patients, given a specified therapy. NNT may be described as the 
number  of  patients who would be treated for one of them to benefit. 
Mathematically, NNT is estimated by 100 divided by the ARR expressed 
as percentage (100/ARR). NNT could also be expressed as a proportion: 1/
ARR. As ARR increases, NNT decreases, and inversely, as ARR decreases, 
NNT increases.
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1.10 � Summary

Clinical research is conducted primarily to improve therapeutics and pre-
vent disease occurrence in clinical settings in contrast to population-based 
research. This effort involves adequate conceptualization, design process, 
conduct, analysis, and accurate interpretation of the results, which is achieved 
through a joint effort of a clinician and a biostatistician. The selection of 
patients depends on the accurate ascertainment of disease, implying a screening/
diagnostic test that is capable of classifying those with the disease as test-
positive (sensitivity) and those without as test-negative (specificity). Screening 
is a particular form of disease detection test and is applied to a population at 
risk for developing a disease, such as prostate cancer (PSA for men 50 years 
and older), in an attempt to diagnose CaP earlier than the natural history 
would manifest CaP. The intent is to diagnose early where CaP is treatable 
and curable. Diagnostic tests are performed to confirm the presence of a dis-
ease after symptoms of an illness.

Vignette 1.5: If  in diabetic patients treated for the disease with insulin, 
the risk of renal insufficiency is 1.65 and 1.46 among the controls, how 
many diabetic patients need to be treated (NNT)? What is the estimated 
ARR, RR, RRR, and NNT? Based on these data, what is the odds 
ratio? Solution: risk in controls − risk in treatment (cases), while NNT = 
1/ARR. ARR = risk in control (p1) − risk in treatment group (p2): p1 − 
p2 = 1.46 − 1.65 = −0.19. Relative risk (RR) = p1/p2 = 1.46 ÷ 1.65 = 
0.71. The RRR = (p1 − p2)/p1 − (1.46–1.65)/1.65 = −0.29. The NNH is 
expressed as the inverse of the absolute risk increase (1/ARI). The NNH 
represents the number of patients required to be treated for one of them 
to experience an adverse effect. Mathematically, NNH is estimated as: 
100/ARI expressed as percentage. NNT could also be expressed as pro-
portion: 1/ARI. NNT = 1/0.19 = 6. Odds ratio = p1(1 − p1) ÷ p2 (1 − p2). 
Substituting: (0.46/0.54)/(0.65/0.35) = 0.46.

Vignette 1.6: If  the risk of developing postoperative infection in cerebral 
palsy children with scoliosis is 2.9 among those with rod instrumenta-
tion, and 1.9 among those who received spinal fusion without instru-
mentation, examine the risk associated with unit rod instrumentation. 
What is the estimated ARI and the NNH? Solution: ARI = Risk in cases 
(instrumented group) − Risk in control (noninstrumented group), while 
NNH is 1/ARI.
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The prevalence of disease simply means the probability of the condition 
before performing the test, meaning pretest probability. The predictive values 
refer to the probability of the disease being present or absent after obtaining 
the results of the test. Using the two-by-two table, positive predictive value 
(PPV) is the proportion of those with a positive test who have the disease [a/
(a + b)], while the negative predictive value (NPV) is the proportion of those 
with a negative test who do not have the disease [d/(c + d)]. The predictive 
values will vary with the prevalence of the disease or condition being tested 
for. Therefore, the probability of the disease before (prevalence) and the prob-
ability of the disease after (predictive value) will be interrelated, with the dif-
ferences in predictive values driven by the differences in the prevalence of 
the disease. Sensitivity and specificity are properties of a diagnostic test and 
should be consistent when the test is used in similar patients and in similar 
settings. Predictive values, although related to the sensitivity and specificity 
of the test, will vary with the prevalence of the condition or disease being 
tested. The difference in the sensitivity and specificity of the test is most likely 
a result of the test not being administered in similar conditions (patients and 
settings).19 The screening test should be highly sensitive (sensitivity) while 
a diagnostic test should be highly specific (Specificity). As the cutoff  point 
between positive and negative results changes, the sensitivity and specific-
ity of the test will be influenced. This relationship is illustrated by the ROC 
and assesses the extent to which a screening test can be used to discriminate 
between those with and without disease, and to select the cutoff  point to char-
acterize normal and abnormal results.

The advantages and limitations of screening remind us of the balanced 
clinical judgment in a recommending large-population screening test. The 
common biases in screening include length-bias sampling, lead-time, overdi-
agnosis, and volunteer or referral bias (where those screened for the disease 
are healthier than the general population, thus influencing the conclusion 
regarding the benefit of screening). These systematic errors are all selection 
bias and, if  not considered, have the tendency of affecting the conclusions 
regarding the benefits of screening.

Often, clinicians may want to know the benefits or risk of treating a future 
or potential patient. In assessing such a benefit versus risk ratio, the NNT 
and the NNH are practical alternatives to relative risk or ARR in assess-
ing the treatment effect. NNT remains a concise and clinically more useful 
way of presenting intervention effect. The NNT simply reflects the conse-
quences of treating or not treating patients, given a specified therapy. The 
question remains as to which NNT is clinically acceptable to clinicians and 
patients—the NNT threshold. To address this question, one must consider the 
cost of treatment, the severity of preventable outcomes, and the adverse or 
side effects of the treatment or intervention. NNT may be described as the 
number of patients who would have to be treated for one of them to benefit. 
The NNH is expressed as the inverse of the absolute risk increase (1/ARI). 
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The NNH represents the number of patients required to be treated for one of 
them to experience an adverse effect.

Questions for discussion

	 1	 Suppose there is no good treatment for disease X. (a) What will be 
the advantages, if  any, in performing a screening trial in this context? 
(b) What are the design issues in such a trial if  you were to conduct one? 
(c) Survival is often seen as a definitive outcome measure in screening 
trials, would you consider population incidence of advanced disease and 
stage shifts as possible outcome measures? (d) Early detection induces a 
bias in the comparison of survival times that artificially makes screen-
detected cases appear to live longer. What is this biased called, and how 
would you correct this in order to estimate the true benefit of screening?

	 2	 Suppose that disease A is potentially detectable by screening during a 
window of time between its onset and the time when it would ordinarily 
become clinically manifest. (a) What is lead-time bias? (b) Would people 
with longer windows due to person-to-person variability in disease mani-
festation be more likely to be screened in the window? (c) Would you 
expect the “window of screening” to result in length-time bias?

	 3	 Suppose that 82% of those with hypertension and 25% of those with-
out hypertension are classified as hypertensive by an automated blood-
pressure machine. (a) Estimate the positive predictive value and negative 
predictive value of this machine, assuming that 34.5% of the adult US 
population has high blood pressure. Hints: Sensitivity = 0.82, specificity = 
1 − 0.25 = 0.75. Using Bayes’s theorem: PV+ = (sen × prevalence)/(sen × 
prevalence) + (specificity × prevalence). Comment on these results, and 
state which is more predictive, positive or negative?

	 4	 Suppose 8 out of 1000 cerebral palsy children operated on for scoliosis 
developed deep wound infection, and 992 did not, while 10 out of 1000 
children who were not treated with surgery developed deep wound infec-
tion. What is the relative risk of deep wound infection associated with 
surgery? Estimate the RRR. Why is the ARR also called absolute risk 
difference? What is the NNT? Hints: RR = (a/a + b)/(c/c + d); ARR = 
(c/c + d) − (a/a + b); NNT = 1/(c/c + d) − (a/a + b). What is the 95% CI 
for ARR and NNT? Hint: CI for NNT = 1/UCI − 1/LCI of ARR. Hints: 
95% CI for ARR = +1.96 [CER × (1 − CER)/number of control patients + 
EER × (1 − EER)/number of experimental or treatment patients].

	 5	 In a cohort of 1069 children with cerebral palsy, 141 had severe mental 
retardation and were quadriplegic, while 420 of 13,525 nonquadriple-
gic had mental retardation (MR). What are the odds of developing MR 
among quadriplegics? What are the odds of developing MR among non-
quadriplegics? What is the relative risk of developing MR, given quad-
riplegic CP? Estimate the odds ratio, given quadriplegic CP.
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2.1 � Introduction

Design process is fundamental to evidence obtained from biomedical and 
clinical research, since errors in sampling may adversely affect the evidence 
derived from the sample. Designs may be classified in several ways, includ-
ing descriptive versus inferential and experimental versus nonexperimental. 
While a descriptive study design characterizes samples with respect to inde-
pendent and outcome variables without any attempt at generalization to the 
population of  interest, inferential studies test specific hypotheses in order 
to draw inferences on the population, implying those patients who were not 
studied with the sample.

The use of observational and nonobservational, or experimental, design 
was very popular in study designs classification, though this is an incorrect 
characterization of studies. All studies are observational in the sense that the 
outcomes of experimental and nonexperimental designs require the observa-
tion of subjects for the determination of the end point or outcome. Designs 
can be classified correctly as experimental or nonexperimental. In an experi-
mental design, as we commonly use the term in biological sciences research, 
the investigator assigns the study subjects, for example, mice, to treatment 
with a certain therapeutic agent or to placebo control. Similarly, in an exper-
iment involving humans, also termed a clinical trial, patients are allocated 
to the arms of the study by the investigator; however, the investigator does 
not manipulate the occurrence of the outcome but observes the event as it 
unfolds, such as the biochemical end point, recovery, deep wound or bone cyst 
healing, or mortality. The nonexperimental designs are also loosely termed 
epidemiologic designs despite the rigorous involvement of epidemiologic prin-
ciples and methods in the design of clinical trials.

Epidemiologic study design is covered in most epidemiologic texts in detail, 
including the Applied Epidemiologic Principles and Concepts for Clinicians, 
which is a companion text to this volume. This chapter provides a brief  over-
view of epidemiologic designs, namely, nonexperimental and experimental 

Research design
Experimental and nonexperimental 
studies

2
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design involving humans (clinical trial). The design process that reflects the 
sampling provides the information required for the selection of the test sta-
tistic in an inferential study. In addition, the scale of measurement of the 
response or outcome variable guides the selection of the test statistic or 
model. For example, if  the outcome of a study designed to assess the com-
parative effectiveness of botulinum toxin and baclofen in reducing spasticity 
in spastic cerebral palsy is measured on a binary scale (presence or absence of 
spasticity), then the logistic regression model is an adequate statistical tech-
nique. While a brief  overview of the basics of these designs is essential in 
increasing one’s knowledge of the designs, the selection of appropriate design 
will depend on the research question to be addressed, availability of exposed 
or case subjects, and timing of the study, as well as the advantages and disad-
vantages of the design. Also, the available research resources may influence 
the choice of the design as well as constrict the study size.

2.2 � Epidemiologic study designs

Clinical research design is fundamentally epidemiologic. What is epidemiol-
ogy? While there are many definitions of epidemiology, a simple approach is 
to consider epidemiology as the study of the distribution and determinants of 
disease, disabilities, injuries, and health-related events at the population level. 
Equally important to the understanding of epidemiology is the application of 
the results from epidemiologic research in implementing health programs to 
reduce health complications, decrease risk factors, maintain health, and pro-
mote and control disease at the population level. Since diseases do not occur 
randomly, epidemiologic principles are utilized to examine disease distribu-
tion, which may vary by sex, age, geography, and time. Therefore, descriptive 
epidemiology focuses on characterizing disease occurrence by person, place, 
and time (PPT).

Besides disease distribution, epidemiologists also attempt to establish 
a possible association between disease and exposure by answering the fol-
lowing questions: Is the exposure related to the disease? Is there any causal 
relationship between the exposure and the disease? This approach, though 
inappropriately characterized, has been classified as analytic epidemiology. 
Practically, epidemiologic designs are used in studying the natural course of 
the disease, characterizing diseases or events of interest by person, place, and 
time; identifying risk factors; assessing effectiveness and efficacy of treat-
ment in routine use and closed laboratory environments, respectively; exam-
ine complications; and compare effectiveness and safety in treatment settings 
(Figure 2.1). Epidemiologic designs provide the building blocks for causal 
inference. Meta-analysis, which is the study of studies, is highly dependent on 
epidemiologic principles and methods for its conduct, analysis, and inference. 
However, for the purpose of simplicity, we will focus on nonexperimental and 
clinical trials as epidemiologic designs. Classified under nonexperimental epi-
demiologic designs are (a) case reports, (b) case series, (c) ecologic designs, 
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(d) cross-sectional studies, (e) case–control studies, and (f ) cohort studies (ret-
rospective, prospective, and ambidirectional). Experimental designs involving 
human subjects (clinical trials) are classified into phases (I, II, III, and IV) 
and types of design (parallel, sequential, crossover, community intervention, 
cluster, factorial, etc.).

Population at risk
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unexposed)
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basis of design

No

Consider some
other epidemiologic

design
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Cohort design

Exposure and
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Figure 2.1  �Design and measure of effect in biomedical, clinical, and population-based 
research.
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2.3 � Nonexperimental designs

Epidemiologic designs are used in conducting clinical and biomedical 
research. The selection of an appropriate design is essential to the results, 
since no matter how sophisticated the statistics used in the analysis of the 
data, a study based on unsound or flawed design principles will generate an 
invalid result (Figure 2.2). There are two broad classifications of study designs: 
(a) nonexperimental, also loosely termed observational, and (b) experimental 
or the clinical trial, if  the experiment is conducted in humans. What distin-
guishes these methods is the process of assignment or allocation of subjects 
to the study arms. Whereas the clinical trial or experimental design allocates 

Epidemiologic design mapping: population-based
sample – community and clinic/hospital setting.
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design
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Figure 2.2  Selection of epidemiologic design.
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subjects or eligible participants to the treatment or control arm of the study, 
based on the equipoise (collective uncertainty about the advantage or supe-
rior benefit of one treatment arm versus its alternative or control arm) princi-
ple, nonexperimental designs do not involve subject allocation to an exposure 
or nonexposure arm, but merely observe the exposed as well as the unexposed 
for the occurrence of the outcomes of interest (prospective cohort design 
if  there is follow-up or cross-sectional in the absence of follow-up), such as 
symptoms, disease, or death.

Traditionally, there are two primary types of nonexperimental design: 
(a) cohort studies—study subjects are characterized by their exposure status 
and followed for a period of time to ascertain the outcome of interest, and 
(b) case–control studies—study subjects are characterized by their disease 
status, and the presence of exposure is ascertained in the cases as well as the 
controls or comparison group, who are comparable to the cases but do not 
have the disease of interest.

While cohort design provides information on the outcome of  interest, 
case–control generates data on the exposure distribution among the cases 
and control groups. Cross-sectional and ecologic designs are other traditional 
designs often employed in epidemiologic methods. The former assesses the 
relationship between disease or outcome of  interest and exposure among a 
well-defined group or population at a point in time. This design measures 
the prevalence of  the exposure or exposures of  interest in relation to the dis-
ease prevalence of  interest—for example, a study to be conducted using the 
US National Health Interview Survey to assess the factors associated with 
ethnic/racial disparities in hypertension. Since information on the expo-
sure and outcome were collected before the design of  the study and there 
was no follow-up of  participants, cross-sectional design remains a feasible 
approach to providing information on the disease prevalence (hypertension) 
in relation to exposure prevalence (exercise, diet, education, marital status, 
etc.). The ecologic design examines the association between exposure and 
disease at a group level and does not use individual (case) data as the unit 
analysis.

What is the most appropriate design depends on many factors, some of 
which include (a) the nature of the research question and hypothesis to be 
tested, (b) the current state of knowledge regarding the hypothesis to be tested 
or the research question to be answered, (c) the frequency of the exposure and 
disease in the specific population (rare disease for case–control and rare expo-
sure for cohort design), (d) expected magnitude of association between the 
exposure and outcome of interest, (e) subjects’ availability and enrollment, 
(f) financial and human resources, and (g) ethical considerations, if  a clinical 
trial is planned. However, regardless of the design used, there are advantages 
and limitations in these designs in terms of the level of evidence (internal and 
external validity). Therefore, the intent is to increase the validity of the study 
by (a) minimizing bias, (b) controlling confounding, and (c) increasing preci-
sion by minimizing random error (Figure 2.3).
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2.4 � Experimental designs (clinical trials)

The clinical trial remains the gold standard in terms of research design if  
an appropriate sample size is used, because of its distinctive features of 
randomization and placebo control. These features minimize baseline vari-
ability between the treatment and control groups, yielding a more accurate 
result of the effect of the treatment. But there is a price to these advantages, 
mainly enrollment issues, the high cost of conducting the trial, and ethical 

Epidemiologic finding: dihydrotestosterone (DHT)
and prostate cancer risk – confounding and effect

measure modifier
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increase the
risk of CaP?
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(3.0 magnitude

of effect)
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(exposure) CaP

(outcome)
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association

Family history
of CaP

(confounding)

5-α
reductase
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Epidemiologic finding is 
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random error or factual.
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addressed and

biased minimized?

Yes

Figure 2.3  Epidemiologic confounding as statistical covariate.
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considerations. Therefore, despite the advantages of randomized placebo-
controlled clinical trials, this design may not be feasible in certain contexts, 
requiring the use of nonexperimental designs.

The core of  the experimental design is the allocation, which denotes the 
assignment of  individuals or subjects/participants by the investigator and 
may involve randomization.1 The distinct feature from nonexperimental 
or observational designs is that the investigator controls the assignment 
of  the exposure or treatment, but otherwise, the symmetry of  potential 
unknown confounders is maintained through randomization.1 Properly 
executed experimental studies provide the strongest empirical evidence. 
The randomization of  subjects to treatment or control arms also pro-
vides a better foundation for statistical procedures than do observational 
studies.

A randomized controlled clinical trial (RCT) is a prospective, analytical 
experimental study using primary data generated in the clinical environ-
ment to draw statistical inference on the efficacy of  the treatment, device, 
or procedure (Figure 2.4). Subjects similar at the baseline are randomly 
allocated to two or more treatment groups and the outcomes from the 
groups are compared after a follow-up period.1 This design, termed the 
gold standard, is the most valid and reliable evidence of  the clinical effi-
cacy of  preventive and therapeutic procedures in the clinical setting. 
However, it may not always be feasible. The randomized crossover clinical 
trial represents a prospective, analytical, experimental design using pri-
mary data generated in the clinical environment to assess efficacy as in 
RCT. In this design, subjects, for example, with a chronic condition, such 
as low back pain, are randomly allocated to one of  two treatment groups 
and, after a sufficient treatment period and often a washout period, are 
switched to the other treatment for the same period. This design is suscep-
tible to bias if  carried-over effects from the first treatment occur (sort of 
contamination).2

Clinical trials involve a huge amount of  organization and coordina-
tion. Simply, the elements include the consideration of  (a) study subject—
clinical trials involve human subjects; (b) design direction—prospective 
in design; (c) comparison group—new treatment versus placebo/standard 
care; (d) intervention measure—primary outcome (death, recovery, pro-
gression, reduction in SE, etc.); (e) the effect of  medication, surgery—
relating to outcome; and (f) timing of  the clinical trial—conducted early 
in the development of  therapies.3 Conducting the trial, which is the design 
and implementation, distinct from conceptualization, requires that the 
investigators (a) review existing scientific data and build on that knowl-
edge, (b) formulate testable hypotheses and the techniques to test these 
hypothesis, (c) deal with ethical considerations, (d) determine the scientific 
merits of  the study through statistical inference, and (e) resolve validity 
issues—biases and confounding.4
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2.5 � Nonexperimental versus experimental design

Observational or nonexperimental studies are research designs in which 
investigators do not assign study subjects to the study groups/arms but pas-
sively observe events and determine the measures of  association/magnitude 
of  effect. The purpose is to draw inferences about possible causal relation-
ships between exposure and some health outcome, condition, or disease.3 
These studies are broadly characterized as descriptive and analytic. The 
observational analytic designs so traditionally identified, but which remain 
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necessary and

required?

No Yes
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device or treatment in a

small sample, 20–80;
assessement of safety,

dose finding and
side effects/toxicity

Phase II: determines
efficacy and further of
assessment of safety

Phase IV: post-market intervention
to determine effectiveness of the 
intervention such as drug in the

general population (routine use at
the community; collects data on

side effects associated with
widespread use of intervention

Phase III: determines
efficacy by comparing
intervention in large
sample to standard
therapy or placebo;
monitors adverse

effects

Clinical trial: prospective
experiment involving
human subjects designed
to answer specific research
questions on interventions
or biomaker validation, etc.

Figure 2.4  �Phases of clinical trial illustrating randomized and nonrandomized phases 
of experiment.
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inappropriately characterized (analytic designs have descriptive compo-
nents as well as the description of  incidence of  disease over time), are cross-
sectional, case–control, and cohort, and the several hybrids of  these designs 
(nested case–control, case–cohort etc.). Cohort studies are observational 
or nonexperimental designs that commence with the identification of  the 
exposure status of  each subject and involve following the groups over time 
to determine the outcome in both the exposed and unexposed. Like most 
epidemiologic studies, cohort designs are intended to allow inferences about 
exposure influence on the occurrence of  disease or outcome of  interest.5,6 
While sampling (selection of  study subjects) in case–control is based on the 
disease or health outcome, in cohort designs, sampling is performed with-
out regard to the disease or health outcome but exposure status.3 In com-
parison to cross-sectional, which is an “instant cohort” design, sampling 
(study population selection) is done without regard to exposure or disease 
status.1 Ecologic studies are sometimes characterized as analytic because of 
their abilities to assess the effect of  the exposure at the group level on the 
outcome, using the correlation coefficient. However, it is not uncommon to 
go through an introductory epidemiology text without finding mention of 
an ecologic design, or if  it is discussed, it is classified as descriptive design. 
Therefore, the classification of  epidemiologic designs into analytic and 
descriptive remains a meaningless distinction and should not be stressed 
(Table 2.1).

Table 2.1  �Classical epidemiologic designs: experimental and nonexperimental 
(observational)

Design types and examples Description

Experimental/clinical trial Subjects are assigned to study arms by 
investigator—active manipulation of 
participants but not outcome. Used 
when feasible because of ethical 
considerations in examining the effects 
of screening, diagnosis, therapeutics, 
and preventive practices on health.

Nonexperimental design
	(a)	Cohort design—commences with 

exposure status, uses follow-up, and 
determines the outcome.

	(b)	Case–control—commences with 
disease and examines exposure 
distribution in cases and controls.

	(c)	Cross-sectional—snapshot 
examination of exposure and 
outcome without follow-up.

	(d)	Ecologic group-level analysis.

Does not involve subject allocation or 
assignment to the arms of the study. 
Used to assess the etiology, effects of 
treatment on disease, screening, 
diagnosis, and prevention. Classical 
examples are cohort, case–control, 
cross-sectional, and ecologic designs.
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2.6 � Measures of disease association or effect

Whatever methods or study design is used, the primary objective of  a meth-
odologist or clinical researcher is to obtain valid and reliable evidence from 
the data. This evidence primarily involves the measurement of  disease or 
outcome/response effect. Common measures of  disease effects are (a) relative 
risk (RR), risk ratio, or rate ratio (relative measures of  comparison); (b) rate 
or risk difference (absolute measures of  comparison); (c) population rate dif-
ference; (d) attributable proportion among the exposed; (e) attributable pro-
portion among the total population exposed; and (f) correlation coefficient 
and coefficient of  determination. While the relative measure of  disease effect 
compares two measures of  disease frequency, such as RR or odds ratio (OR), 
and quantifies the strength of  the relationship or association between expo-
sure (independent, explanatory, or predictor variable) and disease (outcome 
or response), the absolute measure of  disease effect describes and quantifies 
the effect or impact of  disease by comparing the difference between two mea-
sures of  disease frequency, such as incidence rate or prevalence proportion.

The measure of disease occurrence quantifies both the crude and adjusted 
rates and the proportion of disease or outcome of interest in a specific patient 
or community-based population. In clinical research settings, patients usu-
ally consist of those who show improvement after a procedure or medication 
and those who do not. The proportion of those with improvement measures 
the occurrence of the outcome of interest and could be characterized as the 
prevalence of improvement (measured by those with improvement divided 
by the total number of all patients studied). In a prospective cohort design, 
it is possible to measure the incidence of a complication among patients who 
received surgery (number of new cases of complications/person-time). We can 
also compare the incidence of an outcome/disease in one patient population 
with another patient population, provided the two populations are standard-
ized with respect to confounders, such as age and sex, which allows one to 
compare the age- or sex-adjusted rate, also called the standardized rate.

BOX 2.1  VALIDITY—SYSTEMATIC ERROR (BIAS) 
AND RANDOM ERROR (PRECISION)

The objective of a study, which is an exercise in measurement, is to 
obtain valid and precise estimates of the effect size or measure of dis-
ease occurrence.

•	 The value of the parameter is estimated with little error.
•	 Related to the handling of systematic errors or biases and ran-

dom error.
•	 Involves the generalization of  findings from the study to the 

relevant target or source population.
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2.7 � Precision, random error, and bias

Random error refers to unsystematic errors that arise from an unforeseeable 
and unpredictable process, such as a mistake in assessing the exposure and 
disease, and sampling variability (unrepresentative sample or chance). This 
is the lack of random error. Precision, and hence reduction in random error, 
may be improved by (a) increasing the sample size, (b) repeating the measure-
ment within a study, and (c) utilizing an efficient study design in order to 
maximize the amount of information obtained.

Precision (lack of random error) may be influenced by (a) sampling, 
(b) hypothesis testing and p values, (c) confidence intervals estimation, 
(d) random variable probability distribution, and (e) sample size and power 
estimation.7 Systematic error may be present in a study despite the absence 
of or reduction in random error (the study may be precise but findings are 
inaccurate). Interaction is said to occur when the incidence rate of a disease or 
outcome in the presence of two or more risk factors differs from the incidence 
rate expected to result from their individual effect. This rate may be greater 

•	 Comprises validity and precision.
•	 Validity refers to estimate or effect size that has little sys-

tematic error (biases).
•	 There are two components of validity: internal and external.

•	 Internal validity refers to accuracy of the effect measure of the 
inferences drawn in relation to the source population.
•	 Inference of the source population
•	 A prerequisite for external validity*
•	 Measures of internal validity are (a) confounding, (b) selec-

tion bias, and (c) information bias (measurement error) 
•	 External validity refers to the accuracy of the effect measure of the 

inferences in relation to individuals outside the source population.
•	 Involves representation of the study population to the gen-

eral population.
•	 Do factors that differentiate the larger or general popu-

lation from the study population modify the effect or the 
measure of the effect in the study?

•	 Involves combination of epidemiologic and other sources, 
for example, pathophysiology.

•	 Related to criteria for causal inference.
•	 Precision refers to estimates or measures of effect or disease 

occurrence with little random error.

*	J. A. Freiman et al. The importance of beta, the type II error and sample size in the design 

and interpretation of the randomized clinical trial, N Engl J Med 299 (1978):690–694.
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than what is expected (synergism) or less than what is expected (antagonism).8 
Like the effect measure modifier, interaction is said to occur if  there is a dif-
ference in the strata-specific risk point estimate (RR, OR) on the basis of the 
third variable.

Internal validity (random error, bias, and confounding) refers to accurate 
measurement of study effects without bias—this bias presents threats to the 
internal validity of the study. The precision and accuracy of measurement are 
essential to study validity. While precision refers to the degree to which a vari-
able has nearly the same value when measured several times, accuracy pertains 
to the degree to which a variable actually represents what it is supposed to 
represent or measure. Precision may be enhanced by (1) repetition, (2) refine-
ment, (3) observer training and performance verification, (4) standardiza-
tion, and (5) automation, which minimizes variability owing to observers. 
Accuracy may be improved by (1) specific markers and better instruments, 
(2) unobtrusive measurement, (3) blinding, and (4) instrument calibration.

Role of Random Error: Assuming a random sample was taken from the 
population studied, is this sample representative of the population? Is the 
observed result influenced by sampling variability? Is there a recognizable 
source of error, such as the quality of questions, faulty instruments, and so 
on? Is the error due to chance, given no connection to a recognizable source 
or error? Random error can be minimized by (1) improving design, (2) enlarg-
ing sample size, and (3) increasing precision, as well as by using good quality 
control during study implementation.9 It is important to note here that the 
sample studied is a random sample and that it is meaningless to apply statis-
tical significance to the result designs that do not utilize random samples.10

Null Hypothesis and Types of Errors: The null hypothesis states that there is 
no association between the exposure and the disease variables, which, in most 
instances, translates to the statement that the ratio measure of association = 
1.0 (null), with the alternate hypothesis stated to contradict the null (one-tail 
or two-tail)—that the measure of  association is not equal to 1.0. The null 
hypothesis implies that the statistics (mean, OR, and RR) being compared are 
the results of random sampling from the same population and that any dif-
ference in OR, RR, or the mean between them is attributed to chance. There 
are two types or errors that are associated with hypothesis testing: (1) type I 
(rejecting the null hypothesis when it is in fact true) and (2) type II (failing to 
reject the null hypothesis when it is in fact false).11

Significance Level (Alpha): The test statistics that depend on the design as 
well as the measure of the outcome and independent variables yield a p value. 
The significance level or α is traditionally set at 5% (0.05), which means that 
if the null hypothesis is true, we are willing to limit type I error to this set value.2 
The p value (significance level) is the probability of obtaining the observed 
result and more extreme results by chance alone, given that the null hypoth-
esis is true. The significance level is arbitrary cutoff  at 5% (0.05). A p < 0.05 
is considered statistically significant, implying that the null hypothesis of no 
association should be rejected in favor of the alternate hypothesis. Simply, 
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this is indicative of the fact that random error is an unlikely explanation of 
the observed result or point estimate (statistically significant). With p > 0.05, 
the null hypothesis should not be rejected, which implies that the observed 
result may be explained by random error or sampling variability (statistically 
insignificant) (Table 2.2).2

2.8 � Confounding, covariates, effect measure 
modifier, interaction

One of the issues in validation of epidemiological research is to assess whether 
associations between exposure and disease derived from observational epi-
demiological studies are of a causal nature or not (due to systematic error, 
random error, or confounding). Confounding refers to the influence or effect 
of an extraneous factor(s) on the relationship or associations between the 
exposure and the outcome of interest. Observational studies are potentially 
subject to the effects of extraneous factors, which may distort the findings of 
these studies. To be a confounding, the extraneous variables must be (1) a risk 
factor for the disease being studied and (2) associated with the exposure being 
studied but is not a consequence of exposure.

BOX 2.2  CONFOUNDING—ELEMENTS 
AND CHARACTERISTICS

A confounder is an agent or extraneous factor that accounts for differ-
ences in disease occurrence or frequency or the measure of the effect 
between the exposed and unexposed.

•	 Predicts disease frequency in the unexposed or referent popula-
tion. For example, in the association between oral cancer and 
alcohol consumption, smoking is considered confounding if  it 
is associated with both oral cancer and alcohol consumption.
•	 A confounder is not qualified by this association only.

Table 2.2  Hypothesis testing and type I error

No association Association

No association Correct Type II error
Association Type I error* Correct

*p value is the probability of  type I error. Because samples come from the popula-
tion, the p value plays a role in inferential statistics by allowing conclusions to be 
drawn regarding the population or the universe of  subjects. Since population param-
eters remain unknown but could be estimated from the sample, the p value reflects 
the size of  the study, implying how representative the sample is with respect to the 
universe or population of  subjects upon which the sample was drawn.
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Effect measure modifier or effect modification (heterogeneity of effect) 
refers to the strength of association between exposure and the disease that dif-
fers per level of another variable (effect modifier). For example, age is a modi-
fier in the association between ethnicity and hypertension. Differences are not 
observed between black and white men under the age of 35 with respect to 
hypertension incidence. After age 35, the incidence tends to be two to three 
times higher in blacks relative to whites of the same age. Biologically, an effect 
measure modifier is the third variable that is not a confounding but enters 
into a causal pathway between the exposure and the disease of interest.13 For 
example, the relationship between lung cancer and cigarette smoking is modi-
fied by asbestos, because asbestos exposure has been known to increase the 
risk of dying by 92 times among smokers, whereas the risk of dying from lung 
cancer among those exposed to asbestos only is 10-fold. Another example 
is the modifying effect of cigarette smoking and obesity on the association 
between oral contraceptives and myocardial infarction in women. The effect 
measure modifier and confounding have similarities. Both confounding and 
effect measure modifiers involve a third variable as well as that assessed or 
evaluated by performing stratified analysis.14 Effect measure modifier differs 

•	 To qualify as a confounder, smoking must be associated with 
the occurrence of oral cancer in the unexposed or referent 
group, apart from its association with alcohol consumption.

•	 Also, smoking must be associated with oral cancer among 
nonalcohol consumers.

•	 If  the effect of alcohol consumption is mediated through the 
effect of smoking, then it is not a confounder, regardless of 
whether there is an effect of exposure (alcohol consumption) 
on oral cancer (outcome or disease).

•	 Any variable that represents a step in the pathway between 
the exposure and disease does not represent a confounder, but 
could be termed an intermediate variate.

	 Alcohol consumption Smoking Oral cancer→ →

•	 Surrogate confounders refer to factors associated with con-
founders. For example, chronologic age and aging, chronologic 
age is a surrogate confounder (K. Rothmans et al., p. 130).
•	 Features of a confounder—It (a) must be an extraneous 

risk factor for disease, (b) must be associated with the expo-
sure in the source population or the population at risk from 
which the case is derived, and (c) must not be affected by the 
exposure or disease, implying that it cannot be an intermedi-
ate in the causal pathway between the disease and exposure.
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from confounding. In confounding, one is interested in knowing whether the 
crude measure of association (unadjusted point estimate) changes (distorted) 
and whether the stratum-specific and adjusted summary estimate differ from 
the crude or unadjusted estimate. In effect measure modification, one is inter-
ested in finding out if  the association differs per the third variable (the differ-
ence in stratum-specific estimate from one another). This concept, which is 
not very well understood among researchers in the healthcare field, is covered 
in detail in the Applied Epidemiologic Principles and Concepts by Holmes, L. Jr. 
and Modern Epidemiology by Rothman, K. et al.

2.9 � Summary

Research design transcends analysis, since no matter how sophisticated a 
statistical tool used is, the error of design and sampling remains, rendering 
the inference invalid. Study designs in biomedical and clinical research are 
experimental and nonexperimental. Often, the selection of one design over 
the other depends on multiple factors, some of which include the particular 
research question to be answered, feasibility, expenses, and the availability of 
subjects for a given design.

Subject selection is fundamental to how the inference from the study will 
be used. A well-designed study must clearly define the targeted population in 
order to apply the results of the study appropriately. Clinical/biomedical research 
designs are typically classified into (a) nonexperimental and (b) experimental. 
The fundamental difference between the two designs is the allocation of 
subjects to the study arms or subject manipulation. While nonexperimental 
designs do not employ subject allocation by the investigator, subject alloca-
tion is the hallmark of experimental design in humans; it is also known as a 
clinical trial. Regardless of the design used, both studies involve the observa-
tion of the outcomes of interest, hence the misnomer in characterizing non-
experimental design as observational.

Nonexperimental designs that are commonly used in clinical and biomedi-
cal research include (a) cross-sectional; (b) case–control, with cases being the 
basis of the design; and (c) cohort design, conducted on the basis of exposure. 
There are several hybrids of these designs, including case–cohort, case cross-
over, nested case–control, and so on.

While preference has been for prospective designs, since such designs are 
able to establish temporal sequence, a well-designed retrospective study can 
generate standard and valid evidence. Therefore, the preference of one design 
over the other should be based on the research question, availability of study 
subjects, resources, and sampling feasibility.

Clinical research involves humans and hence the potential for the influ-
ence of other factors in the results of experiments or nonexperimental stud-
ies. The interpretation of such designs depends on the ability to disentangle 
confounding, random error, and bias from the findings, as well as being able 
to address interaction and effect modifier. While the appropriate analytic tool 
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is fundamental to discovery, the study could be driven by confounding and 
bias in the midst of statistically significant results.

Finally, whatever design applied in the conduct of biomedical and clini-
cal research, caution should be exercised in the interpretation of the results, 
noting clearly that (1) no design no matter how sophisticated is immune from 
observational and measurement errors, (2) no design explains everything, and 
(3) all designs are subject to limitations, and hence some degree of uncertain-
ties or chance in the application of the results.

Questions for discussion

	 1	 Read the study report by Holmes et al. (2007) on androgen-deprivation 
therapy and the prolongation of  survival of  older men diagnosed and 
treated for locoregional prostate cancer. Comment on the research design, 
hypothesis, statistical methods, and conclusions. Is this a reliable infer-
ence? Why and why not?

	 2	 Suppose you are conducting a study on the incidence of asthma among 
children (up to 4 years of age) exposed to maternal cigarette smoking, 
and a similar study is conducted in a different center with children (from 
12 to 21 years old). (a) What is the measure of effect of maternal smok-
ing? (b) What is the problem in comparing these two incidence rates? 
(c) How will you perform a valid comparisons in this case?

	 3	 One way to measure the effect of disease is by RR or OR. What is the 
distinction between these two measures? Comment on the advantage of 
one over the other in determining the direct association between exposure 
and disease.

	 4	 In a hypothetical study of the relationship between polycystic ovarian 
syndrome (POS) and endometrial carcinoma, 80 out of 280 with POS 
had developed endometrial carcinoma, compared with 600 out of 4000 
control women, who had endometrial carcinoma at some time in their 
lives. (a) Compute the OR in favor of never having been diagnosed with 
POS for women with endometrial carcinoma versus the control group. 
(b) What is the 95% CI for this association? (c) What can be concluded 
for these data? (d) Is there an association between POS and endometrial 
cancer based on these data?

	 5	 Suppose you are appointed as the director of a clinical taskforce to estab-
lish the guidelines for the assessment and treatment of avascular necrosis 
associated with sickle cell disease, and you intend to base this guideline 
on the meta-analysis or systematic quantitative review. (a) What will be 
your inclusion and exclusion criteria? (b) What method of meta-analysis 
will you employ if  the studies indicate heterogeneity, and why? (c) What 
are the limitations of this approach in establishing clinical guidelines?

	 6	 A study was conducted to examine the role of paternal exposure to ciga-
rette smoking and asthma in children. The result was found to be con-
sistent with a causal relationship. (a) If  genetic predisposition was also 
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a likely explanation, can we affirm the conclusion regarding a causal 
relationship? (b) In terms of internal validity and causation, comment 
on the (i) consistency of this study with other evidence, (ii) specificity, 
(iii) biologic plausibility, and (iv) coherency of the effect with the distri-
bution of the exposure and the outcome.

	 7	 Comment on the assessment of random error, bias, and confounding in 
the establishment of study validity. (a) How relevant is the assessment of 
bias and confounding if  the result of a study is statistically insignificant? 
(b) What is the significance of probability value in the interpretation of 
study findings if  the sample studied was not a random sample?
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3.1 � Introduction

Biostatistical inference is about the sample; the population parameters, like 
the mean, remain estimates, implying the uncertainty of absolute popula-
tion parameters. All biomedical and clinical inferences about samples studied 
carry some uncertainties, requiring caution in the interpretation of findings 
for application to improvement of care or suggestions of diagnostic and 
screening guidelines. A parameter in biostatistics is a number that describes 
the population, while the population is the entire group of individuals or ani-
mals about which we require information or data. Ideally, the parameter is a 
fixed number, but in reality, this value remains unknown. Since the parameter 
from the population is unknown, statistics is used to describe the sample. The 
sample is a part of the population from which researchers obtain data, which 
they used to draw inferences or conclusions about the population. While the 
value of the statistic is known, this value is not fixed and can change from 
sample to sample. Based on this sample-to-sample variability, all findings 
have underlying uncertainties, and population parameters remain unknown, 
implicative of extreme caution in the interpretation and application of study 
findings in the improvement and provision of  quality medical and psycho
social care to our patients.1

Sample design is the technique used to select the sample from the popu-
lation and is essential to the validity of study inference. From poor sample 
design follows invalid and misleading inference from the data.

What is biostatistical reasoning? Inference about the sample studied in terms 
of the magnitude of difference in treatment is based on biostatistical techniques. 
For example, the length of hospital stay following spinal fusion for curve defor-
mities in cerebral palsy has financial consequences. Orthopedic surgeons should 
be involved in logical and educated discussions on design process and biostatis-
tical models that will enable the quality and internal as well as external valid-
ity of evidence to be assessed in reducing the length of stay without adversely 
affecting patient recovery. Biostatistical reasoning thus involves the assessment 
of the quality of evidence by considering the sampling design and the analysis 
technique or model used to identify the risk factors to a disease, supporting or 

Population, sample, probability, 
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negating the procedure or treatment studied. Such reasoning leads to a design 
sample that reflects a representative sample in order to test hypotheses that will 
enable one to generalize the observed findings to the population of interest, 
including those individuals with the disease who were not studied in the sample. 
Statistical inference is based on how reliable or trustworthy a procedure is, and 
what the outcome or observation will be if the procedure is repeated many times.1

To critically appraise scientific literature, clinicians and biomedical 
researchers are expected to be able to understand and examine statistical 
techniques used to generate the evidence as well as the design and the pro-
tocol used in the study implementation. Since statistical methods have been 
used incorrectly and continue to be erroneously implemented in scientific 
and medical literature, we attempt in this chapter to explain the flaws in the 
use of some of the most commonly abused tests, namely, the chi-square and 
t test. This chapter presents the biostatistical notion of populations, samples, 
sampling distribution and probability, bias, and variability. In addition, an 
attempt is made to expose the flaws in analysis and interpretation of biomedical, 
translational, and clinical research data as biostatistical reasoning.

3.2 � Populations

Biostatistics is concerned with health populations from basic sciences (bench) 
via the patients (clinical science) to the community (population science and pub-
lic health). The population of interest to biostatistics include humans and other 
animals as well as the environments associated with these species.2 Population 
could also refer to events, procedures, or observations. Within this broad con-
text, population refers to the aggregate of species, objects, cases, and so on.

Since biostatistics is not concerned with studying the entire population or 
the targeted population of interest, such as US males with prostatic adeno-
carcinoma, but a sample of such a population, knowledge of the population 
from which the sample was obtained is extremely important for a valid infer-
ence to be drawn. Consider a study on the effectiveness of androgen depriva-
tion therapy in prolonging the survival of older US males with locoregional 
prostate cancer. The population of US males with CaP should be clearly 
defined. For example, not all US males with CaP reside in the United States, 
and the racial/ethnic, genetic, cultural, and social backgrounds of those who 
reside in the United States may differ substantially. In addition, the Gleason 
score, tumor stage, state or residence at the time diagnosis, age at diagnosis, 
PSA level, and so on, may also vary across the population of US males.

While the true population parameters, such as mean and standard devi-
ation, remain unknown, since it may not be convenient to study the entire 
population, samples are normally drawn.2,3 These samples are expected to 
be representative of the population of interest in order to allow accurate and 
true inferences to be drawn on the population.

The population mean (μ) and standard deviation (σ) differ from those of 
the sample, but the more representative the sample, the closer the sample mean 
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and SD are to the population parameter. It is very important that the popula-
tion be clearly characterized before the drawing of the sample. For example, 
the population of US males with CaP in the hypothetical study above should 
be described as “all men with locoregional prostate cancer, all patients aged 
sixty-five and older in the SEER database from 1993 to 2012.”

3.3 � Sample and sampling strategies

While adequate statistical analysis of the sample is important for the accuracy 
of inference, obtaining a representative sample implying a satisfactory sample 
is more important. Since samples are drawn from the population, populations 
must be clearly defined and characterized before the application of any sam-
pling technique. We must stress an important aspect of a sample, which is the 
nonzero chance (known probability) of individuals, patients, eligible partici-
pants, or subjects being included in the study. Simply, each individual should 
have an equal and a known probability of being selected into the study.

Sample selection involves the concept of independence. The selection of 
one subject from the population should not affect the chance of other eligible 
participants being selected into the study sample. The requirement of inde-
pendence in sampling is ensured by the process in which chance determines 
selectability. For example, in a study to assess the effect of medication adher-
ence in pediatric asthma, if  there are 3000 children with asthma, and the appro-
priate sample size is 372 (medication adherence) and 372 (nonadherence), the 
selection of these subjects must be achieved via a “chance process” such as 
coin spinning or random numbers table. The subjects selected in this exercise 
are termed a random sample and the variables collected from this sample are 
the random variable.

Earlier in the chapter, we observed that obtaining a representative sample 
from a population of interest into a study sample is an extremely important 
step in statistical analysis, since the end point of hypothesis testing is to gen-
eralize the findings to the targeted population based on the sample. Sampling 
selection should be representative for such generalization to be valid and 
reliable. For instance, epidemiologic data have indicated an inverse dose–
response in the association between educational status and diabetes mellitus 
(DM) prevalence, implying higher prevalence of DM among those without 
high school education. In effect, a sample to be utilized in estimating the prev-
alence of DM in any population must be selected to reflect the educational 
status of that population. The inability to do so will result in underestimation 
or overestimation of DM prevalence in the targeted population.

The sampling technique identifies two types of  sampling, namely, prob-
ability and nonprobability. The probability sampling, as observed previously, 
involves each or every member of the population to have a known probability 
of being selected into the sample, whereas in a nonprobability sampling, each 
member of the population is selected without the application of probability. 
Below are examples of probability sampling.
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Simple Random Sampling (SRS)
This technique involves the identification of a sampling frame implying the 

complete list of all the population and assignment of a unique identification 
number, and the sample is selected at random. With this sampling scheme, every 
element in the population has an equal chance or probability of being selected.

Systematic Random Sampling (SS)
Like simple random sampling, SS begins with sampling frame as well as 

the assignment of a unique identification number. Additionally, samples are 
selected at fixed intervals, with the interval between selections determined by 
the ratio of the population size to the sample size (N/n) termed sampling frac-
tion. For example, if the population size is 100 (N) and the required sample 
size is 10 (n), then the sampling fraction is 100/10 = 10, implying the selection 
of every 10th individual or element into the sample. Is it possible to obtain 
a nonrepresentative sample from such technique? Suppose the 100 people in 
the population consist of heterogeneous groups (racial/ethnic minorities and 
whites), systematic random sampling may result in the undersampling of cer-
tain racial/ethnic group, implying nonrepresentative sample.

Stratified Sampling
This technique involves the creation of strata or blocks based on certain 

characteristics of the population (race/ethnicity) and applying the techniques 
above in SS or SRS and sampling within each strata. With this technique, 
adequate representation of individuals in each block or stratum is ensured. 
For example, if  the racial/ethnic composition of pediatric patients seen at a 
pediatric hospital in New-State is n = 1000 Whites, n = 450 Blacks/AA, n = 
100 Asians, n = 380 Hispanics/Latinos, the sampling of this population should 
follow this distribution for representative sample by race/ethnicity.

In contrast, nonprobability samples arise from the inability to obtain a sam-
pling frame, implying an unknown probability of selecting an individual into 
the sample. Below is an example of nonprobability sampling.

Convenience Sampling
Involves the selection of individuals into the study based on the availability 

of study subjects, implying unknown probability and nonrepresentative sample.
Quota Sampling
Is a process that reflects the selection of samples based on a specific num-

ber. For example, if  we intend to sample 100 pediatric cancer patients, and we 
are aware of the percentage distribution of the patients by age group (0–4 years, 
25%; 5–9 years, 15%; 10–14 years, 25%; and 15–19 years, 35%), then the sample 
will comprise 25, 15, 25, and 35 in the age groups, respectively.

3.4 � Biostatistical reasoning

The purpose of biostatistical reasoning is to ensure appropriate decision-making 
about hypothesized states of the patient population.1 Conducting a study for 
application in improving health conditions, providing early diagnosis, screen-
ing for disease, or minimizing the complications and adverse events requires 
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obtaining data toward the clinical or biomedical relevance of the study. This 
relevance is reflected by the measure of effect or association. But in generalizing 
the results so obtained, statistical inference must be drawn.2,3 Simply, biostatis-
tical reasoning implies the use of probability to determine whether or not the 
sample studied represents the population from which the sample is drawn.4

This reasoning is slightly different from statistical reasoning, which is the 
rejection of the null hypothesis and the inclination toward the alternative hypoth-
esis, given the established significance level. We commonly misconceive a statisti-
cally significant finding to mean the effective or efficacious treatment. Such an 
assumption is very misleading and should be discouraged in scientific evidence 
discovery. While we wish to ensure that the result of our study is not due to chance 
or luck in the sample we studied, it is equally important to realize that if proper 
effort has been made in terms of inclusion criteria with respect to our sample 
(random or consecutive), the effect of treatment or association is measured by the 
point estimate, such as the odds ratio, risk ratio, proportion, percent, and so on.

In conducting a study, we recommend that researchers critically examine the 
measures of effect or association that are appropriate to the data. For example, 
if  a study is conducted to determine the effect of inhaled corticosteroid in 
racial/ethnic disparities in pediatric asthma survival, the appropriate measure 
of effect is the hazard ratio (HR), a measure of effect that considers time in the 
computation of survival experience of the treated versus the untreated cohort. 
In contrast, if  the data are not time-to-event, but case-comparison/control, the 
odds ratio (OR) remains a useful and efficient measure of effect. Since such 
point estimate may be misinterpreted, a distinction must be made between 
descriptive and inferential statistics in the interpretation and application of 
the point estimate in clinical and biomedical decision-making.

In presenting inferential results (study involving hypothesis testing), both 
the point estimate and the precision of the point estimate are expected to be 
reported. If the purpose of the study was to determine the effectiveness of 
a treatment modality or outcome, confidence intervals (CIs) should be used. 
This practice allows the quantification of point estimate and the appropriate 
measure of uncertainty or measurement error. For example, if  a study was con-
ducted to determine the effectiveness of pelvic osteotomy in normalizing the 
hip, and the outcome is the migration index (MI), the mean MI after 2 years 
of follow-up quantifies the point estimate, while 95% CI reflects the uncer-
tainty. We can interpret this 95% CI as a 95% chance of the obtained mean, 
MI, being included in the interval. Since samples that we study are not unique, 
it is important to realize that samples from the same population will generate 
different estimates of the population parameters, as well as different 95% CIs.

3.5 � Measures of central tendency and dispersion

We are always required to describe our sample before the testing of any 
hypothesis in an inferential study. Understanding of the sample used in a 
study must precede the measures of effects or association. Summarizing our 
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data requires knowledge of appropriate summary statistics, implying mea-
sures of central tendency and dispersion or variability. A measure of central 
tendency is a single value that attempts to describe a set of data by identify-
ing the central position within that set of data. For this reason, the measures 
of central tendency are also termed measures of central location, as well as 
summary statistics (Figure 3.1 and Table 3.1). In addition, before hypothesis 

Summary
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dichotomous, binary,
categorical, ordinal 
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No
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continuous
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amount of variation in the data.

Figure 3.1  Summary statistics and measures of central tendency/location and dispersion.
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testing where the shape of distribution is assumed, a normality test is required, 
as are descriptive statistics. Box 3.1 illustrates such a practice from hypotheti-
cal data on the BMIs of children:

What is skewness?
This refers to the variability of the data from the symmetry and implies the 

distributions below and higher than the mean. It is the measure of symmetry 
around the mean.

What is kurtosis?
This measures the peakness at the mean.

BOX 3.1  NORMALITY TEST TO EXAMINE THE 
NORMAL DISTRIBUTION OF BMI AND BMI% FROM 
A DATA SET WITH A SAMPLE OF 65,255 CHILDREN

Shapiro–Francia W’ test for normal data

   Variable     Obs       W’       V’         z      Prob > z

        bmi    65255  0.13984  2.8e+04    30.266    0.00001

      bmipc    65241  0.91733  2730.033   23.352    0.00001

Note: the normal approximation to the sampling distribution of 

W’ is valid for 10 ≤ n ≤ 5000 under the log transformation.

Table 3.1  Choice of measures of central tendency or location

Scale of measurement 
of variable

Measure of 
central tendency Rationale

Nominal Mode Variables, such as sex, with male = 1 
and female = 2

Ordinal Median/meana Variables, such as severity of illness 
(low, moderate, and severe) 

Cardinal data—interval/
ratio (nonskewed)

Mean Variables, such as systolic or 
diastolic BP and age—normal 
distribution (bell curve)

Cardinal data—interval/
ratio (skewed)

Median Variables, such as systolic or 
diastolic BP and age that violate the 
normality assumption

a	 Ordinal data should be summarized with median and mean, which allows one to examine the 
proximity of the two parameters.
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The above STATA output indicates that the data are nonnormal, requir-
ing mean and SD, as well as median and IQR, to be used in summarizing 
the data, contrary to the mistaken practice of summarizing such data with 
median and IQR only.

How is the mean of a sample estimated? Consider a study conducted to 
examine the effect of age on systolic blood pressure (SBP). The ages of par-
ticipants in years were 56.7, 45.9, 78.5, 46.8, 60.0, 89.2, 56.9, 50.0, 67.8, 48.6, 
70, and 56.8, and the SBPs were 156, 148, 150, 160, 126, 144, 132, 160, 138, 
148, 150, and 163. What is the mean age? What is the average SBP? What is 
the SD for these two variables, and how could this be interpreted? Is there a 
relationship between age and SBP?

The mean is the most commonly used measure of central tendency. We 
estimate the mean by summing all the ages of the participants and dividing it 
by the number of participants in the sample or sample size. We use the sym-
bol µ for the mean of a population and sometimes the symbol for the mean of 
a sample. To calculate μ, we use the formula μ = ΣX/N, where ΣX is the sum 
of all the ages in the population and N is the number of participants in the 
population. Similarly, the sample mean is the sum of all the values in the data 
set divided by the number of values (sample size) in the data set. Therefore, if  
there are n values in a data set and these values have x1, x2, …, xn, the sample 
mean is denoted by x.

	
x

x x x
n

n= + + +( )1 2 

BOX 3.2  DESCRIPTIVE/SUMMARY STATISTICS 
OF BMI AND BMI PERCENT OF CHILDREN

tabstat bmi bmipc, stat (mean sd p50 iqr range min max n)

   stats         bmi     bmipc

    mean    19.19283  64.24659
      sd    12.99647  29.16575
     p50       17.46     70.66
     iqr    5.049999     48.61
   range     2131.16       100
     min        1.92         0
     max     2133.08       100
       N       65255     65241
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This can be further simplified as

	
x

x

n
= ∑

3.5.1 � Median

The median is the middle score for a set of data that has been arranged in 
order of magnitude. Consider the example with the SBP above: 126, 132, 138, 
144, 148, 160, 148, 150, 150, 156, 160, and 163. Since these data have been 
ordered from lowest to highest, we estimate the median as the middle SBP for 
the set of SBP. The median is less affected by outliers and skewed data.

Box 3.3 presents the normality test for the SBP using STATA statistical soft-
ware. The syntax for the normality test is as follows: sktest var xa … var xz.

The SBP showed normal distribution, which enables the selection of the 
mean as the best measure of central tendency. Since the null hypothesis is that 
data are normal, with p = 0.7499, we fail to reject the normal hypothesis.

BOX 3.3A  NORMALITY TEST UTILIZING 
SKEWNESS AND KURTOSIS (SK), SYSTOLIC 
BLOOD PRESSURE (SBP) OF 11 SUBJECTS

. sktest spb

          Skewness/Kurtosis tests for Normality

                                                   joint        
Variable   Obs  Pr(Skewness) Pr(Kurtosis) adj chi2(2)  Prob>chi2

     spb    11    0.4585       0.9700       0.58       0.7499

BOX 3.3B  NORMALITY TEST UTILIZING FRANCIA 
AND SHAPIRO’S METHOD, SBP OF 11 SUBJECTS

. sfrancia spb

             Shapiro-Francia W’ test for normal data

Variable    Obs       W’       V’       z        Prob>z

     spb     11   0.97046    0.524   -1.128     0.87027
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Another sample of 31 patients was selected from the same population of 
men and women with hypertension, and the normality test was performed 
and the mean SBP was estimated. Box 3.5 presents the normality test and the 
measures of central tendency.

BOX 3.5A  NORMALITY TEST, SK OF 31 SUBJECTS 
WITH SBP (HYPOTHETICAL DATA) 

. sktest spb

Skewness/Kurtosis tests for Normality

                                                      joint    

Variable   Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

     spb   31     0.3117      0.5574        1.47      0.4801

.

Notes: The above normal distribution test indicates that the data are 
normal, given the null hypothesis that data are normal. With the signifi-
cance level, 0.48, and the type I error tolerance of 0.05, there is no evi-
dence against the null hypothesis, implying the acceptance of the null.

BOX 3.4A  EXPLORATORY STATISTICS, 
ILLUSTRATING THE CENTRAL TENDENCY AND 
THE SPREAD OF THE SBP DATA OF 10 SUBJECTS

. tabstat spb, stat (mean sd var p50 p75 p25 iqr range min max n)

variable       mean         sd   variance  p50  p75   p25  iqr  range min   max   N

     spb   146.8182   11.32094   128.1636  148  156   138   18     37 126   163  11

BOX 3.4B  EXPLORATORY STATISTICS, ILLUSTRATING 
THE CENTRAL TENDENCY AND THE SPREAD 

OF THE SBP DATA OF 10 SUBJECTS (STANDARD 
ERROR OF THE SAMPLE MEAN INCLUDED)

. tabstat spb, stat (mean sd var sem p50 p75 p25 iqr range min max n)

variable     mean      sd  variance  se(mean) p50 p75  p25  iqr  range  min max   N

    spb  146.8182 11.32094   128.1636  3.413391  148 156  138   18     37  126 163  11
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3.5.2 � Mode

The mode is the most frequent SBP in the example of hypothetical data used 
here. Using a histogram to present the data, the mode represents the highest 
frequency (Figure 3.2).

BOX 3.5B  MEASURES OF CENTRAL TENDENCY 
OF 31 SUBJECTS WITH SBP (HYPOTHETICAL DATA)

. tabstat spb, stat (mean sd var sem p50 p75 p25 iqr range min max n)

variable      mean       sd variance  se(mean)  p50 p75  p25 iqr range  min  max  N

     spb   145.871 10.61679 112.7161 1.906831  148 150  138  12    37  126  163 31

BOX 3.5C  MEASURES OF CENTRAL TENDENCY 
OF 31 SUBJECTS WITH SBP BY RACE 

(SUBGROUP EXPLORATORY ANALYSIS)

. tabstat spb, stat (mean sd var sem p50 p75 p25 iqr range min max n) by ( race)

Summary for variables: spb

     by categories of: race

 race      mean        sd variance se(mean) p50  p75  p25  iqr range   min  max   N

    1       138  9.012811 81.23077 2.408775 138  148  132   16    24   126  150  14
    2  152.3529  6.818552 46.49265 1.653742 150  156  148    8    25   138  163  17

Total   145.871  10.61679 112.7161 1.906831 148  150  138   12    37   126  163  31

Abbreviations: N = sample size, iqr = interquartile range, se (mean) = 
standard error of the mean, p50 = median, 1 = white, and 2 = black (race).

BOX 3.5D  MEASURES OF CENTRAL 
TENDENCY OF 31 SUBJECTS WITH SBP BY SEX 

(SUBGROUP EXPLORATORY ANALYSIS)

. tabstat spb, stat (mean sd var sem p50 p75 p25 iqr range min max n) by ( Sex)

Summary for variables: spb

     by categories of: race

 race      mean        sd variance  se(mean) p50  p75  p25  iqr range  min  max   N

    1  152.9231   8.30122 68.91026 2.302344  150  160  150   10    31  132  163  13
    2  139.8824  8.644958 74.73529  2.09671  144  148  132   16    24  126  150  17

Total  145.5333  10.62766 112.9471 1.940336  148  150  138   12    37  126  163  30

Abbreviations: N = sample size, iqr = interquartile range, se (mean) = 
standard error of the mean, p50 = median, 1 = male, and 2 = female (sex).
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Since the SBP data above are normally distributed from the two samples 
drawn from this hypothetical population, both the mean and median could be 
used as measures of central tendency. In general, given a symmetrical distri-
bution, the mean, median, and mode are almost nearly equal. One would rec-
ommend the mean in this context as a better choice for the central tendency 
measure since it includes all the SBP values in its estimation or calculation. 
Consequently, any alteration in any of the SBP values will influence the mean 
but not the median or mode, implying the sensitivity of the mean to outliers.

3.5.3 � Measures of dispersion

Measures of dispersion reflect a deviation of values from the measure of cen-
tral tendency.2 For example, if  the SBP of a sample of African-American 
women were the same, there would be no need to estimate the sample mean. 
Since the SBPs of African-American women vary by age, family history, and 
so on, the extent to which they differ from each other is the dispersion of the 
distribution. There are several measures of dispersion, namely, range, vari-
ance, standard deviation, standard error of the mean, and so on.

3.5.4 � Range

Range is the simplest measure of dispersion and is the difference between the 
highest and lowest SBP in the example above. As an interval, range could also 
represent the lowest and the highest SBP.
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Figure 3.2  Histogram of 31 patients with SBP illustrating the mode.
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Vignette 3.1: Estimation of range as quantity and interval. A study was conducted 
to determine serum lipid concentration as a biomarker of higher BMI. The 
following data were available. The ages of the subjects are 10, 10, 11, 11, 11, 12, 12, 
12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 
16, 16, 16, 16, and 16. What is the mean age and the range of subjects? Estimate 
the range as quantity and interval. What is the median age and interquartile range?

BOX 3.6A  VIGNETTE SOLUTION. SKEWNESS/
KURTOSIS TESTS FOR NORMALITY

                                                  joint          
Variable   Obs  Pr(Skewness)  Pr(Kurtosis)  adj chi2(2) Prob>chi2

     sbp    35    0.3032         0.2779       2.41       0.2995
     age    35    0.1926         0.1989       3.63       0.1625

BOX 3.6B  EXPLORATORY (SUMMARY STATISTICS) 
ANALYSIS OF THE SBP AND AGE DISTRIBUTION BY THE 

TYPE OF ANTIHYPERTENSIVE TREATMENT (HTN-TX)
. tabstat SBP age, stat (mean sd var sem p50 iqr range min max n) by ( HNT_TX)

Summary statistics: mean, sd, variance, se(mean), p50, iqr, range, min, max, N

HNT TX         SBP      age

     1    113.0308 38.04615
          12.01688 6.627195
          144.4053 43.91971
          1. 49051 .8220024
               115       40
                20        9
                37       35
                98       30
               135       65
                65       65

     2     143.413 49.06522
           11.9714 10.76084
          143.3145 115.7957
          1.765087 1.586599
             142.5       43
                15       16
                61       35
                98       30
               159       65
                46       46

 Total    125.6216 42.61261
          19.20135 10.13201
          368.6919 102.6577
          1.822512  .961688
               132       41
                30       10
                61       35
                98       30
               159       65
               111      111



58  Applied biostatistical principles and concepts

BOX 3.6C  SUMMARY STATISTICS 
OF SBP BY HTN TREATMENT

. tabstat SBP , stat (mean sd var sem p50 iqr range min max n) by ( HNT_TX)

Summary for variables: SBP

     by categories of: HNT_TX

HNT_TX       mean        sd  variance   se(mean)    p50  iqr  range  min  max    N

     1   113.0308  12.01688  144.4053    1.49051    115   20     37   98  135   65

     2    143.413   11.9714  143.3145   1.765087  142.5   15     61   98  159   46

 Total   125.6216  19.20135  368.6919   1.822512    132   30     61   98  159  111

BOX 3.6D  EXPLORATORY ANALYSIS 
(SUMMARY STATISTICS) OF NEW AND 
STANDARD HTN TREATMENT BY SEX

. tabstat SBP if HNT_TX ==1, stat (mean sd var sem p50 iqr range min max n ) by (  Sex)

Summary for variables: SBP
     by categories of: Sex

   Sex       mean        sd   variance    se(mean)  p50   iqr  range  min  max   N

     1    116.125  7.825891   61.24457   1.597453   120    10     35  100  135  24
     2   111.2195  13.66476   186.7256   2.134077   110    15     34   98  132  41

 Total   113.0308  12.01688   144.4053    1.49051   115    20     37   98  135  65

. tabstat SBP if HNT_TX ==2, stat (mean sd var sem p50 iqr range min max n ) by ( Sex)

Summary for variables: SBP
     by categories of: Sex

   Sex       mean         sd  variance   se(mean)    p50  iqr  range  min   max   N

     1   148.4063   8.151229  66.44254   1.440947    145   19     19  140   159  32
     2        132     11.661       136   3.116775    135    0     47   98   145  14

 Total    143.413    11.9714  143.3145   1.765087  142.5   15     61   98   159  46

Abbreviations: Sex: 1 = male and 2 = female. HTN_TX: 1 = new agent 
and 2 = standard of care.

Abbreviations: 1 = Treatment with new agent and 2 = treatment with 
standard of care (old agent).
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The STATA output for the normality test for SBP and age indicate nor-
mally distributed data. The mean represents the best measure of the central 
tendency while the standard deviation reflects the values of individuals in the 
sample who vary from the mean. Box 3.7 presents the mean, median, range, and 
maximum and minimum values of age of the subjects in the hypothetical study.

BOX 3.6E  EXPLORATORY ANALYSIS 
(SUMMARY STATISTICS) OF NEW AND 
STANDARD HTN TREATMENT BY RACE

. tabstat SBP if HNT_TX ==1, stat (mean sd var sem p50 iqr range min max n ) by (  Race)

Summary for variables: SBP

     by categories of: Race

  Race       mean        sd variance   se(mean)   p50   iqr   range   min   max   N

     1       11.8  11.53594  133.078   1.489284   110    20      34    98   132  60
     2      127.8  7.224957     52.2   3.231099   132    12      15   120   135   5

 Total   113.0308  12.01688 144.4053    1.49051   115    20      37    98   135  65

. tabstat SBP if HNT_TX ==2, stat (mean sd var sem p50 iqr range min max n ) by (  Race)

Summary for variables: SBP
     by categories of: Sex

  Race       mean        sd  variance   se(mean)    p50  iqr  range  min   max    N

     1   136.8333  24.90315  620.1667   10.16667    145   44     61   98   159    6
     2      144.4  8.842786  78.19487   1.397167    140   10     24  135   159   40

 Total    143.413   11.9714 1 43.3145   1.765087  142.5   15     61   98   159   46

BOX 3.7  RANGE OF SBP IN A SAMPLE OF 100 PATIENTS 
BY SEX, RACE, AND HTN TREATMENT

. tabstat SBP , stat (p50 iqr range min max n  )

variable     p50     iqr     range     min    max      N

     SBP     132      30       61      98     159    111

. tabstat  SBP , stat (p50 iqr range min max n  ) by ( Sex)

Summary for variables: SBP
     by categories of: Sex

      Sex    p50     iqr     range     min    max      N

        1    140      25       59      100    159     56
        2    115      32       47       98    145     55

    Total    132      30       61       98    159    111
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Box 3.7 shows the SBP range as a single number of 111 subjects to be 61 
(maximum SBP – minimum SBP) and as an interval to be from 98 (minimum) 
to 159 (maximum).

3.5.5 � Quartiles and interquartile range and box plot

While percentiles in the hypothetical SBP data set describe the relative SBP 
along the distribution, quartile splits the SBP into fourths, so that an SBP fall-
ing in the first quartile lies within the lowest 25% of SBP values, while a score in 
the fourth quartile is higher than at least 75% of the SBP values in the data set.

A box plot graphically presents the SBP data with central location (median) 
and dispersion (quartiles) (Figures 3.3 through 3.7).

. tabstat SBP , stat (p50 iqr range min max n  ) by (  Race)

Summary for variables: SBP
     by categories of: Race

     Race     p50   iqr    range     min     max     N

        1   112.5    20       61      98     159    66
        2     140    10       39     120     159    45

    Total     132    30       61      98     159   111

. tabstat  SBP , stat (p50 iqr range min max n  ) by ( HNT_TX)

Summary for variables: SBP
     by categories of: HNT_TX

   HNT_TX      p50   iqr    range     min    max      N

        1      115    20       37      98    135     65
        2    142.5    15       61      98    159     46

    Total      132    30       61      98    159    111

.
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Figure 3.3  �Box plots of SBP and age, respectively, illustrating the median (50th percen
tile), 25th percentile as the lower quartile, and the 75th percentile as upper quartile.
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Figure 3.4  �(a) Data visualization illustrating box plot of SBP in a sample of 100 
patients. (b) Data visualization—SBP by race of patients on HNT treat-
ment. (c) Data visualization—SBP by HNT treatment received.
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Empirical P [i] = i/(N + 1)
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Figure 3.5  (a) Normal distribution of SBP. (b) Quantile normal distribution.
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Figure 3.6  �(a) Kernel density distribution, n = 100 (total sample). (b) Kernel den-
sity estimate (SBP distribution) in male (n = 56)—data skewed to the left.
� (Continued)
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Figure 3.6 (Continued)  �(c) Kernel density estimate, female (n = 55)—data skewed to 
the right.
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Figure 3.7  Scatter plot of SBP by age, using age to predict SBP.
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Box 3.8 illustrates the first (p25) and third (p75) quartiles of the SBP. The 
quartiles are not as accurate as the variance or SD in describing the variability in 
the data since they do not have the mathematical properties of the SD or variance.

BOX 3.8  THE SBP QUARTILE, INTERQUARTILE, 
AND PERCENTILES BY SEX OF PATIENTS (N = 100)

. sum SBP, det

                              SBP

    Percentiles       Smallest
 1%          98             98
 5%          98             98
10%         100             98         Obs                 111
25%         110             98         Sum of Wgt.         111

50%         132                        Mean           125.6216
                       Largest         Std. Dev.      19.20135
75%         140            159
90%         150            159         Variance       368.6919
95%         159            159         Skewness       .0958709
99%         159            159         Kurtosis       1.895076

. sum SBP if Sex ==1, det

                              SBP

    Percentiles       Smallest
 1%         100            100
 5%         110            110
10%         110            110         Obs                  56
25%         120            110         Sum of Wgt.          56

50%         140                        Mean           134.5714
                       Largest         Std. Dev.      17.96953
75%         145            159
90%         159            159         Variance       322.9039
95%         159            159         Skewness       –.147815
99%         159            159         Kurtosis       1.716984

. sum SBP if Sex ==2, det

                              SBP

    Percentiles       Smallest
 1%          98             98
 5%          98             98
10%          98             98         Obs                  55
25%         100             98         Sum of Wgt.          55

50%         115                        Mean           116.5091
                       Largest         Std. Dev.      15.95349
75%         132            135
90%         135            135         Variance       254.5138
95%         135            140         Skewness       .0986213
99%         145            145         Kurtosis       1.381336

.

Abbreviation: Sex: 1 = male and 2 = female.
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3.5.6 � Variance, standard deviation, and standard error 
of the mean (SEM)

The variance reflects the average squared difference of the SBP above from 
the mean SBP of African-American women. Another commonly used mea-
sure of dispersion from the mean distribution is standard deviation. To esti-
mate the variance of the SBP, the differences between each subject SBP and 
the mean is squared, since summing the differences directly without squaring 
will result in zero. The population variance, which is denoted by σ2, is esti-
mated by the following:
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while the sample variance (s2) is estimated by the following:
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The variance is the minimum sum of the squared differences of each SBP 
from any SBP number. Consequently, if  we used any SBP other than the mean 
SBP as the value from which each SBP is subtracted, the resulting sum of 
squared differences would be greater.

The standard deviation (SD) is the square root of the variance. The popu-
lation SD is designated by σ, while the sample SD is designated by s. The 
population SD is estimated by the following:
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while the sample SD is estimated by the following:
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where μ is the population mean, X  is the sample mean, N is the population 
size, and n is the sample size.

3.5.7 � Standard error of the mean

If  not specified, the standard error often refers to standard error of the mean 
(SEM), but standard error of median or variance may also apply to SE. While 
SD and coefficient of variation are used to illustrate how much variation there 
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is among individual observations, standard error or CI is used to demonstrate 
the reliability of the estimate of the mean. In reporting the amount of varia-
tion in the effect of a treatment, the SD becomes an appropriate measure of 
dispersion to use:

	
SEM = σ

n

where σ is the SD and n is the sample size.
To illustrate the SEM, consider taking random samples from a population of 

100 children with acute lymphocytic leukemia (ALL). The SEM simply reflects 
the deviation from the different sample means, while SD reflects the individual 
observations from the sample. If we take the mean age of a random sample of 
five children from this population, this mean may not reflect the population’s 
parametric mean age of the children with ALL, but taking a sample of 30 ALL 
children may. However, as we increase the sample size, we are more likely to 
come close to the population mean age of the children with ALL, implying that 
the variability in the mean decreases with the increase in the sample size. The 
SEM can be used to describe the variability in the data if one is not interested in 
the amount of variation with respect to the effect of intervention or treatment.

A study (hypothetical) was conducted to examine elbow ligament thick-
ness of 367 baseball players (population). If  we take a random sample of 
10 players, a sample of 40 players, and then 51 players, which of these means 
will be closer to the population parameter mean? Using STATA syntax for 
summary statistics (sum var) and confidence interval (ci var), the out-
puts shown in Box 3.9 were obtained:

BOX 3.9  SAMPLE MEAN, SEM, SE, AND SAMPLE SIZE

 sum  thick thick_01 thick_02 thick_03

Variable    Obs      Mean    Std. Dev.     Min        Max

   thick    367  6.199728    1.650046      2.6       14.3

thick_01     51  6.303922    1.468055        3        9.3

thick_02     40      5.98    1.502852      3.1        9.3

thick_03     10      5.53    1.183263      3.1        7.1

 ci thick thick_01 thick_02 thick_03

Variable    Obs      Mean    Std. Err.     [95% Conf. Interval]

   thick    367  6.199728    .0861317      6.030352   6.369103

thick_01     51  6.303922    .2055688      5.891025   6.716819

thick_02     40      5.98    .2376218      5.499365   6.460635

thick_03     10      5.53    .3741806      4.683545   6.376455
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Box 3.9 illustrates SEM reduction with increasing sample size (thick repre-
sents the population: thick_01, the random sample with n = 51; thick_02, the 
random sample with n = 40; and thick_03, the random sample with n = 10). 
While SD fluctuates with sample size, it does not illustrate a dose–response 
effect as demonstrated by SEM.

3.6 � Standardized distribution—z score statistic

In biomedical or clinical research, we may be interested in the top 20 biologic 
or specimen values in order to determine if our subjects will be classified as 
belonging to or not belonging to a certain treatment category. These answers 
may be complex, hence the utilization of probability distributions, such as a 
normal distribution (Figure 3.8). We assume that elbow ligament thickness in 
these players is normally distributed. With this assumption, we can use stan-
dard normal distribution and z scores to address such questions. Therefore, if  
a frequency distribution is normally distributed, we can determine the prob-
ability of a score occurring by standardizing the scores, such as for ligament 
thickness or hemoglobin level or test scores, by using the z score computation, 
which converts the group of data in the frequency distribution such that the 
mean = 0 and SD = 1. We express the z scores in terms of SDs and their means.

Mathematically, this appears as follows: standardized score (z) = χ − μ/σ, 
where μ is the mean (sample mean), χ is the score (individual score), and σ is 
the SD.
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Figure 3.8  Normal distribution with mean (μ) = 0.
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3.7 � Basic probability notion

Statistics is about sample, and for a meaningful interpretation of statistical 
computation and the application in addressing health issues, a basic knowl-
edge of probability is required.5 Consider the chance of a normal or usual 
pregnancy resulting in a male child as 0.5 (50%) and that of not having a 
female child as 0.5 (50%). How do we compute this? Let us consider an exam-
ple of 100 patients diagnosed with cystitis and prescribed erythromycin anti-
biotics (250 mg × 2 daily/7). If  at the end of 2 weeks, 80 patients presented 
with no symptoms of cystitis; what is the probability that erythromycin is an 
effective antibiotics in treating cystitis?

We can compute the probability of an event occurring or success of eryth-
romycin in treating cystitis as: Number of success/Overall or total number of 
trials (outcomes). Substituting: treated without symptoms (80)/All patients 
with cystitis (those without and with symptoms) (100). P = 80/100 = 0.8. The 
probability of failure (q) = 1 − P. Substituting: 1 − 0.8 = 0.2. Given the con-
cept of probability, what are the odds of erythromycin producing a favorable 
outcome?

Odds or success = p/q, where p is the chance of an event occurring and q 
is the chance of the same event not occurring. Substituting, the success of 
erythromycin in treating cystitis is 0.8/0.2 = 4.0, meaning that the odds of 
success is 4 to 1, while the odds of failure is 0.25 to 1. Simply, erythromycin, 
given these data, is more likely to yield a favorable compared to a non
favorable outcome.

Let us assume that early antibiotics used to treat cystitis had a success/cure 
or odds of 0.4 (p) and failure odds of 0.6 (q) in a comparable patient sample 
(age, sex, diagnosis, duration of illness, etc.) and sample size (n = 100). Since 
we are interested in the relative effectiveness of these two antibiotics, what is 
the crude odds ratio: odds ratio = odds of success in erythromycin antibiotic/
odds of success in early antibiotic. Substituting: 0.8/0.4 = 2.0, implying 2 to 
1 success. How do we interpret this result? Simply, compared to early antibi-
otic, erythromycin antibiotic is two times as likely to relieve the symptoms of 
cystitis.

3.8 � Simple and unconditional probability

Probability as observed earlier is a number that indicates the chance or the 
likelihood of an occurrence, and is expressed as a proportion ranging from 
0 to 1, where 1 implies certainty and 0 implies no chance or likelihood of an 
event occurring. We can also express probability as a percentage. With respect 
to Table 3.2, what is the probability of selecting any cancer patient from this 
sample?

	
P( )characteristic

Number of persons with charac= tteristic
Total of population

( )
( )

n
N
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Substituting: 1/2585 = 0.0004 = 0.04%, implying < 1% chance of selecting any 
cancer patient.

Additionally, what is the probability of selecting a cancer patient that is 
white?

	
P( )white

Number of white cancer patients
Total p

=
oopulation of cancer patients

Substituting: 1400/2585 = 0.54 = 54%, implying 54% chance of selecting a 
white patient with cancer.

Further, what is the probability of selecting a black patient with AML?

	
P( )black AML

Number of blacks with AML
Total pop

=
uulation with AML

Substituting: 180/2585= 0.07 = 7%, implying a 7% chance of selecting a black 
cancer patient with AML in the sample.

The above examples reflect simple and unconditional probability estima-
tion, given that the denominator reflects the total population, implying the 
chance of everyone in the population to be selected.

3.9 � Conditional probability

Suppose we are interested in the subpopulation of patients with ALL, what is 
the probability of selecting an Asian who has ALL?

	
P( )Asian ALL

Number of cancer patients with char= aacteristics (ALL)
Total population ALL( )N −

Table 3.2  Simple and unconditional probability estimate

Cancer 
type

Race and ethnicity

White Black/AA Asian

American 
Indian/
Alaska 
Native

Hawaiian/
Pacific 
Islander Multiracial Total

ALL 1000 400 100 60 70 200 1830
AML 400 180 30 10 15 120 755
Total 1400 580 130 70 85 320 2585

Abbreviations:	 AA, African-American; ALL, acute lymphocytic leukemia; AML, acute 
myeloid leukemia.
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Substituting: 100/1830 = 0.055 = 5.5%, implying 5.5% of AML among Asians 
in this sample.

3.10 � Independence and conditional probability

An event is considered to be independent if  the probability of one is not 
affected by the occurrence (P) or nonoccurrence (1 − P) of the other. Consider 
a diagnostic test for diabetes using percent A1C to examine independence 
probability. A1C also termed hemoglobin A1c, HbA1c, or glycohemoglobin 
test is used to determine blood sugar level for the diagnosis of diabetes. A 
normal A1C level is below 5.7%. An A1C level of 6.5% or higher on two 
separate occasions is indicative of DM, while A1C between 5.7% and 6.4% is 
considered pre-diabetic, suggestive of a high risk of DM (Table 3.3).

The probability that an individual has DM given he or she has a normal 
A1C is P(DM|normal A1C) = 10/60 = 0.167, while the probability that an 
individual has DM given he or she has an ACI between 5.7% and 6.5% is 
P(DM|A1C 5.7–6.5%) = 6/36 = 0.167, and the probability that an individual 
has DM given he or she has an A1C > 6.5% is P(DM|A1C > 6.5%) = 4/24 = 
0.167. The probability that a subject had DM was 0.167, implying that the 
A1C test result does not affect the likelihood that an individual has DM in 
this sample. In this example, the probability that an individual has DM is 
independent of the A1C test result.

Consider these two events, A1C% test (A) and DM diagnosis (B). These 
two occurrences or events are said to be independent if  P(A|B) = P(A) of if  
P(B|A) = P(B). Independence in probability could be verified by comparing 
a conditional with an unconditional probability. The equality of the condi-
tional with unconditional is indicative of independence. Illustrating in the 
example above, P(A|B) = P(A1C < 5.7%|DM) = 10/20 = 0.50 and P(A) = 
P(A1C < 5.7) = 60/120 = 0.50. Additionally, independence can also be tested 
by examining whether P(B|A) = P(DM| < 5.7%) = 10/60 = 0.167 and P(B) = 
P(DM) = 20/120 = 0.167. Consequently, the probability of the patient hav-
ing a diagnosis of DM given an A1C < 5.7% DM test, implying conditional 
probability, is the same as the overall probability of having DM diagnosis, 
implying an unconditional probability.

Table 3.3  �Independence probability using A1C test 
result and DM diagnosis

A1C % DM Non-DM Total

Normal (<5.7%) 10 50 60
Pre-diabetic (5.7%–6.5%) 6 30 36
Diabetic (>6.5%) 4 20 24
Total 20 100 120
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3.11 � Probability distribution

This refers to a listing of all the values the random variable can assume with 
their corresponding probabilities. There are several probability distributions, 
namely, binomial, Poisson, normal, and so on.

The binomial distribution model is an important probability model that is 
used when there are two possible outcomes (hence “binomial”). In a situation 
in which there were more than two distinct outcomes, a multinomial probabil-
ity model might be appropriate, but here we focus on the situation in which 
the outcome is dichotomous.

For example, adults with allergies might report relief  with medication or 
not, children with a bacterial infection might respond to antibiotic therapy or 
not, adults who suffer a myocardial infarction might survive the heart attack 
or not, and a medical device such as a coronary stent might be successfully 
implanted or not. These are just a few examples of applications or processes 
in which the outcome of interest has two possible values (i.e., it is dichot-
omous). The two outcomes are often labeled “success” and “failure,” with 
success indicating the presence of the outcome of interest. Note, however, 
that for many medical and public health questions, the outcome or event of 
interest is the occurrence of disease, which is obviously not really a success. 
Nevertheless, this terminology is typically used when discussing the binomial 
distribution model. As a result, whenever using the binomial distribution, we 
must clearly specify which outcome is the “success” and which is the “failure.”

The binomial distribution model allows us to compute the probability of 
observing a specified number of “successes” when the process is repeated a 
specific number of times (e.g., in a set of patients) and the outcome for a given 
patient is either a success or a failure.
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3.12 � Summary

Biostatistical reasoning reflects the degree to which evidence discovered from 
the observed data is generalizable across targeted populations. Being able to use 
appropriate test statistics or statistical techniques/procedures to make sense of 
the data collected during the course of our research is fundamental to evidence 
discovery. This ability depends on a careful understanding of the scale of mea-
surement of our variables, especially the response variable, the sampling tech-
nique used, the type of study design—experimental or nonexperimental—and 
the power of the study. Where probability sampling was not applied or consecu-
tive patient studies were conducted so as to reflect sample representativeness, it is 
not meaningful to quantify random error (p value) and estimate precision (CIs).



Population, sample, probability, and biostatistical reasoning  73

The fundamental thinking in inferential statistics is based on the assump-
tion that observations represent random samples drawn from the popula-
tion of patients, implying known and equal probability for all patients in 
the population to be included in our samples.6 This is important in deciding 
the targeted population to which the study findings should apply, implying 
knowledge of the actual population the samples represent. The source of the 
sample is important for adequate generalization since in/outpatient subjects 
in a clinical investigation rarely represent a random sample of the population 
of patients with a given condition as a whole.

Measures of central tendency allow us to examine the location and the 
spread of our data. This exercise opens a window to the data besides the 
graphic presentation of data before the analysis. The mean remains the most 
commonly used measure of central tendency once data assume normality in 
terms of distribution, while the median is suitable in summarizing data that 
are skewed, since the median as a measure of central tendency is not subjected 
to outliers. The spread or dispersion of the data is commonly summarized 
with SD and SEM. However, care must be taken in the utilization of these 
two measures of dispersion.

Questions for discussion

	 1	 If  data are normally distributed, the mean and the median will be very 
close, and if  data are not normally distributed, then both mean and 
median may provide useful information. Consider an ordered categorical 
variable on patient satisfaction rated as 1 = poor to 5 = excellent. What 
would be a preferred statistic for summarizing such patient satisfaction 
data?

	 2	 SD is a measure of variability in variables with approximately symmetric 
distributions. Is range or interquartile range a better measure of variabil-
ity for patients’ ages?

	 3	 Often, standard error is used to describe data, since standard error 
appears to be smaller relative to SD and thus indicative of a more precise 
study. (a) If  the purpose is to describe the data and data are normal, is 
standard error a better measure of variability? (b) If  the purpose is to 
describe the outcome of a study or the mean weight of children in an 
obesity clinic, is SD the best measure of variability of the data? (c) When 
should SD be used to describe variability in the data?

	 4	 If  the mean SBP of 100 women in a weight management clinic is 132 
(SD=7.8) and that of 120 women in a hypertension clinic is 145 (SD=18.4), 
estimate the SEM in these two groups.

	 5	 The urinary lead concentration (μmol/24 h) was obtained in two groups 
of children:

Group A: 2.6, 3.4, 2.8, 1.9, 2.0, 3.9. 1.9, 2.1, 3.0, 1.7
Group B: 2.7, 4.5, 2.6, 3.4, 3.8, 2.9, 1.6, 4.0, 3.5, 2.8
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Using a statistical package of your choice, including STATA, estimate 
the mean difference in the urinary lead concentration. Is there a sig-
nificant increase in concentration of urinary lead in group B?

	 6	 Using Table 3.4, determine whether or not independent probability is 
involved in the family history of breast cancer and the prevalence of 
breast cancer.

	 a	 Estimate the unconditional probability of breast cancer, which is 
simply the prevalence of breast cancer in this sample.

	 b	 Estimate the conditional probability of breast cancer given the fam-
ily history of breast cancer.

	 c	 Compare the conditional and unconditional to determine the inde-
pendent probability of these events.

Hints; P(breast cancer prevalence) = P(A) = Breast cancer prevalence/total 
sample while the unconditional probability of breast cancer preva-
lence given family history of breast cancer = P(A|B)= (Breast cancer 
prevalence|History of breast cancer).
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Table 3.4  �Association between family history of breast cancer and breast 
cancer diagnosis

Family history of breast cancer Breast cancer No breast cancer Total

Yes 491 368 859
No 152 5721 5873
Total 643 5089 6732



Section II

Biostatistical modeling

Evidence discovery requires assumptions and rationale around the data col-
lected from research conduct or preexisting and secondary data. The reli-
ability of evidence assumes an unbiased sample in order to ensure adequate 
generalizability.

The process of  evidence discovery thus requires data processing, which 
is often ignored, data description via graphical presentation and summary 
statistics, and then hypotheses testing and interpretation. This section deals 
with biostatistical reasoning, categorical, and continuous data appraisal. The 
specific-hypothesis testing involves samples and relationships.
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Statistical considerations 
in clinical research

4

4.1 � Introduction

Conducting research centers on (a) conceptualization, (b) design process, and 
(c) statistical inference. Once the design is completed, the study is performed, 
and the data are collected, entered into the database, and edited, the next step 
is data analysis, which yields the study results. The initial step in the analysis, 
also termed preanalysis screening, is to obtain the summary statistics with 
frequency distribution (number and percentage) for discrete data and mean 
and standard deviation for continuous data. Therefore, the type of distribu-
tion or measurement scale (continuous, discrete) determines the nature of the 
descriptive summary or statistics.

In clinical research, we focus on a sample of patients and not the entire popu-
lation of patients with a given condition. We use a random sample to ensure that 
every individual in the population has an equal and independent chance of being 
selected. Consider a study conducted to examine the association between resid-
ual postoperative Cobb angle and the prevalence of deep wound infection after 
posterior spine fusion among children with cerebral palsy. Of the 264 patients 
studied, 22 developed deep wound infection. The residual postoperative Cobb 
angle was compared between cases and noncases, and the difference in the mean 
Cobb angle was found. The next step was to determine whether the mean differ-
ence between the cases and noncases was due to chance alone. Since the sample 
studied was a random sample and the 264 patients represented the population 
of children with cerebral palsy, statistical significance must be considered using a 
probability model. The application of the probability model, which is indicative 
of how likely it is that we would obtain a certain mean difference in Cobb angle 
between cases and noncases in a sample of 264 patients if there were no real 
difference between the cases and noncases in the entire population of children 
with cerebral palsy who have undergone surgery for spinal deformity correction, 
reflects the notion of inferential statistics.

In the previous chapters (Section I), we presented data cleaning and edit-
ing, preanalysis screening, and hypothesis-specific test notions. These aspects 
of clinical research are required in the study protocol, and clinical investiga-
tors are required to develop and utilize a manual of procedures in addressing 
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these issues. This chapter is concerned with the illustrative approach to under-
standing how sense is made from data through the steps outlined in vari-
ous techniques of hypothesis testing. We attempt to present reliable and valid 
scientific research as that which applies appropriate statistical techniques in 
drawing evidence from the data. Statistics is presented as an informational 
science, with the purpose being to make sense of accurate data, since statisti-
cal methods, no matter how sophisticated, cannot generate valid and reliable 
evidence from an inaccurate measurement or poorly designed study.

The technique to be used in producing the result of a study or to test the pro-
posed hypothesis depends on (a) design, (b) scales of measurement of the vari-
ables, (c) the assumption underlying the distribution of the data—parametric or 
nonparametric of distribution-free, (d) number in the comparison group, and 
(e)  group independence. For example, using a retrospective cohort design, an 
investigator wanted to determine the outcome of cervical arthrodesis with instru-
mentation on pediatric patients with skeletal dysplasia (SKD), a heterogeneous 
disorder involving abnormality of skeletal development, growth, and degenera-
tion. What is the test statistic to examine the null hypothesis of no difference in the 
proportion of solid fusion comparing instrumented to non-instrumented patients? To 
answer this question, the investigator needs to address the following issues:

	 a	 What was the scale of measurement of the dependent or response variable? 
The outcome of cervical arthrodesis was measured as the presence or 
absence of solid fusion as observed on x-ray imaging of SKD patients 

BOX 4.1  NOTION OF STATISTICS 

•	 Statistics is a highly developed information science.
•	 It is involved with the study of inferential processes, especially the 

planning and analysis of experiments, surveys or observational 
studies.a

•	 The study of how information should be employed to reflect 
on, and give guidance for action in a practical situation involv-
ing uncertainty.b

•	 A way of thinking or an approach to everyday problems that 
relies heavily on designed data production. It is essential in that 
its proper usability minimizes the chance of drawing incorrect 
conclusions from data.c 

a	 V. Barnett, Comparative Statistical Inference, 2nd ed. (New York: Wiley, 1982).
b	 S. Stigler, The History of Statistics (Cambridge, MA: Belknap Press, 1986).
c	 S. Piantadosi, Clinical Trials, 2nd ed. (Hoboken, New Jersey: John Wiley & Sons, 2005).
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who underwent this procedure, where absence was coded as “0,” and pres-
ence as “1.”

	 b	 What was the comparison or how many groups were being compared? There 
were two comparison groups based on instrumentation, which was coded 
as “0” for absence of instrumentation and “1” for instrumentation.

	 c	 What was the assumption underlying the data on response variable? The 
response variable was measured on a binary scale and hence represents 
a proportion. Therefore, the proposed analysis must assume a nonpara-
metric or distribution-free test.

	 d	 Were the groups independent? Simply, is the outcome or fusion obtained 
from a patient in the instrumented group dependent on that from a patient 
in the noninstrumented group? The groups were independent since the 
patients in the instrumented group were unrelated to the patients in the 
noninstrumented group, except for the disease of interest, SKD.

The approach to understanding hypothesis testing in clinical research is to 
attempt to answer the research questions. With the previous example, the inves-
tigator utilized chi-square statistics to examine the independence of the groups 
(instrumented versus noninstrumented) and binomial regression to predict the 
outcome of cervical arthrodesis in SKD, given instrumentation as the inde-
pendent variable and solid fusion as the response variable. Are these two tests 
appropriate? Let us consider the adequacy of (a) chi-square and (b) binomial 
in answering the research questions or testing the null hypothesis of no differ-
ence (binomial regression) or dependence (chi-square).

4.1.1 � Chi-square statistic

4.1.1.1 � What is it?

This is the measure of how much the observed cell counts in a two-way table 
diverge from the expected cell count. It is easily described as a statistical tech-
nique used to test the null hypothesis of the equality of proportion, such as 
independence or no association between instrumented and noninstrumented 
patients with respect to certain study characteristics, such as age, sex, or type 
of medical insurance coverage. Simply, the chi-square tests the null hypothesis 
of no dependence or association between the row variable and the column vari-
able by comparing the entire set of observed counts with the set of expected 
counts. Mathematically, it appears as follows: χ2 = Σ (observed count − expected 
count)1/expected count.

4.1.1.2 � When is it used?

It is used to examine or test for independence or no association when variables 
are categorical or binary, and normality is not assumed (distribution-free 
data). Chi-square is appropriate in testing a null hypothesis of independence, 
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or no association, when normality distribution cannot be assumed (non-
parametric/distribution-free) and when variables are coded as categorical or 
binary. If  the expected counts and observed counts are very different, a large 
value of chi-square will result. Therefore, large values of chi-square provide 
evidence against the null hypothesis.

4.1.2 � Binomial regression

4.1.2.1 � What is it?

Binomial regression is a test statistic based on the probability distribution 
that describes the number of successes “A” observed in independent trials or 
attempts (Bernoulli trial—named after the Swiss statistician, Jakob Bernoulli, 
who developed this distribution theory in the seventeenth century), each with 
the same probability of occurrence. For example, solid fusion based on x-ray 
imaging occurred as a binary event—presence (1 = Yes) or absence (0 = No)—
and can be denoted as X and Y or A and B. Simply, the probability of X (fusion 
proportion) is denoted by π, or P(X) = π, and π remains the same each time 
fusion occurs or is observed, while the probability of fusion not occurring (Y) is 
denoted by 1 − π, since Y occurs each time X does not occur. This distribution 
presents the probability that solid fusion occurs in a certain number of cervi-
cal arthrodesis performed for cervical stability on SKD pediatric patients with 
cervical instability. Therefore, since cervical arthrodesis is performed on differ-
ent patients, implying the occurrence of cervical arthrodesis in n times, and 
the outcome (solid fusion) is independent from one arthrodesis performed 
to another, binomial regression computes the probability that solid fusion 
occurs exactly Z times (proportion of solid fusion in instrumented versus 
noninstrumented patients with risk ratio as the measure of effect or point 
estimate).

4.1.2.2 � When is binomial regression used?

When the distribution follows Bernoulli’s theory and the response or outcome 
variable is binary (fusion “1” and no fusion “0”); the independent variable 
is binary, discrete, or categorical or mixed (instrumentation “1” and non
instrumentation “0”); and the design is retrospective cohort, which allows for 
risk ratio as the measure of effect, binomial regression is used. The technique 
is also efficient in other observational designs.

4.1.2.3 � Where is the binomial regression model used?

This test statistic is appropriate if  the design of the study is retrospective 
cohort (Figure 4.1), which allows for the effect size to be presented as risk 
ratio, the outcome variable is measured on a binary scale (Yes = 1 and No = 0), 
with or without normality assumption (nonparametric or distribution-free), 
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Figure 4.1  The use of statistical methods in a retrospective cohort study.
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and the independent variables are measured in mixed scales (binary, discrete, 
categorical, or continuous). In addition, how the test is used and interpreted is 
essential to analysis, interpretation, and result presentation. These aspects are 
explained later in this chapter.

4.2 � Types of variables

4.2.1 � Random variables and probability distributions

Variable refers to a characteristic of interest in a study that has different values 
for different subjects (that which varies).2 A variable is the measure of a single 
characteristic and is so termed because it varies or changes with subjects.

4.2.1.1 � What is a random variable?

Clinical research involves the application of  the conclusion of  the study 
sample to the target population, implying the population of  previous, cur-
rent, and future patients. Random variable refers to a variable in a study in 
which subjects are randomly selected.3 For example, if  the subjects in a study 
to examine the survival of  men treated for localized prostate cancer with 
radical prostatectomy represent a random sample selected from the larger 
population, then race and Gleason score are examples of  random variables. 
Consider another example: investigators examined the effect of  treatment 
on the racial variance in the survival of  older women diagnosed with cer-
vical cancer and treated for the disease; they selected a sample of  subjects 
and observed the effect of  treatment (less extensive surgery versus radical 
surgery) on the survival of  these women. If  a random variable is used in this 
sample, then inference can be drawn from the data, implying that the result 
of  the study can be applied to all women, past, present, and future, who are 
diagnosed with cervical cancer and treated for the disease. Further, since the 
selected sample represents a population where all had equal probability or 
were equally likely to be selected, this sample is termed an unbiased sample, 
and treatment as a measure of  survival is then called a random variable.4

4.3 � Variables and sources of variation (variability)

There are attributes of variables, whether random or nonrandom. The com-
mon sources of variation are disease status, biologic differences, measurement 
conditions, measurement methods, measurement error, and random error. 
Statistical methods/tools are used to make sense of the variation in data. For 
example, if  a random variable (treatment) used in a study and the observation 
in the sample are mutually independent (probability that an older woman 
selected is unaffected by the selection of another older woman in the sample), 
then the sample is said to be unbiased. Variability or chance is minimized, 
and the result is not due to chance (accurate) if  an unbiased sample (equal 
probability of being selected from the target population into the sample) of 
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independent observations is used in the study. Despite this, chance may influ-
ence the outcome of a study, resulting in the application of statistical tech-
nique to assess the effect of chance.

4.3.1 � Types of variables in clinical research

Measurement scales or type of variable determines which statistical method is 
appropriate for a given set of data.5 For example, if  a variable, such as weight 
or blood pressure, is measured in a ratio scale, mean and standard deviation 
are appropriate measures of central tendency used to summarize the data. 
However, if  the scale of measurement is ordinal, median and interquartile 
range become appropriate statistical methods for the summary, as well as fre-
quency distribution (number and percentage).

4.3.1.1 � What are the types of scales used in measuring variables?

Nominal (unordered) variables are those (naming or categorical) that have no 
measurement scales (e.g., skin color). The binary or dichotomous variable or 
observation is a nominal measure that has two outcomes (e.g., gender [male → 
1, female → 2], survival [yes → 1, no → 0]). Discrete variables are binary and 
nominal, so termed because the categories are separate from each other (e.g., 
gender [male vs. female]). Ordinal (ordered categories) variables are those with 
underlying order to their values (e.g., fatigue scale [0–10], mild, moderate, 
severe). Continuous or dimensional variables are characteristics that are mea-
sured on a continuum (e.g., systolic blood pressure, diastolic blood pressure, 
height, weight, age, etc.). Compared with ordinal, nominal, or discrete data, 
continuous variables (interval and ratio) allow for more detailed information 
and inferences.

4.3.2 � Additional terms explained

4.3.2.1 � What is probability distribution?

Probability distribution is used to summarize values of random variables as a 
form of frequency distribution.

4.3.2.2 � What are the types of probability distributions?

Binomial (yes and no) is a discrete probability distribution in which the associ-
ated random variable takes only integer values—0, 1, 2 … n. It provides the 
probability that a specified event or outcome occurs in a given number of 
independent trials. Poisson is a discrete distribution applicable, like binomials, 
when the outcome is the number of times an event occurs. Normal (Gaussian) 
distribution (bell-shaped curve) is a continuous probability distribution. This 
distribution takes any value; it is a smooth, bell-shaped curve, and it is sym-
metric about the mean of the distribution, symbolized by μ, and a standard 
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deviation symbolized by σ.6 Standard normal (z) distribution refers to the dis-
tribution with a mean of 0 and a standard deviation of 1.

Z or (Z-score, normal deviate, standard score orr critical ratio) /= −( )X µ σ7

4.4 � Sampling, sample size, and power

Statistics deals with samples, and the main reason for research is to infer, or 
generalize, from a sample (sets of observations from one group of subjects) 
to a larger population (others who are similar to the subjects in the sample).7 
Statistics is the procedure by which some members of a given population are 
selected as representatives of the entire population.8 The process of inference 
requires statistical methods based on probability. The probability of a given 
outcome is the number of times that outcome occurs divided by the total 
number of trials.

4.4.1 � What are the uses of probability?

Probability is essential to research and is applied in (1) understanding and 
interpreting data; (2) indicating how much confidence there is in estimates, 
such as the means or relative risks; and (3) understanding the meaning of 
p values.8

4.4.2 � What are the types of probability rules?

The following probability rules are commonly used:

	 a	 Mutually exclusive events and the additional rule: Two or more events are 
mutually exclusive if  the occurrence of one precludes the occurrence of 
the others. The probability is found by adding the probabilities of two 
events—(addition rule) → P(A or B) = P(A) + P(B).10

	 b	 Independent events and multiplication rule: Two events are independent if  
the outcome of one event has no effect on the outcome of the second—
(multiplication rule) → P(A and B) = P(A) × P(B).11

4.4.3 � What is a population, and how does it differ 
from a sample?

Population describes a large set or collection of items with common character-
istics, whereas sample refers to the subset of the population, selected so as to 
be representative of the larger population.12 For example, if  researchers study 
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236 pediatric patients with cerebral palsy to determine the association between 
nutritional status and deep wound infection, the sample is 236 patients stud-
ied, while the population is the children with cerebral palsy. Why use a sample? 
“Bigger is not always better.”

	 1	 Samples are quick to study.
	 2	 They are less expensive.
	 3	 It is difficult or impossible to study the entire population.
	 4	 The accuracy of result can be compared with the total population.
	 5	 If  properly selected, probability methods can be used to estimate the 

error in the resulting statistics, making a probability statement about the 
observations in the study.

	 6	 Samples can be selected to reduce heterogeneity.13

4.4.4 � What is a sampling technique?

This refers to the process of selecting subjects into the study to constitute 
study population. This procedure includes probability sampling, which ensures 
that a sample will lead to a reliable and valid inference, and nonprobability 
sampling (unknown probability of selection), which is deprived of the ran-
domness needed to estimate sampling errors.

4.4.5 � What are the types of probability sampling?

Probability sampling types include simple random sampling, in which every 
subject has an equal probability of being selected for the study; systematic 
sampling, in which every kth item is selected, where k is determined by the 
number of items in the sampling frame divided by the desired sample size; 
stratified sampling, in which the population is first divided into relevant strata 
or subgroups, and a random sample is then selected from each stratum or sub-
group; and cluster sampling, in which the population is divided into clusters 
and a subset of the clusters is randomly selected.14 Sampling unit or element 
refers to the subject under observation on which information is collected (e.g., 
women aged fifty-five or older undergoing mammography).

4.4.6 � What is sampling fraction, frame, and scheme?

The sampling fraction refers to the ratio between sample size and population 
size (e.g., 100 out of 1000 or 10%). The sampling frame is the list of all sam-
pling units from which a sample is drawn (e.g., list of women aged 55 or older 
undergoing mammography). The sampling scheme is the method of selecting 
sampling units from the sampling frame (e.g., random selection, convenience 
sample, etc.).
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4.4.7 � How is sample or study size estimated?

The sample or study size is always an estimation. The strategy used to esti-
mate the sample size depends on the study design and the number of groups 
compared. Sample size is influenced by significance level, effect size, vari-
ability, and power. The following are the methods used to estimate sample 
size:

	 a	 Sample size estimation for descriptive survey—one proportion. This is 
the formula for one proportion:

	 n z p q d= × ×2 2( )/

where n is the sample size, z is the alpha risk expressed in z score, p is the 
expected prevalence, q = 1 − p, and d is the desired/absolute precision.

	 b	 Sample size estimation—two proportions or groups. This is the formula 
for two proportions:

	 n z P P P P d= − − + −1 1 1 2 2
22 1 1α/ /[ ( ) ( )]

where n is the sample size (each group), z1 − α/2 is the confidence inter-
val, P1 is the estimated proportion (larger), P2 is the estimated pro-
portion (smaller), and d is the desired precision.15

4.4.8 � What is statistical power?

This is the probability that the test will reject a false null hypothesis. It refers 
to the probability that a study will not result in a type II error. The power 
computation depends on significance criterion (statistical stability) as well as 
the effect size or the size of the difference. The ability of a test to reject the null 
hypothesis when the alternative hypothesis is indeed true = 1 − β.16 Simply, the 
higher the power, the greater the chance of obtaining a statistically significant 
result when the null hypothesis is false (Table 4.1).

BOX 4.2  INFLUENCE ON CONFIDENCE INTERVAL (CI)

•	 The length of confidence interval is influenced by (a) sample 
size, (b) standard deviation (SD), and (c) type I error (α).

•	 Sample size—as sample size increases, the width of CI decreases 
(increased precision). 

•	 Variability—as SD increases, the length of  CI increases 
(decreased precision). 

•	 Type I Error Tolerance—as the confidence desired increases, 
the length of the CI increases.
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4.5 � Research questions, hypothesis testing, 
and statistical inference

In Section I of this book, we explained research questions and hypotheses. 
However, to understand statistical inference, it is essential to repeat these 
concepts. Reading and interpreting scientific research requires understanding 
how research questions are formulated, how hypotheses are asserted, and how 
specific test statistics are selected to test the hypotheses.

Scientific finding, which commences with hypothesis testing and asserting an 
association, involves measurement of the magnitude of the outcome effect of 
interest by comparing outcome between groups with different exposure expe-
rience, or comparing pre- and posttreatment measures within subjects, as in 
repeated-measures design; measurement of variation among the observations 
of interest within exposure groups; measurement of the ratio of outcome effect 
to variation (e.g., confounding); elimination of alternative explanations (e.g., 
confounding, bias, random error or chance); and ascertainment of association.17

4.5.1 � What is the research question?

Research question refers to a statement that identifies the phenomenon to be 
investigated (e.g., “Does coffee drinking result in pancreatic neoplasm?”). 
Research questions could involve one group of subjects who are measured 
on one or two occasions (e.g., mean milk consumption and bone density in 
women 45 years and older). Other examples of appropriate research ques-
tions are as follows:

	 1	 Is the mean milk consumption of women 45 years and older different 
in our sample compared with the National Study on Nutrition sample? 
In other words, How confident are we that the observed mean milk con-
sumption in our sample is X ounces per day?

	 2	 Is the mean bone density (X) in the National Study on Nutrition of 
women 45 years and older significantly different from our sample?

4.5.2 � What is the hypothesis?

The hypothesis tests or estimates the mean value of a numerical value 
(e.g., milk consumption, bone density). This hypothesis testing involves the 

Table 4.1  �Hypothesis testing and relationship between type I 
and type II errors

Null hypothesis

False True
Test results Significant Power Type I error

Nonsignificant Type II error
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examination of the mean in one group when the observations are normally 
distributed (e.g., bone density, milk consumption).

4.5.3 � Which test is appropriate?

Earlier in this chapter, we used binomial regression as a statistical method to 
test hypotheses in a retrospective cohort study when proportion was involved. 
Here, we wish to examine hypothesis testing when the variable is continuous, 
such as bone density in a single or more than one group sample, implying 
single sample statistical inference. The appropriate test statistic in this context 
is the t test. The t distribution is appropriate in performing the test statistic and 
obtaining the confidence limits.18 Simply stated, the single- or one-sample t test 
compares the mean of a single sample to a known population mean.19 The 
purpose of this test (t) or Student’s t test is to answer research questions about 
means. The formula for the t test is (statistic − hypothesized value)/estimated 
standard error of the statistic.20 Mathematically, it appears as follows:

	 t X n X= − = −( ) ( / ) ( )µ µ/ SD /SE√

where X is the observed or sample mean, μ is the hypothesized mean value of 
the population (true mean in the population), and SE is the standard error of 
the mean (X). Simply, mean (x) − constant (μ)/SD(x), where SD(x) is the sum 
{(xi − Mean(x)}2/(n − 1).21

To find out whether the observed mean is “real” (i.e., the observed mean 
is different from the mean of the National Study of Nutrition [NSN], termed 
the norm or population mean) and not just a random occurrence, the following 
factors need to be considered: (1) the difference between the observed mean 
and the norm (NSN) or population mean, implying much larger or smaller—
magnitude of the mean difference → greater difference; (2) the amount of 
variability among subjects, implying less variation—smaller standard devia-
tion in the sample (i.e., homogeneous sample and relatively precise method of 
measurement); and (3) the number of subjects in the study, implying a larger 
rather than smaller sample.

Vignette 4.1: Consider a study conducted to compare the mean vitamin C 
intake among eighth-grade schoolchildren at New School, Texas, with the 
population mean (Texas Study of Nutrition, or TSN). If the investigator 
found a greater standard deviation (SD), what is the probable explanation? 

Solution: If  the SD is greater in the sample studied (eighth-grade 
children at New School), it is likely that (1) vitamin C intake varies 
widely from one child to another or (2) a biased or crude measurement 
device is used to ascertain the vitamin C intake (improper, imprecise, or 
crude measure).
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4.5.4 � What are the types of t test?

There are several types of test, and these tests are used depending on the num-
ber of groups compared and whether or not one is examining a single subject 
with repeated measures as in pre- and posttreatment mean blood pressure for 
a single treatment group. The following are examples of t test:

	 a	 One-sample t test, which compares the sample mean to the population 
mean.

	 b	 An independent samples t test, which compares the means of two samples. 
The following assumptions apply to independent or two-sample t tests: 
(1)  two groups being compared should be independent of each other, 
(2)  the scores should be normally distributed, (3) dependency must be 
measured on an interval or ratio scale, and (4) the independent sample 
should have only two discrete levels.

	 c	 A paired samples t test, also called a dependent t test or t test for corre-
lated data, compares the means of two scores from related samples. The 
assumptions of this test are (1) both variables (pre- and posttest) are at 
interval or ratio scales; (2) both are normally distributed; (3) both are 
measured with the same scale; and (4) if  different scales are involved, the 
scores should be converted to z scores before t-test analysis.

The difference between t and z is very small when n > 30 subjects. Clearly, 
as sample size increases, degree of freedom (df) increases, and the t distribu-
tion becomes almost the same as z (Table 4.2). With n > 30, either of the two 
distributions can be used in hypothesis testing.

Assumptions: The following assumptions are necessary before the use 
of the t test: (a) normal distribution; (b) if  normality is not assumed, 
observations should be more than 30 subjects; thus, observation becomes 
normally distributed above this number regardless of the distribution of 
original observations (central limit theorem); and (c) even with viola-
tion of normal distribution, a t test could still be performed since it is 
robust for nonnormal data, implying the drawing of a proper conclu-
sion even when the assumptions are not met, including normality.

Interpretation: The null hypothesis assumes the equality of means; a 
significant result at significant level (<0.05) is indicative of the signifi-
cant difference between the sample mean (X) and the population mean 
(μ). A nonsignificant mean difference implies that the difference may be 
due to random error or chance, given the significance level (p > 0.05); it 
does not mean that the two means are equal.22 Simply, it is not possible 
to be confident about accepting the observed difference because this 
might be due to random occurrence.
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4.5.5 � Other test statistics

The nonparametric analog to the above tests used to examine the mean dif-
ferences include (a) the Wilcoxon signed-rank test for paired t test and (b) the 
Wilcoxon rank-sum test for independent sample t tests. These nonparametric 
tests examine the median difference in ranked or distribution-free data.

Because using a t test involves a normal distribution and equal variance, a 
nonparametric alternative test statistic for evaluating mean differences when 
these assumptions are not met is the Wilcoxon test (Mann–Whitney test), 
which is adequate for paired design as well as an independent sample t test.

4.5.6 � Hypothesis testing about the proportion is performed using 
the z distribution

This process involves a research question. For example, is there a significant 
difference in the observed proportion (0.20) of children with moderate to high 
physical activity in a sample, compared with the population proportion of 
0.40? Comparing two independent proportions involves the use of a z test, 
while comparing frequencies of proportion in two groups can be achieved 
with the chi-square test of independence. Like the t test, it is z approxima-
tion (approximate test). It is based on a null hypothesis of  no difference/
relationship/association or dependency.

4.5.7 � Nonparametric procedure

The nonparametric procedures are used when the distribution-free assump-
tion is applied to the data and research questions fit such a procedure.

4.5.8 � What are possible research questions?

The examples of research questions that justify the use of a nonparametric 
test are as follows: (1) Is there a difference in the proportion of older men 
treated for prostate problems who received hormonal therapy relative to those 

Table 4.2  �Comparison between standard normal distribution (Z score) 
and t distribution

Test Description

z score Symmetric with mean of 0 and SE = 1.0
Narrower and lower in tails compared to t distribution. 
Why? Smaller SE.

t distribution Symmetric with mean of 0 and SE > 1.0
Degree of freedom (df) is n − 1.
Wider and higher in tails compared to z. Why? Larger SD.
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who did not receive hormonal therapy? (2) Is there an association or relation-
ship between autoimmune disorder and race in women?

4.5.9 � What are the hypotheses?

The hypothesis in this context tests the equality of these two proportions. The 
null hypothesis for dependency is that there are no racial differences among 
women with autoimmune disorders or, simply, women with autoimmune dis-
orders do not differ by race. This hypothesis could be tested using chi-square. 
Mathematically, it appears as follows:

	 χ2 20= −( )E E/

where O is the observed frequency, E is the expected frequency → χ(df)
2  = Σ 

(observed frequency − expected frequency)/expected frequency.23 If no relation-
ship exists, the observed frequencies will be very close to the expected frequency, 
thus rendering the chi-square value small. If more than 20% of the expected, 
not the observed, frequency is <5 → Fisher’s exact test, 24 and if the expected 
cell count is <2.0, Fisher’s exact should be used, since the smaller the denomina-
tor, the higher the likelihood of a higher chi-square value, resulting in a lower 
significance level. Chi-square assumption: Statisticians vary with respect to the 
chi-square assumptions. However, these assumptions have commonly been used: 
(1) The expected frequency for each category should not be less than 2. (2) No 
more than 20% of the categories should have expected frequencies of <5. Test 
statistic: chi-square test of independence. Interpretation: A significant chi-
square test implies that two variables are not independent, meaning that there is 
an association between the two variables, whereas a nonsignificant result indi-
cates that the variables do not differ significantly.25

Vignette 4.2: Consider a study conducted to assess the relationship 
between sex and cardiomyopathies among US residents. If  the investi-
gators found that cardiomyopathies were 68% among men and 40% in 
women, and the significance level was <0.05, with a χ2 = 27.32, and df = 
1, would you consider this finding to indicate that men are significantly 
more likely to have cardiomyopathies relative to women? 

Solution: With the chi-square value (27.32), which is large, given 1 
degree of freedom (3.84 critical value), and the p value, <0.05, there is 
a significant association between sex and cardiomyopathies, leading to 
the rejection of the null hypothesis of independence or no association. 
Therefore, the conclusion drawn is accurate: men are more likely to have 
cardiomyopathies compared with women, based on the proportion in 
the result of the investigation.
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4.5.10 � What is analysis of  variance?

Whereas the t test compares means in two groups, the analysis of  variance 
(ANOVA) is used to compare means in two or more groups. ANOVA is also 
termed univariate or one-way ANOVA. Assumptions: (1) group independence; 
(2) one independent variable (if  more than one independent variable → fac-
torial ANOVA [two-way ANOVA]); (3) dependent variable is at interval or 
ratio levels and is normally distributed → parametric procedure; (4) equal-
ity of  variance is the same in each group (homogeneity of  variance); and 
(5) observations are obtained from a random sample.26 The test statistic for 
ANOVA (F test) is not influenced by moderate departure from the assump-
tion of  normality, especially with a large number of  observations—robust.

4.5.11 � What is the nonparametric alternative?

In skewed observations, Kruskal–Wallis test (nonparametric procedure) is 
an alternative to ANOVA. Similarly, as discussed above, serious violation of 
independent t-test assumptions requires the use of the Wilcoxon rank-sum 
test (nonparametric procedure). When the one-way ANOVA for repeated 
measures is not feasible because of an assumptions violation, the Friedman 
test, which is a nonparametric procedure,27 is recommended.

4.5.12 � What is the hypothesis testing in one-way 
between-subject ANOVA?

The null hypothesis is that the two variances are equal (i.e., the variation 
among means is not much greater than the variation among individual obser-
vations within any given group).28 Interpretation: The F value, degrees of free-
dom, and the significance level are necessary for the conclusion to be drawn 
on the significant mean differences between the groups.29

4.5.13 � What is the test statistic and assumptions for one-way 
between-subjects ANOVA?

The F test for two variances is the test statistic for ANOVA. This is the ratio 
of the variance among means to the variance among subjects within each 
group.30 The F ratio under certain conditions corresponds to F distribution. 
This reflects the between-group variability, implying both sampling error and 
the effect of the independent variable. However, the within-group variability 
merely reflects the sampling error. The ratio of the two sources of variability 
in ANOVA, which is the variance ratio, can be computed by between-group 
variability/within-group variability = sampling error + effect of the indepen-
dent variable/sampling error. The F test for one-way ANOVA is appropriate 
when (a) the dependent variable is quantitative and measured on an interval/
ratio scale, (b) samples are independent and randomly selected, (c) data are 
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normally distributed, and (d) there is homogeneous variance. The assump-
tions b to c are met if  the sampling distribution of the F ratio is distributed in 
accordance with the relevant F distribution.

4.5.14 � What is ANCOVA?

Comparison of means in three or more groups with a covariate that is con-
founding involves the use of covariates (ANCOVA). ANCOVA serves as a 
method of controlling for confounding.3

4.5.15 � What are the analysis techniques used in the analysis 
of  clinical research data?

Various test statistics are available for analyzing the relationship between two 
or more variables. The selection of a test or statistic (e.g., t test [testing for 
statistical significance]) depends on (1) the scale of the measurement of the 
dependent and independent variables, parametric (continuous scale data), 
or nonparametric (nominal/discrete scale data) distribution; (2) the type of 
design (before and after comparison); and (3) the sampling procedure (ran-
dom sampling), among other factors.32 The following are selective examples 
of statistical techniques:

	 a	 Bivariable or univariable analysis refers to the analysis of the relationship 
between one independent (X ) and one dependent variable (Y ). For exam-
ple, if  an investigator decides to examine the relationship between height 
and weight of 100 high school children, she or he may wish to determine 
if  weight (Y ) depends on height (X ).33

	 b	 Multivariable analysis refers to the analysis between a single dependent 
variable and more than one independent variable (e.g., a study to deter-
mine the impact of race and gender in the development of colorectal 
cancer). The independent variables are age (X1) and race (X2), while the 
dependent variable is colorectal cancer (Y ).

	 c	 Multivariate analysis is the technique that involves more than one depen-
dent and more than a single independent variable. This term is not inter-
changeable with multivariable analysis, and it is often used incorrectly.

	 d	 Correlation analysis is used to measure the change in two variables. 
However, unlike linear regression, which is discussed below, neither of 
the variables are considered dependent variables. This technique allows 
for the determination of the strength of the relationship between the two 
variables and does not assume causality or the prediction of the response 
variable by the independent variable (Table 4.3). For example, investiga-
tors examined the correlation between pedobarographic and radiographic 
measures of surgically treated clubfoot and obtained the correlation coef-
ficient that allowed them to conclude that there was a moderate direct 
correlation between heel rise and some radiographic measure of clubfoot. 



94  Applied biostatistical principles and concepts

In this analysis, the intent of the researcher was not to establish a causal 
association but to determine the strength of the relationship. The results 
were present as Pearson correlation and Spearman rank correlation coef-
ficients. The Pearson product moment correlation coefficient is used to 
assess the strength of the relationship between two variables when these 
variables are normally distributed. If either of the two variables is not 
normally distributed, Pearson correlation is considered inappropriate.34

4.5.16 � What is a nonparametric alternative to Pearson correlation?

If  either of the variables is distribution-free, then the alternate approaches are 
(1) both variables should be transformed to achieve near-normal distribution 
and (2) the Spearman rank correlation coefficient, which is a nonparametric 
test, should be used if  any of the variables is not normally distributed, mean-
ing when the p value is <0.05. Please note that the null hypothesis for the test 
of normality is that the data are normal. Thus, when p < 0.05, we reject the 
null hypothesis and tend to the alternative hypothesis that the data are not 
normally distributed.

4.5.17 � How is the result of  correlation analysis interpreted?

The measure of effect or relationship in correlation analysis is correlation coef-
ficient (r). What is the interpretation of r? (1) Correlation coefficient is between 
−1.0 and +1.0, with r close to 0.0 considered to be a weak relationship; (2) 1.0 
or −1.0 = perfect relationship; (3) >0.7 = strong correlation; (4) 0.4 to 0.7 = 

Table 4.3  �Analysis of research questions about relationships among variables: 
correlation

Statistical method Variable Assumption Statistic

Correlation: 
Pearson

Dependent (outcome, 
response) and 
independent 
(predictors, 
explanatory) must be 
measured in 
continuous scale

	 1	Random 
sample

	 2	Bivariate 
normal 
distribution

Pearson 
product 
moment 
correlation 
coefficient (r)

Correlation: 
Spearman’s rho/
Kendall’s tau

	 1	Numerical variables 
that are not 
normally 
distributed

	 2	Ordinal variables

	 1	Rank order 
data

	 2	Ordinal data, 
or interval 
or ratio

	 3	Nonparametric 
data

Spearman’s 
rho or rank 
correlation (r)

Note:	 Bivariate implies normal distribution for the two variables (X and Y ) in the correlation 
coefficient.
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moderate correlation; (5) <0.4 = weak correlation.35 A significant correlation 
at the 0.05 significance level implies that the observed r is different from zero.

4.5.18 � What is linear regression analysis?

Linear regression, also called least squares regression, refers to a regression 
method that is based on the least squares method. This is an analytic tech-
nique used to predict the value of one characteristic or variable (Y ) from 
knowledge of the other (X ). The regression equation is given as follows:

	 Ŷ = + +β β ε0 1X

It is called linear because this method, unlike correlation, measures only a 
straight line or linear relationship between two variables (simple linear regres-
sion). The least squares method minimizes the differences between the actual 
value of Y and the predicted value of Y, {Σ(Y − Ŷ )2}, which is measured by 
the error term ε (Y − Ŷ ) in the regression equation above.36 In simple linear 
regression, only a single independent or explanatory variable (X ) is used to 
predict the outcome (Y ).

4.5.19 � What is multiple or multivariable linear regression?

Multiple or multivariable linear regression refers to a regression technique 
that, like the simple linear regression, is based on the least squares method, 
where more than one independent variable is included in the prediction equa-
tion. Mathematically, it appears as follows:

	 Ŷ X X Xi i= + +β β β β0 1 1 2 2

with β0 and β1 … βi as the regression parameters.

4.5.20 � How are the results of  linear regressions interpreted?

The simple linear regression equation is given by Ŷ  = β0 + β1Χ + ε, where 
β1 is the slope or the regression coefficient, β0 is the intercept of the regres-
sion line (β1 and β0 are the parameters), and ε is the error term, which is the 
distance the actual value of Y departs from the regression line. The R square 
(R2) in the linear regression model output is the coefficient of determination 
that measures the proportion of the variance of the dependent variable (Y ) 
that can be explained by the variation in the independent variable (X ). The 
standard error of estimate (model output) measures the dispersion for the 
prediction equation. Test statistics: (1) ANOVA in the model uses F statis-
tic to determine the statistical significance of  the regression equation, and 
(2) the t statistic tests whether or not the regression coefficient is statistically 
significant (Table 4.4).37
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4.5.21 � What are other types of regressions?

Examples of regressions include (a) polynomial regression, which refers to 
multiple or multivariable regression, in which each term in the equation is 
a power of X;38 (b) discriminant analysis, which predicts group membership 
with only two groups and uses continuous independent variables only; (c) log-
linear analysis, which focuses on the analysis of the conditional relationship 
of two or more categorical values (unlike logistic regression, the dependent 
variable is categorical and the link function is the log [log of the dependent 
variable], not logit, and the predictions are estimates of the cell counts in a 
contingency table, not the logit of the dependent variable, y);39 and  (d) logis-
tic regression (LR).

4.5.22 � What is logistic regression?

Logistic regression is a form of  regression analysis (logit transformation) in 
which the outcome is binary and the independent variables could be mea-
sured in mixed scales (categorical, binary, mixed continuous, and categori-
cal).40 Logit transformation (logit p) for the binary outcome or dependent 
variable is denoted by ln[p/(1 − p)], where the logit transformation takes any 
value from minus infinity to plus infinity.41 This method calculates the prob-
ability of  success over the probability of  failure, thus presenting the odds 
ratio as the final result (e.g., logistic regression [LR] is used in determining 

Table 4.4  �Analysis of research questions about relationships among variables: linear 
regression

Statistical method Variable Assumption Statistic

Simple linear 
regression (SLR)

	 1	Response is 
measured in 
continuous 
scale

	 2	Independent 
may be in 
continuous or 
binary scale

	 1	Both variables 
are interval or 
ratio scaled

	 2	Dependent (Y) 
must be 
normally 
distributed 
along the 
predicted line 
(homogeneity)

	 3	Relationship is 
linear

Regression 
statistic:

	(1)	t statistic
	(2)	F statistic

Multiple linear 
regression (MLR)

Same as SLR; 
more than single 
independent 
variables

Same as SLR; 
variables are also 
related to each 
other linearly

Same as SLR

Note:	 Perform the statistical test to determine the likelihood of any observed relationship 
between X and Y variables.
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the probability of  developing prostate cancer, given exposure to organo-
phosphates [pesticides] after adjusting for other known and postulated risk 
factors). It is classified under the generalized linear model (GLM). Further, 
the dependent variable can have more than two levels (e.g., multinomial 
and polytomous logistic regression). Like SLR or MLR, logistic regression 
is a predictive model and is used to predict the outcome or dependent vari-
able on the basis of  continuous and/or binary/categorical independent or 
predictor/explanatory variables, as well as to determine the percent vari-
ance of  the dependent variable that is explained by the independents, rank 
the relative importance of  independents, assess the interaction effects, and 
control for confounding in the multivariable LR. This method uses maxi-
mum likelihood estimation after transforming the dependent variable into 
a logit, implying obtaining the natural log of  the odds of  the outcome or 
dependent variable occurring or not occurring—that is, the probability 
of  the outcome occurring. The goal of  this method is to correctly predict 
the outcome of  the individual cases using the most parsimonious model. 
Unlike the SLR, the relationship between the predictor and the response 
variables is not a linear function but a logit transformation of  the outcome 
variable. The changes in the log odds of  the outcome are estimated and not 
the changes in the dependent or outcome variable itself. Mathematically, it 
appears as follows:

	 θ α β β β α β β β= + + + + +e X X X e X X Xi i i i( ) / ( )1 1 2 2 1 1 2 21 

where α is the constant of the equation and β is the coefficient of the pre-
dictor or independent variables in the equation.42 Given the probability of 
success (p) of a binary outcome variable (y), the logistic regression model 
is Logit(p) = ln(p/1 − p) = alpha + beta1 X1 + beta2X2 …betakXk. Likewise, 
solving for p e X X X e X X X= + + + + +( ) / ( )α β β β α β β β1 1 2 2 1 1 2 21 k k k k .43 

The occurrence of outcome in this equation is an exponential function of the 
independent variables: Px = 1/{1 + exp[−(b0 + b1x1 + b2x2 + b3x3 + b4x4 … 
bixi)]}, where b0 is the intercept (constant), b1, b2, b3, b4 … bi are the regression 
coefficient, while exp represents the base of the natural logarithm (2.718).44  
Mathematically, the odds ratio in LR can be computed from the coefficient 
of regression:

	 β β→ =OR e

where exp = 2.718. The Wald statistic tests the statistical significance of 
the individual independent variable [each coefficient (β)]. The Wald test is a 
squared z test with chi-square distribution: z = β/SE [coefficient (β)/standard 
error (SE)]. This is the squared ratio of the unstandardized logit coefficient 
to its standard error.
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4.5.23 � What is the interpretation of the Wald test 
in logistic regression?

Some statisticians have suggested that large logit increases standard errors, 
lowering the Wald statistic, thus leading to a type II error implying a false 
negative, assuming that the effect is not significant, which indeed it is (reject-
ing the alternate hypothesis of difference).

4.5.24 � What is model and model testing?

Model testing (appropriateness of the model): Goodness of fit (Hosmer–
Lemeshow), which is a chi-square statistic with a desirable outcome of 
nonsignificance, indicates that the model prediction does not significantly 
differ from the observed.45 Model testing (backward stepwise elimination): 
Likelihood-ratio test (LRT) uses the ratio of the maximized value of the like-
lihood function of the full model (L1) over the maximized value of the likeli-
hood function for the simpler model, such as the model without predictors 
and or interaction (L0). Mathematically, LRT = −2log(L0/L1) = −2{log(L0) − 
log(L1)} = −2(L0 − L1).46 The reduced model could be a baseline model or ini-
tial model with constant only; thus, it is termed a null model. The full model 
then becomes the model with the predictors. A likelihood ratio test can then 
test the difference between the initial or null model, model with constant only, 
and the model with the coefficients from the predictors. The model is signifi-
cant at p < 0.05, indicating that the fitted model is significantly different from 
the null model or model chi-square test, as it is termed. This model does not 
ensure that every independent variable in the model is significant. The “Best 
model”—the final model—implies that adding another variable would not 
improve the model significantly (e.g., model with and without interaction).

4.5.25 � Interpretation of logistic regression result (OR = eβ)

The odds in favor of success for a subject (A) (exposure = 1) are given by 
ORA= PA/(1 − PA), and the odds in favor of success for a subject (B) (expo-
sure = 0) is given by ORB = PB/(1 − PB). The odds ratio is then (OR) = ORA/
ORB. The odds ratio relates a disease or outcome to the ith exposure for two 
hypothetical subjects A and B, where A is exposed and B is not. In the multi-
variable regression, this odds ratio relates disease to the ith exposure variable, 
controlling for the levels of all other exposure variables in the regression equa-
tion (Table 4.5).

4.5.26 � Other types of GLMs (counts data)

Included in GLM are (a) Poisson regression, (b) negative binomial regression, 
and (c) zero-inflated regression. These methods are appropriate for the analy-
sis of count data that are (1) highly nonnormally distributed and (2) not well 
estimated by ordinary least squares (OLS) regression (Table 4.6).
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Table 4.6  Statistical methods involving counts data

Statistical method Description and applications

Poisson regression To model the number of occurrences of an event of interest 
or the rate of occurrence of an event of interest, as a 
function of some independent variables.

Efficient when the dependent variable is a count variable—
with same length of observation time (e.g., number of days 
absent from work).

Incidence rate ratio is the point estimate.
Negative binomial 
regression

Used to estimate count models when the Poisson model is 
inappropriate because of overdispersion (which is most of 
the time).

In Poisson distribution, the mean and variance are equal; 
thus, when the variance is greater than the mean, the 
distribution is said to display overdispersion; if  lower than 
the mean, it is underdispersion.

When there is overdispersion, the Poisson estimates are 
inefficient with standard errors biased downward, yielding 
spuriously large z values.

Efficient for dispersed count data, as an extension of 
generalized Poisson regression.

Zero-inflated Poisson 
(ZIP) regression 
model

Extension of generalized Poisson regression with count data 
having extra zeros.

ZIP is useful to analyze such data.
Efficient where overdispersion is assumed to be caused by 
an excessive number of zeros.

Table 4.5  �Analysis of research questions about relationships among variables: 
logistic regression

Statistical methoda Variable Assumption Statistic

Logistic 
regression: 
unconditional 
(ULR)

Outcome is binary
Independent 
variables are 
categorical and 
continuous 
(mixed)

Does not assume 
linear relationship

Outcome need not 
be normally 
distributed

Outcome need not 
be homoscedastic 
for level of 
predictors

No normally 
distributed error 
term

Wald statistic (β)
Hosmer–Lemeshow 
(χ2) (goodness of 
fit)

Likelihood ratio 
test (overall 
model)

Logistic regression: 
conditional

Same as ULR; 
matched pairs 
(1 − 1 or 1 − K)a

Same as ULR Same as ULR 

a	 Matching tends to increase the degrees of freedom relative to the cases. A better approach to the 
analysis is conditional logistic regression, which maximizes the likelihood estimate in logistic 
regression.
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4.6 � Summary

Conducting clinical research involves conceptualization, design, and statis-
tical inference. Practically, a clinical research is conducted to improve care 
and provide guidelines for the screening, diagnosis, and treatment of future 
patients. Therefore, the inference drawn from such studies must be supported 
by biologic, clinical, and statistical evidence in terms of reliability and validity.

Previous chapters presented research conceptualization and design. This 
chapter introduces the statistical inference component of research conduct, 
with statistical consideration in research as its main focus. Statistical consid-
eration in clinical research revolves around sample and the generalization of 
findings from the sample to the population of interest, termed targeted popu-
lation. The method used in obtaining the sample is significant to this process 
of generalizability and requires a probability sample or representative sample, 
also termed a random sample. When the sample is random, we ensure that the 
variable from such a sample is representative of the population of interest 
and hence the possibility of applying inferential statistics or probability value 
in interpreting the statistical significance of the findings. However, it is not 
uncommon in clinical research and in epidemiologic studies to use nonran-
dom samples and still apply statistical significance in the interpretation of the 
results, which is meaningless and valueless to the statistical notion of p value 
or inference from the sample.

The statistical inference notion of research conduct involves hypothesis 
testing. Statistical inference involves the generalization of the findings beyond 
the sample. Hypothesis testing is dependent on the nature of the design and 
the scales of measurement of the main or independent and response variables. 
This selection (appropriate test statistic) is important in the understanding 
of the results and the interpretation of the data. These test statistics include 
(a) single-sample t test, (b) z test, (c) independent sample t test, (d) paired 
t  test, (e) binomial regression, (f) logistic regression, (g) linear regression, 
(h) Poisson regression, (i) ANOVA, (j) correlation analysis, and (k) analysis 
of covariance (ANCOVA).

Essential to clinical research is the use of t test and ANOVA (which are 
so commonly applied because of the continuous scale encountered in the 
measurement of most laboratories) and radiographic and clinical variables. 
The t test and ANOVA assume normality as well as equality of variance, 
random sample, and independent sample except paired t test, single-sample 
t test, and repeated-measure ANOVA (there is no between-subject variabil-
ity). In clinical, epidemiologic, or public health research, the application of 
logistic regression is very common and is due to the nature of public health 
data—presence or absence of outcome/disease. The selection of this statisti-
cal technique involves the dependent variable that is measured on a binary 
scale, while the independent variable can be measured on binary, discrete, 
continuous, or categorical scales. This technique belongs to a GLM group 
and is distribution-free (Figure 4.2).
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Questions for discussion

	 1	 Suppose you are a principal investigator in a study intended to assess 
the relationship between radiographic and pedobarographic measure 
of surgically treated clubfoot. (a) How would you state the hypothesis? 
(b) What is the statistical technique to be used in testing the hypothesis? 
(c) What is the measure of the parameter? (d) What is the interpretation 
of the statistically significant finding? (e) If  the correlation coefficient is 
0.5, and the p value is 0.67, what can be concluded from the data on the 
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database?Yes No

Inferential
statistics Yes
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Chi-square for
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Fisher’s exact

Nonparametric
model

Descriptive
statistics

Shape of
distribution/
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Independent
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variable?
MANOVA

Repeated
measures?
RANOVA

Continuous or
ordinal single
sample data?
Sign rank test
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Figure 4.2  Selection of test statistic.
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relationship between right heel impulse and right lateral calcaneal pitch 
angle? (f) If  one of the variables is not normally distributed, what alterna-
tive test would you use to present your data?

	 2	 Briefly discuss the difference between simple linear regression and corre-
lation coefficient. (a) What is the interpretation of statistically significant 
finding in (i) simple linear regression and (ii) the Spearman rank correla-
tion coefficient? (b) When is multiple linear regression a preferred statisti-
cal method?

	 3	 Generate data on 100 patients with sepsis. The variables to be considered 
should include race, temperature, type of infection, sepsis, sex, age, length 
of hospitalization and comorbidity. Using this hypothetical data set, con-
struct a box plot of temperature by sepsis. Chi-square is a standard dis-
tribution, with positive values where low values are consistent with null 
hypothesis while high values produce evidence to reject or disprove the 
null hypothesis. Thus, when χn

2  is large, the null is rejected. Using these 
hypothetical data, examine the association between race and sepsis.
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5

5.1 � Introduction

Clinical or scientific knowledge in medicine and public health is largely based 
on evidence from samples rather than the entire population. And for statisti­
cal inference to be valid and reliable, the sample studies must be representative 
of the population with the outcome or issues of interest. Samples that are 
random and are large are more likely to be representative of the entire popula­
tion, and the inferences from such samples are more likely to be reliable.

The statistical power of a study—or simply, the power—is the ability of 
the study to detect the minimum between the groups or measurement stages 
in a study (repeated measures or a paired measure) should such a difference 
really exist. It is designated by power = 1 − β = P(reject H0|H1 true). This is 
the probability of rejecting the null hypothesis if  the alternative hypothesis is 
true. Simply, power reflects the sample size in that the more subjects studied, 
the higher the power of the test. Therefore, more subjects → higher power.

The power of  the test will depend on the significance level (α), variance 
or standard deviation (σ), effect size (δ), the selected or appropriate statis­
tical test, and the sample size (n). The probability that a clinical trial will 
have a significant (positive) result—that is, it will have a p value of  less than 
the specified significance level (usually 5%)—reflects the power of  a study. 
This probability is computed under the assumption that the treatment dif­
ference or strength of  association equals the minimum detectable difference. 
The minimum detectable difference is the smallest difference between the 
treatments or strength of  association that one wishes to be able to detect. 

Study size and statistical power 
estimations

BOX 5.1  FACTORS ASSOCIATED WITH STUDY SIZE

•	 Significance level (α)
•	 Power (1 − β) 
•	 Size of the difference in response (δ) to be detected
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In clinical trials, this is the smallest difference that one believes would be 
clinically important and biologically plausible. In a study of  association, it 
is the smallest change in the dependent per unit change in the independent 
that is plausible.

Consider a hypothetical study to examine the difference in the mean hemat­
ocrit between two independent groups (those with and without the event of 
interest); as the variance changes with the fixed sample size (2n = 32) and as the 
significance level changes, the power changes. With 2n = 32, two-sample test, 
81% power, δ = 2, σ = 2, α = 0.05, two-sided test: Variance/Standard deviation: 
(a) σ: 2 → 1, power: 81% → 99.99%; (b) σ: 2 → 3, power: 81% → 47%, and sig­
nificance level (α): (a) α: 0.05 → 0.01, power: 81% → 69%; (b) α: 0.05 → 0.10, 
power: 81% → 94%.

As the difference to be detected (which is termed the effect size) changes, 
the power of the test changes. As illustrated below, the larger the effect size, 
the more powerful the study. With 2n = 32, two-sample test, 81% power, δ = 2, 
σ = 2, α = 0.05, two-sided test: difference to be detected (δ): (a) δ: 2 → 1, power: 
81% → 29%; (b) δ: 2 → 3, power: 81% → 99%. Sample size (n): (a) n: 32 → 64, 
power: 81% → 98%; (b) n: 32 → 28, power: 81% → 75%. One-tailed versus two-
tailed tests, power: 81% → 88%.

The information required for the sample size or power estimation should 
be prepared in advance and researched diligently. This information includes 
(a) variables of  interest—type of  data (continuous, categorical, nominal, 

BOX 5.2  RANDOM ERROR AND HYPOTHESIS TESTING

•	 Hypothesis tests are subject to two types of random error. 
•	 Type I—false positive: if  there is no treatment effect but inves­

tigator wrongly concludes there is.
•	 Type I error does not depend on the size of the study.
•	 Type I error can be inflated when multiple tests are performed.
•	 Examining many outcomes or treatment groups using multiple 

hypothesis tests can inflate type I errors.
•	 Multiple subsets, interactions, and exploratory analyses can 

inflate type I errors.
•	 Type II—false negative: when investigator fails to detect a 

treatment effect or difference that is indeed present, small sam­
ple size

•	 Type II errors can easily be corrected by using the appropriate 
sample size, which is estimated before conducting the study.
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binary, etc.), (b) desired power of  the study, (c) desired significance level, 
(d) effect/difference of  clinical importance, (e) standard deviations of  con­
tinuous outcome variables, and (f) direction of  the test—one- or two-sided 
tests.

The design is important in sample size estimation as well, since the test 
statistic required to indicate the difference in the outcome (mean or propor­
tion) is in part dependent on the type of design to be utilized in conducting 
the research. The examples of designs to be considered are (a) the randomized 
controlled trial (RCT), (b) the block/stratified-block randomized trial, (c) the 
equivalence trial, (d) the nonrandomized intervention study, (e) the observa­
tional study, (f) the prevalence study, and (g) the study measuring sensitivity 
and specificity.

The structure of the data is essential in determining the appropriate sam­
ple size. Possible structures include (a) paired data, (b) repeated measures, 
(c) groups of equal sizes, and (d) hierarchical data. The nonrandomized stud­
ies looking for differences or associations require larger samples to allow 
adjustment for confounding factors. In a survey design or studies involving 
follow-up, absolute sample size is of interest, implying that investigators must 
take into consideration the response proportion of the population to be sur­
veyed and the attrition proportion in a follow-up study.

The sample size should be based on the study’s primary outcome vari­
able; if  secondary outcome variables are considered important, the sample 
size estimation should accommodate such variables. And as indicated earlier, 
sample size estimation should be realistic and practical, meaning that the size 
of the study must be adjusted to reflect loss to follow-up, expected response 
rate, and lack of compliance.

In this chapter, some of the basic notions of sample size and power esti­
mations are developed and applied to statistical inference. Statistical stabil­
ity, which is based on probability value and the 95% confidence interval, is 
stressed in power and sample size estimations. The p value is the null hypoth­
esis of obtaining a test statistic as extreme as or more extreme than the 
observed test statistic. The importance of estimating the sample size before 
the study actually begins cannot be overstressed, since inappropriate sample 
sizes will underpower the study, thus limiting the chance of detecting signifi­
cant differences. The question to be addressed before the commencement of 
the study is, what sample size is needed to be able to detect a significant differ­
ence with probability 1 − β? Power estimation is essential since it informs us 
how likely it is that a significant difference will be found given that the alterna­
tive hypothesis is true; for example, let’s say that the true mean μ is different 
from the mean under the null hypothesis (μo). Therefore, if  power is too low 
(<80%), then there will be little chance of finding a significant difference and 
nonsignificant results are likely to be observed even if  real differences exist 
between the true point estimate, such as the mean of the group being studied 
and the null mean (μo).
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5.2 � Sample size characterization

Clinical research, including though not limited to clinical trials, is conducted 
to detect the differences between groups. This implies that such studies must 
have sufficient statistical power to detect the differences of  clinical or pub­
lic health interest. In clinical trials, sample size is the number of  patients 
or experimental units required for the trial. Sample size estimation, which 
should be considered early in the planning stage of  the study, is necessary in 
order for the study to detect the effects of  treatment with substantial magni­
tude and clinical relevance. Sample size computation could then be referred 
to as the process of  obtaining an estimate of  the needed size of  a study.1

5.3 � Purpose of sample size

The primary function of estimating an appropriate sample size for the study 
is to be able to detect the difference between treatments or to indicate a differ­
ence in terms of predictors associated with outcomes. In equivalence trials or 
studies, a larger sample size is required to demonstrate equivalence in terms 
of drug treatment.2 The importance of estimating the sample size before the 
study actually begins cannot be overstressed, since inappropriate sample sizes 
will underpower the study, thus limiting the chance of detecting significant 
differences. The question to be addressed before the commencement of the 
study is, what sample size is needed to be able to detect a significant difference 
with probability 1 − β?

5.4 � Sample size computation

Using phase III RCT as an illustration, the following represents a hypotheti­
cal study with the objective being to determine if  patients with metastatic 
prostatic adenocarcinoma who undergo proton-beam therapy (PBT) have 
a different overall survival compared with patients receiving external-beam 
radiation (EBT). The investigators propose a trial to two-arm randomiza­
tion in a single institution. If  the study is planned for 4 years (48 months), 
what will be the required sample and information needed for the computa­
tion? Assuming the 1:1 ratio between the two arms, the following information 
will be required for the SS estimation: (a) 80% power to detect a difference 
between 12-month median survival and 36-month median survival; (b) two-
tailed α = 0.05; (c) 36 months of follow-up after the last patient has been 
enrolled; and (d) 48 months of accrual.

Suppose a study is to be conducted to examine the mean systolic blood 
pressure (normally distributed) among African-American women, and 
μo = 120 mmHg, μ1 = 115 mmHg, σ2 = 576, α = 0.05, and 1 − β = 0.80. 
What is the sample size needed to conduct the study? Using the formula: 
σ µ µβ α

2
1 1

2
1
2( )Z Z− −+ −/ o . Substituting, n = 576 (Z.8 + Z.95)2/25 = 23.04 (0.84 + 

1.645)2 = 23.04 (6.175) = 142.3 (n = 143).
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BOX 5.3  p VALUE (SIGNIFICANCE LEVEL): 
APPROPRIATE OR NOT IN STATISTICAL INFERENCE?

What is p value? To address this often-confusing notion in research, 
a question must be raised: if  the null hypothesis is correct, how likely 
would we be to obtain the observed result or one more extreme? 

The significance level, or p value, is the probability of obtaining the 
observed result (or one further away from the null [1.0]) when the null 
hypothesis is indeed true. Therefore, if  the observed result (or one more 
extreme) is relatively likely, the null hypothesis would not be rejected.

p Values do not determine clinical or biological significance and are 
poor measures of the strength of evidence.

When basing inference predominantly on p values, an arbitrary 
level should not be the sole criterion for the declaration of “statistical 
significance.”*

For biological and clinical support, if  observed to be strong with 
large effects estimates, confidence intervals or p values indicate signifi­
cance and the result could be termed “statistically significant.”

Studies with no biologic or clinical significance despite a p value 
showing significant difference should be interpreted with caution.

Even when p values are smaller than 0.05, the result of the study can 
be due to type I errors.

If  investigators could repeat experiments or studies many times 
(which is not the case since we usually perform one experiment), the 
estimates of  clinical effects obtained or point estimates would aver­
age out close to the true values, given no bias. The probability dis­
tribution or uncertainty refers to the estimate obtained and not the 
treatment effect. Therefore, the p value does not directly judge the 
treatment effect but makes a statement about estimates that might 
be obtained if  the null hypothesis were true.

Given the inadequacy of p value in summarizing evidence from data 
(statistical inference), p value should be deemphasized, while the com­
bination of effect size (point estimate) and precision (95% CI) should 
be highly encouraged in providing evidence on the effect of treatment 
from the data.

*	S. Piantadosi, Clinical Trials, 2nd ed. (Hoboken, New Jersey: John Wiley & Sons, 2005).
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Using STATA, the sample size is computed as follows:

. sampsi 120 115, sd1(24) alpha(0.05) power(0.80) onesample onesided

Estimated sample size for one-sample comparison of mean
  to hypothesized value

Test Ho: m =     120, where m is the mean in the population

Assumptions:

         alpha =   0.0500 (one-sided)
         power =   0.8000
 alternative m =      115
            sd =       24

Estimated required sample size:

             n =   143

The above STATA output using a one-sided test for mean of one/a single 
sample demonstrated the sample size to be 143 subjects.

Sample size estimation can be based on the following study designs:

	 1	 Parallel design: This is a design in clinical trials in which the results of a 
treatment on two separate groups of patients are compared. The sample 
size calculated for a parallel design can be used for any study where two 
groups are being compared.

	 2	 Crossover study: This is a design that compares the results of two treat­
ments on the same group of patients. The sample size calculated for a 
crossover study can also be used for a study that compares the value of 
a variable after treatment with its value before treatment. The standard 
deviation of the outcome variable is expressed as either the within-subject 

BOX 5.4  INFORMATION NEEDED FOR 
SAMPLE SIZE ESTIMATION

•	 Variables of interest—type of data, e.g., continuous, categorical
•	 Desired power
•	 Desired significance level
•	 Effect/difference of clinical importance
•	 Standard deviations of continuous outcome variables
•	 One- or two-sided tests
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standard deviation or the standard deviation of the difference. The for­
mer is the standard deviation of repeated observations in the same indi­
vidual, and the latter is the standard deviation of the difference between 
two measurements in the same individual.

	 3	 Association study: This is a design to assess an association and is used to 
determine if  a variable, the outcome, is affected by another, the predic­
tor or independent variable—for instance, a study to determine whether 
or not developmental motor delay is related to thoraco-lumbar kyphosis 
progression in children with achondroplasia.

The group assessed could also be used in estimating the sample size of 
a study, for example, (a) a single- or one-sample proportion study size esti­
mation, (b) a two-sample or two-group comparison study, and (c) a more-
than-two-samples comparison study. Using the latter approach to sample 
size estimation, we present the steps involved in sample-size estimation here. 
In a properly designed clinical research study, clinical trial, or observation, 
investigators must ensure that power will be sufficiently high to detect rea­
sonable departures from the null hypothesis; otherwise, it is not worth con­
ducting such a study. It is therefore important for researchers or investigators 
to consider the factors influencing power (1 − β—probability of finding sig­
nificance when indeed there is one) in a statistical test. These factors, which 
have been stated before but need to be stressed again here, are (a) the statisti­
cal test—parametric or nonparametric, parametric tests are more powerful 
than nonparametric tests, which do not assume the shape of the distribution, 
distribution-free tests), (b) sample size—the larger the sample size, the larger 
the power (Figure 5.1). However, increasing the sample size involves tangible 
costs in time, money, and effort. Therefore, whereas low power occurs because 
of a small sample, sample size should be large enough but not unnecessarily 
or wastefully large. What is the sample size required to yield a certain power 
for a test, given a predetermined type I error rate? This question must be 
addressed during the conceptualization phase of the study, with the adequate 
sample expected to be accurately obtained according to the design and/or the 
groups compared. There are sample size calculators that estimate samples for 
one or two means and one or two proportions, which are the commonly esti­
mated sample sizes in clinical research.*

Whenever inferences are made from hypothesis tests, two random errors 
are possible—namely, type I and type II. From Table 5.1, if  the null is true but 
the test rejects it, a type I error has been committed. The p value quantifies 
the type I error, assuming the null hypothesis is true. A type II error has been 
committed if  the alternate hypothesis is true, implying the null hypothesis is 
false, but the test fails to reject the null hypothesis.

* �  For example: http://www.rad.jhmi.edu/jeng/javarad/samplesize/, accessed 03/10/09.

http://www.rad.jhmi.edu
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5.5 � Sample size estimation for single- or one-sample 
proportion hypothesis testing

What is the estimated sample size for comparing a proportion in a single sam­
ple with a standard value (Figures 5.2 through 5.4)? The estimate of the study 
size in this design involves (a) the desired level of significance (α) related to 
the null hypothesis of no difference in proportion, πo = π1; (b) desired level 
of power (1 − β); (c) difference between the proportions (π1 – π0) that is con­
sidered to be clinically significant or be of public health relevance; and (d) a 
good estimate of population SD, which is π (1 − π).

With these criteria, we can compute the sample size (n):

	 n z z= − −  −α βπ π π π π π0 0 1

2

0 11( ) /(1 − )1

zα is the two-tailed z value related to the significance level (α) in the hypothesis, 
and zβ is the lower one-tailed z value and is related to the alternative hypoth­
esis, the power (β).

For example, a study was planned to examine the prevention of infection in 
children with neuromuscular scoliosis after spine fusion to correct curve defor­
mities, if the investigators wanted to reduce infection from 30% to 10%, the 
probability of detecting a 20% difference as 0.8 (80%) and 0.05 significance 

Decreased

0.05 (5%)
   0.01 

Accepted
type I error

Increase 
sample
size (SS)

Yes

No Decrease 
SS

Figure 5.1  Factors affecting the sample size of a study (significance level).

Table 5.1  Hypothesis testing: type I and type II errors

Test result

Significant difference (in universe)—TRUTH

Present (Ho incorrect) Absent (Ho correct)

Reject H0 No error
1 − β

Type I error
α

Nonrejection of H0 Type II error
β

No error
1 − α
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level, what would be an adequate sample size? Using the above formula, the 
two-tailed z related to α = 0.05 is ±1.96, which is the critical value of the z dis­
tribution from the 2.5% in each tail, while the lower one-tailed z value related to 
β is approximately −0.84, which is the critical value separating the lower 20% 
of  the z distribution from the upper 80%; the sample size = (1.15/0.20)2 = 
5.752  = 34. Therefore, the investigators will need 34 patients to determine 
whether infection will decrease by 20% (30% to 10%).
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0.3

(30%)
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expected
difference-
effect size

Increase
sample size
(SS)

Yes

No Decrease SS

Figure 5.2  Factors affecting the sample size of a study (effect size).
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Figure 5.3  Factors affecting the sample size of a study (variability, SD).
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Figure 5.4  Factors affecting the sample size of a study (type II error).
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5.6 � One-sample estimation of sample size with outcome mean

Let us take an example. A study was planned to look at the effect of a new 
sedative hypnotic drug on unipolar patients, and the design was one group 
with the outcome to be measured with a one-sample test. The baseline to 
sedation time after taking the drug for 21 days (3 weeks) was taken, with 
the aim of the study being to increase sleep duration from baseline (4 h) to 
(postintervention measure [21 days after]) 5 h. If  the investigators selected a 
two-sided test, α = 0.05, power = 90%, difference = 1 (4 h of sedation to 5 h) 
and standard deviation = 2 h, what is the required sample size?

	 n z z= +( ) = + =− −1 2 1

2 2 2 2 2 21 960 1 282 2 1 42 04α β σ δ/ / /( . . ) . == 43

Using the z value 1 − a/2 (two-sided test) = 1.96 and the z value for 1 − b = 
1.282, where power = 90%, SD = 2, and the effect size or difference of interest = 
1 h, the required sample size is estimated as 43 subjects.

Using STATA, the sample number is obtained:

Estimated sample size for one-sample comparison of mean to hypothesized value

Test Ho: m = 4, where m is the mean in the population

Assumptions:

	 alpha = 0.0500 (two-sided)

	 power = 0.9000

	 alternative m = 5

	 sd = 2

BOX 5.5  SAMPLE SIZE EQUATION FORMULA 
AND RANDOM ERROR RATES

•	 Intended error rates are part of the equation of sample size.
•	 These error rates are written with normal quantiles for type 

I and II errors.
•	 zβ = (1 − β) and zα = (1 − α/2).
•	 ​α = 0.05, zα = 1.96.
•	 ​α = 0.01, zα = 2.58.
•	 ​β = 0.10, zβ = 1.282.
•	 ​β = 0.20, zβ = 0.84.
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Estimated required sample size:

	 n = 43

5.7 � Two independent samples: Proportions

Let us consider a study in which the outcome is measured in proportion and 
is dichotomous—that is, yes or no, success or failure, presence or absence; the 
sample size estimation will involve a formula for two independent groups with 
an outcome that is dichotomous, implying proportion.

5.7.1 � What are the requirements for the sample size estimation?

To estimate the sample size, the following information is required: (a) setting 
of the significance level (α), that is, related to the null hypothesis (π0); (b) power 
(1 − β), the desired chance of detecting an actual difference relative to the 
alternative hypothesis; (c) difference between the two proportions of clinical 
relevance or significance (proportion in one group vs. the proportion in the 
other group)—π1 − π2; and (d) standard deviation, which is determined by the 
proportion itself, and is π (1 − π).

5.7.2 � How is the sample size computed?

Assuming that the sample size is the same in each group, it is computed as 
follows:

	 n z z= − − − + − −



α βπ π π π π π π π2 1 1 11 1 2 2 1 2

2

( ) ( ) ( ) /

where zα is the two-tailed z value related to the null hypothesis and zβ is the 
lower one-tailed z value related to the alternative hypothesis. To illustrate the 
use of this formula in sample size estimation, we present a hypothetical study 
to examine the outcome of cervical fusion with instrumentation in pediatric 
patients with cervical spine instability. Of 32 patients who underwent spine 
fusion with instrumentation, 27 achieved solid fusion (0.844), while 8 out of 
15 who had surgery without instrumentation had solid fusion (0.533). The 
95% CI for the difference in proportion was 0.044–0.578, indicative of the 
difference in proportion with respect to fusion. If  the investigator wanted to 
estimate the sample size needed to detect a significant difference, using α = 
0.05 and 1 − β = 0.90, what would be the estimated sample size in each group? 
Substituting in the formula above, we have (1.997/0.30)2 = 6.6572 = 45 subjects 
in each group.
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The STATA software is used here to estimate the sample based on these 
specifications:

. sampsi 19.15 39.15, sd1(45) sd2(45) alpha(0.05) power(0.80)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
		      and m2 is the mean in population  2

Assumptions:

       alpha =   0.0500 (two-sided)
       power =   0.8000
          m1 =    19.15
          m2 =    39.15
         sd1 =       45
         sd2 =       45
       n2/n1 =     1.00

Estimated required sample sizes:

          n1 =       80
          n2 =       80

Suppose a hypothetical study was conducted to determine the power 
(ability to detect a minimum difference between two groups, namely, case 
versus non-case) with respect to the implication of  diabetes mellitus (DM) 
in pediatric dental disorders (Figure 5.5). If  the overall sample size is 2355, 
and  case (n = 471) and non-case (1884), what is the expected power if  the 
effect size or difference in proportion is 0.2, type I error tolerance is 0.05, 
and binomial regression model is used for the hypothesis testing? Using 
stats syntax:

power twoproportions 0.50 0.70, test(chi2) n(2355) nratio(1/4)

Estimated power for a two-sample proportions test

Pearson’s chi-squared test

Ho: p2 = p1  versus  Ha: p2 != p1

alpha  power       N    N1    N2  nratio  delta   p1   p2 

.05      1    2355  1177  1177       1     .2   .5   .7 

.05      1    2355   785  1570       2     .2   .5   .7 

.05      1    2355   588  1766       3     .2   .5   .7 

.05      1    2355   471  1884       4     .2   .5   .7 
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5.8 � Two independent group means

Using a similar approach in one sample mean: (a) alpha statement—type I 
error rate, (b) power—type II error rate, (c) differences between the two means 
judged to be of clinical relevance or importance, and (d) estimate of standard 
deviation considered to be good.

	 n = − − 2 1 2

2
( )z zα β

σ µ µ/

where μ1 − μ2 is the magnitude of the difference to be detected between the two 
groups, σ is the estimate of standard deviation in each group (the assumption 
is that the standard deviations, σ, in the two groups are equal). For example, let 
us compare the time taken to develop neurologic complications in patients with 
skeletal dysplasia who underwent cervical arthrodesis with and without instru­
mentation. If the investigators wanted to estimate the sample size given the ability 
to detect the difference of 20 h or more, alpha = 0.05, and 1 − β = 0.80, and the 
standard deviation is 45 h, what would be the estimated sample size in each group?

Po
w

er
 (1

–β
)

2

0

1177 785 588 471

Allocation ratio (N2/N1)

Parameters: α = .05, N = 2355, δ = .2, p1 = .5, p2 = .7

Estimated power for a two-sample proportions test comparing children with
DM and without with respect to Dental Disorder

Pearson’s χ2 test
H0: p2 = p1 versus Ha: p2 ≠ p1

Figure 5.5  Graphical illustration of power estimation
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Using STATA syntax: sampsi 19.15 39.15, sd1(45) sd2(45) alpha(0.05) power(0.80)

Estimated sample size for two-sample comparison of means

Test Ho: �m1 = m2, where m1 is the mean in population 1 

and m2 is the mean in population 2

Assumptions:

	 alpha = 0.0500 (two-sided)

	 power = 0.8000

	    m1 = 19.15

	    m2 = 39.15

	   sd1 = 45

	   sd2 = 45

	 n2/n1 = 1.00

Estimated required sample sizes:

	    n1 = 80

	    n2 = 80

The estimated sample size using STATA shows that to be able to detect a 
difference of  20 h between the two groups, if  one really existed, there would 
need to be 80 in each group.

5.9 � Prospective cohort or two-group comparison 
in clinical trials

The sample size and power estimations for prospective or clinical trials 
involving two groups can be performed using the following equation:

	 n p q p q K p p= + −( ) * ( )1 1 2 2 1 2 2/

where n is the number of subjects in each group, p1 is the frequency of out­
come in group 1 and q1 = 1 − p1, and p2 is the frequency of outcome in group 
2 and q2 = 1 − p2.

K = (zα + zβ)2, where zα and zβ are normal deviates corresponding to signifi­
cance level and α and power (1 − β). The required sample size would be 2n.

The power estimation could be performed using the following formula, 
which, as stated earlier, involves the random error rates, α and β:

	 Power /= = − + −z p p n p q p q zβ α( )* ( )1 2 1 1 2 2√
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With the same example, if  n = 160 and alpha is 0.05, the difference between 
the groups is 2 h, and the standard deviation is 45 in each group, power should 
be estimated before conducting the study; thus, if  there is really a difference 
in hours from surgery to onset of infection, will such a difference be detected 
with the preexisting study size?

Using STATA: sampsi 19.15 39.15, sd1(45) sd2(45) alpha(0.05) n1(80) n2(80)

Estimated power for two-sample comparison of means

Test Ho: �m1 = m2, where m1 is the mean in population 1 

and m2 is the mean in population 2

Assumptions:

	 alpha	 = 0.0500 (two-sided)

	 m1	 = 19.15

	 m2	 = 39.15

	 sd1	 = 45

	 sd2	 = 45

sample size n1 = 80

	 n2 = 80

	 n2/n1 = 1.00

Estimated power: power = 0.8026

5.10 � Case–control study

Sample size estimation for case and control studies with equal size can 
be performed using the following formula. Because proportions are used 
in this estimation as well as the odds ratio, the random error rates are 
involved already in the estimation of  the relative odds expected.

	 p p p1 2 1 2 1= + −* ( )OR/ OR

where p1 is the frequency of exposure in cases, p2 is the frequency of exposure 
in controls, and OR is the odds ratio predicted.
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5.11 � Summary

Sample size and power estimations are used to determine the size of the 
study and the ability of the study to detect the minimum difference should 
one exist, respectively. These estimates should be estimated before conduct­
ing clinical research. The importance of estimating the sample size before the 
study actually begins cannot be overstressed, since inappropriate sample sizes 
will underpower the study, thus limiting the chance of detecting a significant 
difference. The question to be addressed before the commencement of the 
study is, what sample size is needed to be able to detect a significant difference 
with probability 1 − β? The factors influencing sample size are (a) effect size, 
(b) significance level (alpha or type I error tolerance), (c) power—1 − β, and 
(d) variability expressed as the standard deviation or variance. However, in 
time-to-event outcomes, the number of events must be put into consideration 
in sample size estimation. Other factors include attrition rate, failure prob­
ability, missing variables or incomplete records, interest in subset analysis, 
prognostic factors adjustment, and highly asymmetric distributions. These 
factors tend to limit precision even when large samples from large data sets 
are used in the study.

Power estimation is essential since it informs us how likely it is that a signif­
icant difference will be found given that the alternative hypothesis is true—for 

BOX 5.6  STATISTICAL POWER AND SIGNIFICANCE

•	 To assess clinical and statistical inferences, adequate sample 
size (adequate number of subjects) and power are essential. 

•	 This concern is critical for safety and activities studies (phase II 
and IIa) as well as comparative studies (phase IIb and phase III) 
in clinical trials—these phases support therapeutic decisions.

•	 With a phase I trial, which is dose-finding and dose-ranging, 
the sample size is often the outcome of the study. 

•	 The necessary size of the study depends on (a) the strength 
of the association, (b) the frequency of outcome in the control/
unexposed group or the frequency of exposure in the control 
group in case–control studies, (c) the level of statistical signifi­
cance, and (d) statistical power.

•	 A type I error is the error that occurs when investigators find 
a significant difference when there is none in truth (does not 
exist).

•	 A type II error or beta occurs when investigators fail to detect 
a significant difference when indeed there is one in truth (really 
existed).
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example, given that the true mean μ is different from the mean under the null 
hypothesis (μo). Therefore, if  power is too low (<80%), then there will be little 
chance of finding a significant difference and nonsignificant results are likely 
to be observed even if  real differences existed between the true point estimate, 
such as the mean of the group being studied and the null mean, μo. Power is 
influenced by (a) sample size, (b) variability—SD, (c) effect size, and (d) sig­
nificance level—type I error tolerance.

Questions for discussion

	 1	 Suppose that you are studying the effect of  chemotherapy on pros­
tate cancer survival, and chemotherapy is measured on a binary scale, 
denoted by X, in a time-to-event analysis. The distribution of  X = 0 
and X = 1. (a) What sample size is needed to detect the adjusted hazard 
ratio of  Δ = 2.5, power = 0.85, and type I error = 0.05? (b) Suppose the 
power is changed to 90%, what would be the effect of  this change on 
the sample size? (c) If  the attrition rate or the loss to follow-up is 20%, 
what would be an appropriate size of  the study? (d) Suppose the sample 
size for the study is 256, HR = 1.5, α = 0.05. Will there be enough power 
to detect a significant difference, avoiding type II error (false-negative) 
results?

	 2	 Suppose 24 children with adolescent idiopathic scoliosis (AIS) are enrolled 
in a study to determine the effectiveness of titanium instrumentation in 
correcting spinal deformities, if  the mean difference 0.5 unit, two-sided 
test, significance level = 0.05, mean and SD = 0.61 ± 0.7 and 0.04 ± 0.68 
for the treatment and control groups, respectively. (a) Compute the power 
of the study. (b) What factors may possibly affect this power?

	 3	 Suppose an investigator wishes to estimate the number of subjects needed 
to study the effect of tumor stage at diagnosis on survival of African-
American women diagnosed with breast cancer and treated for the dis­
ease, and suppose there is a 90% chance of finding a significant difference 
using a two-sided test with a significance level of 0.05 and effect size of 
0.5  unit is expected. (a) How many subjects are needed in the study? 
(b) What other information is needed for this computation if  any? (c) If  
the expected effect size increases, what is the impact of that on the sample 
size?

References
	 1.	 B. W. Brown, Jr., Statistical controversies in the design of clinical trials—Some 
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6.1 � Introduction

Clinical research sometimes involves a single group and requires no compari-
son group. In conducting such a study, which is often encountered in surgical 
settings, the preoperative, immediate operative, and follow-up measures are 
used to determine the effectiveness of a surgical procedure. In other clinical 
settings, a pretest measure is obtained from a single sample before interven-
tion, and the same instrument is used to obtain information from the same 
sample after intervention. These tests allow one to infer conclusions about the 
wider population from the data on selected individuals (sample).

Descriptive and inferential statistics are essential in making sense of data 
collected in clinical research.1 Clinical research is often conducted on a sam-
ple, implying the impossibility of studying the entire population.2 The infer-
ential statistics allow one to draw inferences on the entire population based on 
the sample.3 The application of inferential statistics assumes that the sample 
has been randomly selected from the larger population in order to provide a 
valid generalization beyond the targeted population.4 Simply, statistical infer-
ence uses data in hand (collected data) to answer the research question or 
hypothesis about a clinical setting that goes beyond the data collected or pres-
ent data and attributes a known degree of confidence to the answer, termed 
statistical significance. We use a test statistic such as the t test to quantify 
the difference between the actual observation and the one we would expect 
if  the hypothesis of no effect or no difference were true. A statistically sig-
nificant difference or effect, as we commonly say, refers to an observed effect 
or difference so large that it could rarely occur by chance. A commonly used 
test of significance is the p value, which assesses the evidence against the null 
hypothesis and provides a summary of this evidence in terms of probability. 
The smaller this value, the stronger the evidence against the null hypothesis 
of no effect or no difference provided by the data. Strictly, the application of 
significance level should be restricted to the probability sample, which is the 
sample selected for the study by chance that results in random variables. To 
recap, a random variable is a variable whose value is a numerical outcome of 
randomness (random statistically speaking does not mean haphazard; it is a 

Single sample statistical inference6
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kind of order or behavior that emerges only in the long run and describes a 
chance behavior that is unpredictable in the short run but has a regular and 
predictable pattern in the long run) or random phenomenon, and the prob-
ability of any outcome of a random phenomenon is the proportion of times 
the outcome would occur in a very long series of repetitions.

Hypothesis testing may involve one group of participants in which data are 
collected or measurement is obtained on one or more occasions—for example, 
a single-sample t test in which information is obtained from a single group 
and compared with the population mean, and the repeated-measure analy-
sis of variance in which measurement is obtained more than two times from 
the same subject. A paired t test is another example in which pre- and post-
test measurements are used to determine the effectiveness of an intervention. 
Because a single group hypothesis testing is about the difference between some 
norm in the population, a baseline measure, or a pretest, the amount of varia-
tion must be addressed by the confidence interval or the significance level.5

The test statistics required to assess the variation or quantify error depend 
on the scale of measurement of the variable and the number of times the data 
are obtained from the subjects. A t distribution is used to estimate the mean 
value of a numerical variable, while a standard normal distribution or z (which 
is a normal distribution with μ = 0 and standard deviation σ = 1; if each obser-
vation xi in a sample has a normal distribution with μ and standard deviation σ, 
then (x1 − μ)/σ will have a standardized normal distribution) is used to estimate 
the proportion of subjects who have specific characteristics,6 for example, the 
presence or absence of solid fusion or union in a group of subjects with skeletal 
dysplasia who underwent cervical spine fusion for cervical spine instability.

This chapter presents statistical inference when a study is conducted on 
a single sample. In observational and experimental designs, a single sample 
could be used to test the null hypothesis of no effect, no difference, or no ben-
efit. Recall that statistics is primarily concerned with the sample (the subset of 
a population from which data are collected and which is used to draw conclu-
sions about the whole population) and not the population, which is the entire 
group of individuals or patients about which information is sought. The selec-
tion of a sample for a study must follow a probability method (sample cho-
sen by chance) in order for it to be representative of the population. These 
methods include (a) a simple random sample, (b) a stratified random sample, 
and (c) a systematic random sample. The test statistic used, the rationale for 
selecting these tests, and their interpretations are presented as well. In addi-
tion, the use of statistical software in the analysis of data on a single sample is 
presented using the STATA statistical package for illustrative purposes.

6.1.1 � Single-sample test techniques

The hypothesis regarding single sample studies could be tested with appropri-
ate test statistics and statistical methods depending on the scale of measure-
ment of the variables and the number of times the measures are taken from the 
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same subject. These tests include (a) a single-sample t test, (b) a sign test, (c) a 
paired t test, (d) the Wilcoxon rank-sum test, (e) the repeated-measure analysis 
of variance, and (f) the Friedman test.

6.1.2 � One-sample tests—Illustrations

6.1.2.1 � What is a single-sample t test?

This statistic is used to test the null hypothesis of no mean difference between 
the assumed or postulated mean and the population mean. It assumes normal 
distribution of a random variable from a random sample. Recall that nor-
mal distribution, also termed normal curve, involves density curves that are 
symmetric, single-peaked, and bell-shaped. These curves are described by the 
mean (μ) and standard deviation (σ). Normal distributions comply with the 
rule 68–95–99.7, which implies that 68% of the observations fall within one σ 
and the mean, 95% of the observations fall within 2σ of  μ, and 99.7% of the 
observations fall within 3σ of  μ.

6.1.2.2 � What is a sign test?

The sign test, which is a nonparametric test, estimates the median value of an 
ordinal variable, as well as a variable that is assumed or assessed to deviate 
from normal distribution.

6.1.2.3 � What is paired t test?

A paired t test (matched group or dependent t test) estimates the mean dif-
ference between the pretest or the baseline measure and the posttest or the 
postintervention measure. For example, if  a study was conducted to assess the 
effectiveness of titanium instrumentation in correcting or curing deformities 
in adolescent idiopathic scoliosis and if  investigators wanted to see the differ-
ences between preoperative and immediately postoperative main curve angle, 
a paired t test is an adequate test statistic. Why? A nonparametric equivalent 
of the paired t test is the Wilcoxon signed-rank test, which estimates the dif-
ference in the median in single-group subjects/participants. For example, if  a 
study was conducted to examine the difference in preintervention and postint-
ervention hematocrit, but the data failed to meet the normality assumption, 
the Wilcoxon signed-rank test would be appropriate.

6.1.3 � What are the steps in hypothesis testing in studies involving 
a single sample?

The steps in the testing of a hypothesis include (a) a statement of the null 
hypothesis using H0, which claims that there is no difference between the 
assumed or postulated mean or proportion and the population mean; ​ 
(b) an alternative hypothesis, using HA or H1, which claims that there is a 
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difference between the assumed mean/proportion and the population mean/
proportion; (c) the direction of the test, which could be two-tailed or one-
tailed; (d) the decision on the appropriate test statistic—for example, if  infer-
ence is required about the mean, a single sample t test is appropriate, which 
is the difference between the sample mean and the hypothesized or assumed 
mean divided by the standard error and presented mathematically as follows:

	 t X t X n= − = −µ µ/SE or /SD/√

where X is the sample mean, μ is the hypothesized mean, SE is the standard 
error of the sample mean, and SE = SD/√n; and (e) selection of the level of 
significance for the statistical test—termed alpha (α) or type I error, which is 
the probability of incorrectly rejecting the null hypothesis when indeed the null 
hypothesis is true. While alpha is conventionally set at 0.05 (5% error), other 
levels of alpha include 0.01 (1% error) and 0.001 (0.1% error). The above for-
mula for the inference regarding one-sample t statistics is contingent on a sim-
ple random sample of size n that is drawn from an N (μ, σ) population. Please 
note that the one-sample t statistic has the t distribution (normal distribution 
with mean μ and standard deviation σ/√n, and when σ is not known, standard 
error, SE, is used and is given by SD/√n) with n − 1 degrees of freedom.

6.1.4 � How is a single t test computed?

Statistical packages are available for the computation of single-sample t test. 
For example, this is performed by STATA statistical packages using the fol-
lowing syntax or command:

	 ttest varlist=50

where varlist is the variable (hypothesized mean) termed μ, H0: μ = 50.

6.1.5 � Drawing and stating the conclusion

The null hypothesis can be rejected as a result of  sample evidence, and then 
the alternative hypothesis is concluded. However, if  the evidence is insuf-
ficient to reject the null hypothesis, it is retained but not accepted as such—
simply the null hypothesis cannot be rejected based on the evidence from 
the sample. The one-sample t test is used to test whether the sample mean 
differs significantly from the hypothesized value μ = 50. The significance 
level or p value represents the probability of  observing a mean of  60 units 
(granted the calculation showed n = 60 units) in a random sample of  100 
subjects, if  the true mean is 50 units. If  the significance level or alpha was 
set at 0.05 (5%), and the observed p = 0.10 (10%), then one is likely to con-
clude that because the observed p value is greater than the alpha chosen for 
the test, there is no significant difference between the hypothesized mean 
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(60 units) and the sample mean (50 units), implying that the null hypothesis 
cannot be rejected—insufficient evidence to reject the null hypothesis.

. ttest Mathscore==6

One-sample t test

Variable   Obs      Mean  Std. Err.  Std. Dev.  [95% Conf. Interval]

Mathsc~e    60  6.333333   .1026944   .7954674   6.127842  6.538824

    mean = mean(Mathscore) t = 3.2459
Ho: mean = 6 degrees of freedom =     59

     Ha: mean < 6          Ha: mean != 6             Ha: mean > 6
  Pr(T < t) = 0.9990   Pr(|T| > |t|) = 0.0019    Pr(T > t) = 0.0010

Notes: The null hypothesis is that the sample mean is not different from the 
hypothesized mean (6.0), the evidence from the data (mean = 6.3, SD = 2.49, 
p = 0.33) does not support the rejection of the null hypothesis of no differ-
ence between the mean. The observed difference between the population 
mean and the observed mean in the study sample is due to chance, given the 
5% significance level.

. ttest Mathscore==6, level (90)

One-sample t test

Variable   Obs     Mean   Std. Err.   Std. Dev.  [90% Conf. Interval]

Mathsc~e    60 6.333333    .1026944    .7954674   6.161721  6.504945

    mean = mean(Mathscore) t = 3.2459
Ho: mean = 6 degrees of freedom =     59

     Ha: mean < 6             Ha: mean != 6            Ha: mean > 6
Pr(T < t) = 0.9990 Pr(|T| > |t|) = 0.0019  Pr(T > t) = 0.0010

. ttest Mathscore==6, level (99)
One-sample t test

Variable   Obs       Mean Std. Err.   Std. Dev.   [95% Conf. Interval]

Mathsc~e    60   6.333333  .1026944    .7954674    6.059986  6.606681

    mean = mean(Mathscore) t = 3.2459
Ho: mean = 6 degrees of freedom =     59

     Ha: mean < 6            Ha: mean != 6             Ha: mean > 6
 Pr(T < t) = 0.9990     Pr(|T| > |t|) = 0.0019     Pr(T > t) = 0.0010

Note: The t test automatically provides the 95% confidence interval (CI) in the 
output, which can be modified to either 90% or 99% by adding level (90) or 
level (99), respectively, to the syntax, thus: ttest nummeanScore = 6, 
level (90) for 90% CI.
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6.2 � One-sample group design

We discussed the research question in the first section of this book. The 
research question refers to a statement that identifies the phenomenon to be 
investigated. For example, “Does coffee drinking result in pancreatic neo-
plasm?” As observed earlier in this chapter, research questions could involve 
one group of subjects who are measured on one or two occasions, for example, 
mean milk consumption and bone density in women 45 years and older. The 
following are appropriate research questions: (1) Is the mean milk consump-
tion of women 45 years and older different in our sample compared with the 
National Study on Nutrition sample? In other words, how confident are we 
that the observed mean milk consumption in our sample is X oz/day? (2) Is 
the mean bone density (X ) in the National Study on Nutrition of women 
45 years and older significantly different from our sample?

6.3 � Hypothesis statement

The hypothesis tests the mean value of a numerical value (e.g., milk consump-
tion, bone density). This hypothesis testing involves the examination of the 
mean in one group when the observations are normally distributed (e.g., bone 
density, milk consumption).

6.4 � Test statistic

The test statistic refers to the inferential statistical methods used to assess dif-
ferences, association, or effect and its application in drawing conclusions from 
the sample to the targeted population and beyond the targeted population. A 
one-sample t statistic is given as follows: t = X − μ/SD/√n with n − 1 degrees 
of freedom. While robust to normality assumption violation, it assumes that 
a simple random sample of size n is drawn from N(μ, σ) population. The fol-
lowing are illustrations of single- or one-sample statistical inferences.

6.4.1 � One-sample t test

As mentioned earlier, a single-sample t test estimates the mean difference 
comparing the sample to the postulated mean in the population. For example, 
it answers the research question regarding the mean difference between the 
systolic blood pressure of Caucasian women, age 35 to 45 years, in the study 
sample and the known mean systolic blood pressure of women of the same 
age in the United States.

6.4.1.1 � What is the appropriate test statistic in a one-sample 
hypothesis testing involving the mean?

The t distribution is appropriate for performing the test statistics and obtain-
ing the confidence limits.7 Simply stated, the single- or one-sample t test com-
pares the mean of a single sample to a known population mean.
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6.4.1.2 � When is a one-sample t test appropriate?

The purpose of this test (t) or Student’s t test is to answer research questions 
about means. Therefore, if  data are numerical, normality is assumed with 
respect to their shape and distribution, and only one sample is involved, then 
a one-sample t test is an appropriate test statistic.

6.4.1.3 � What is the t-test formula?

As stated earlier, the formula for the t test is (statistic − hypothesized value)/
estimated standard error of the statistic.8 Mathematically, it appears as such:

	 t X n= − = −( ) ( ) ( )µ µ/ SD/ X /√ SE

where X is the observed or sample mean, μ is the hypothesized mean value of 
the population (true mean in the population), and SE is the standard error of 
the mean (X). Simply, mean (x) − constant (μ)/SD(x), where SD(x) is the sum 
{(xi − mean(x)}2/(n − 1).9

6.4.2 � Considering statistical significance?

In the NSN illustration described earlier, to determine whether the 
observed mean is real (i.e., the observed mean is different from the mean 
of  the National Study of  Nutrition [NSN], termed the norm or population 
mean) and not just a random occurrence, the following factors need to be 
considered: (1) the difference between the observed mean and the norm 
(NSN) or population mean, implying much larger or smaller magnitude 
of  the mean difference → greater difference; (2) the amount of  variability 
among subjects, implying less variation—smaller standard deviation in the 
sample (i.e., homogeneous sample and relatively precise method of  mea-
surement); and (3) the number of  subjects in the study, implying a larger 
rather than a smaller sample.

Vignette 6.1: Consider a study conducted to compare the mean vita-
min C intake among eighth-grade schoolchildren at New School, Texas, 
with the population mean (Texas Study of Nutrition, or TSN). If  the 
investigator found a greater standard deviation (SD), what is the prob-
able explanation?

Solution: If  the SD is greater in the sample studied (eighth-grade chil-
dren at New School), it is likely that (1) vitamin C intake varies widely 
from one child to another or (2) a crude measure device is used to ascer-
tain the vitamin C intake (improper, imprecise, or crude measure).
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6.4.2.1 � What is the test assumption—Normality?

The normal distribution, also referred to as the Gaussian distribution or 
bell-shaped curve, is a continuous probability distribution. This distribu-
tion takes any value and is characterized as (1) smooth, (2) bell-shaped 
curve, (3) symmetric about the mean of  the distribution, and (4) symbol-
ized by mean μ, and a standard deviation σ.10 Simply, normal distributions 
are a family of  distributions that have the same general shape, implying 
symmetry, where the left side is an exact mirror of  the right side, with 
scores more concentrated in the middle than in the tails (Figure 6.1). If  
normality is not assumed, observations should be more than 30 subjects, 
and hence the mean becomes normally distributed above this number 
regardless of  the distribution of  the original observations (central limit 
theorem). Even with the violation of  normal distribution, a t test could 
still be performed since it is robust for nonnormal data, implying the 
drawing of  a proper conclusion even when the assumptions are not met, 
including normality.
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Figure 6.1  Normal distribution curve.
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6.4.2.2 � How is one-sample t-test result interpreted?

The null hypothesis assumes the equality of means; a result at significance 
level (<0.05) is indicative of a significant difference between the sample mean 
(X) and the population mean (μ). A nonsignificant mean difference implies 
that the difference may be due to random error or chance, given the signifi-
cance level (p > 0.05); it does not mean that the two means are equal.10 Simply, 
it is not possible to be confident about accepting the observed difference 
because this might be due to random occurrence.

. ttest sbp ==140

One-sample t test

Variable   Obs    Mean  Std. Err.   Std. Dev.  [90% Conf. Interval]

     sbp    10   142.2  1.671991    5.287301   138.4177    145.9823

    mean = mean(sbp) t = 1.3158
Ho: mean = 140 degrees of freedom =      9

    Ha: mean < 140         Ha: mean != 140        Ha: mean > 140
 Pr(T < t) = 0.8896    Pr(|T| > |t|) = 0.2208    Pr(T > t) = 0.1104

The t statistic is 1.31 with 9 degrees of freedom. The p value of the equality 
of the SBP mean is 0.22, which is >0.05, the set significance level, implying 
that we fail to reject the null hypothesis and conclude that the mean SBP of 
African-American women (142.2 mmHg) is not significantly different from 
the population mean, μ = 140 mmHg.

6.4.2.3 � How is statistical power estimated in a one-sample t test?

The power of a test, as discussed previously, measures its ability to detect 
deviations from the null hypothesis. The power of a one-sample t test against 

Vignette 6.2: Consider a random sample of systolic blood pressure from 
10 African-American women: 145, 136, 151, 140, 139, 148, 138, 136, 
147, and 142. Do these data give a good reason for a clinician to believe 
that the systolic blood pressure of African-American women is greater 
than 140 mmHg? What is the hypothesis? What is the t statistic and its 
p value? What do you conclude from the data?

Solution: To test whether the systolic blood pressure of African-
American women differs from the standard systolic blood pressure of 
140 mmHg, the null hypothesis H0: μ = 140 mmHg and Ha: μ > 140 mmHg. 
Using STATA, the t statistic and p value are computed as shown below. The 
syntax: ttest varlist = = 140, where varlist is the variable, SBP.
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a specific alternative value of the population μ is the probability that the test 
will reject the null hypothesis when the alternative hypothesis is true. The 
power estimation of a one-sample t test utilizes the sample size (n), signifi-
cance level, α = 0.05, μ, and the SD.

BOX 6.1  STATISTICAL POWER AND 
ELEMENTS INFLUENCING POWER

•	 Statistical power is the ability of a test to detect deviations from 
the null hypothesis.

•	 Statistical power is influenced by
•	 (a) Significance level—decrease in α leads to decrease of 

power.
•	 (b) Alternative mean or effect size—as the alternative 

mean shifts further away from the null (effect size), power 
increases.

•	 (c) Standard deviation—as the SD of the individual obser-
vations increases, power decreases.

•	 (d) Sample size (n)—as n increases, power increases.

Vignette 6.3: Suppose you wish to determine whether or not the fast-
ing serum cholesterol level (FSCL) in African-American women (AAW) 
aged 21 to 50 years differs from that of the general US population of 
women of the same age. If  the FSCL is known to be normally distrib-
uted with mean 190 mg/dL, and the mean FSCL of 100 AAW of the 
same age is 181.52 mg/dL with a standard deviation of 40 mg/dL. Using 
a one-sample t test, calculate the t statistic. On the basis of this evidence, 
what is your conclusion regarding FSCL among AAW relative to the 
general US population of women?

Solution: Use the formula: X − μ ÷ SD/√n. Substituting, 181.52 − 
190 ÷ 40/ 100  = −8.48/4 = −2.12. To address whether the obtained 
value is significantly different, we obtain the confidence interval for the 
two-sided test with α = 0.05. The critical values are C1 = t99.025, C2 = 
t99.975. Using the percentage points of t distribution (not provided in the 
appendix), because t99.975 < t60.975 =2.000, and because C2 < 2.000 (t = 
−2.12 < −2.000 < C1), the null hypothesis is rejected at a 5% significance 
level in favor of the alternative hypothesis. On the basis of this evidence, 
the mean FSCL is significantly lower among AAW compared to the 
general US population of women.
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6.4.2.4 � How do power and study size influence a negative result?

Because the power of the test is influenced by the sample size, small studies 
are prone to negative results. Therefore, the smaller the study size, the higher 
the likelihood of not detecting the effect or difference if  one really existed. As 
pointed out earlier, it is meaningless to report a statistically insignificant find-
ing unless the power of a test was estimated before the study being conducted 
or post hoc (after the fact).

The power of the study is 40% (STATA output below), which is insufficient, 
given the minimum power requirement of 80.0% (1 − β). The negative result is 
indicative of the small size of the study, implying that the test lacked the capacity 
to detect the minimum difference in SBP comparing the mean SBP of African-
American women with that of the general US population of women. Using 
STATA syntax, sampsi 140 142.2, sd1(5.0) alpha(0.05) n1(10) 
onesample onesided, the power of the study is computed as shown in the 
following.

Estimated power for one-sample comparison of mean
to hypothesized value

Test Ho: m =	 140, where m is the mean in the population

Vignette 6.4: Using the data in Vignette 6.2, estimate the power of the 
study. What can you conclude regarding the result? 

Solution: The power of a one-sample t test for a mean of a normal 
distribution with known variance (μ1 − μ0) is expressed as follows:

	 Power /= + −Φ[ ( ) ]z nα µ µ σ1 0 √

μ1 = 140 mmHg, μ0 = 142 mmHg, σ = 0.05, assuming that the standard 
deviation is 5 mmHg and n = 10. Power = Φ[z0.05 + (140 − 142.2)/5 10].

BOX 6.2  STUDY SIZE AND ELEMENTS INFLUENCING SIZE

Study size is influenced by (a) standard deviation or variability—sample 
size decreases as SD increases; (b) significance level—as significance 
level (type I error tolerance) is set at a lower level, the sample size 
increases; (c) statistical power—as the sample size increases, the power 
of a study increases and vice versa; and (d) effect size—as the effect size 
or the absolute value between the null (μ0) and the alternative mean (μ1) 
increases, sample size decreases.
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Assumptions:

	  alpha = 0.0500 (one-sided)
alternative m =     142.2
	    sd =     5
sample size n =     10

Estimated power:

	 power = 0.4000

6.5 � Inference from a nonnormal population—One-sample t test

6.5.1 � What is the nonparametric alternative to the one-sample t test?

The sign test, which is a distribution-free significance test, does not require 
that the data follow any specific type of distribution, such as Gaussian. This 
statistic tests the hypothesis of the equality of the median since the data may 
be skewed. The sign test, called sign because it depends only on the sign of 
the differences of the score and not the relative magnitude, is an example of 
a nonparametric test.

We recap the three scales of measurement of variables in order to discuss 
very briefly the application of nonparametric tests in hypothesis testing. The 
scales of measurement in clinical research can be classified into the following 
categories:

	A	 Cardinal—pertaining to data that are in a scale where it is meaningful to 
measure the distance between possible data values. These data are mea-
sured on interval (with an arbitrary zero point, such as body temperature) 
or ratio (with a fixed zero point, such as blood pressure, height, weight, 
etc.) scale. For example, height is a cardinal variable because a difference 
of 4 m is twice as large as a difference of 2 m.

	B	 Ordinal variables pertain to data that can be ordered but do not have 
specific numeric values, for example, the quality-of-life score, the pain 
score, and the functional score used to measure health outcomes. These 
variables can be measured on a Likert scale using a five-point score sys-
tem: much satisfied = 1, slightly satisfied = 2, no difference = 3, slightly 
unsatisfied = 4, and unsatisfied = 5.

	C	 Nominal variables pertain to data that can be classified into categories 
without any specific ordering, for example, the types of cerebral palsy: 
hemiplegic, diplegic, and quadriplegic.
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Nonparametric statistical tests are used in any of these scales of measure-
ments and are suited for distribution-free data. For example, if  the cardinal 
dat violates the normality assumption and there is uncertainty on the shape 
of the distribution, nonparametric tests are appropriate. In addition, ordinal 
data are suited for nonparametric tests, where comparison, for instance, is 
required between groups with respect to the health outcomes on the quality 
of life. Finally, nonparametric methods are useful in making comparisons 
regarding nominal data.

6.5.2 � When is the sign test feasible?

If  the investigators intended to determine whether the mean reserved O2 
(which correlates with the walking heart rate) at a baseline with the mean 
reserved O2 obtained from a previous cohort are different, a one-sample t test 
is appropriate, provided the data meet the assumptions, namely, they have the 
right shape of distribution, are derived from a random sample of reasonable 
sample size (n ≥ 30), and are measured on a continuous scale. A violation of 
these assumptions, especially normality, requires the use of a nonparametric 
test that is equivalent to the one-sample t test, which is the sign test.

6.5.3 � How is the sign test applied?

This test utilizes the binomial distribution, which describes a behavior of a 
count variable X when (a) the number of observations, n, is fixed; (b) each 
observation is independent; (c) each observation represents one of two out-
comes (success or failure); and (d) the probability of success (π = p) is the 
same for each outcome. Once these conditions are met, X has a binomial 
distribution with parameters n and p, denoted as B(n,p).

6.5.4 � When is the sign test appropriate?

The sign test is used to test the hypothesis about medians. Using the example 
with O2 reserve, the sign test examines whether the median O2 reserve is equal 
to the value of the median O2 reserve obtained previously from the sample.

6.5.5 � How is the sign test computed?

Below is the STATA syntax for the computation of a sign test. We are con-
cerned with whether or not the current median score is equal to that obtained 
previously from the same sample.
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STATA Syntax: signtest med_score=6

signtest med_score =6

Sign test

	 sign|	 observed     expected
	 positive| 25           21
	 negative| 17           21
	 zero|     9            9
	 all|      51           51

One-sided tests:
Ho: median of med_score - 6 = 0 vs.
Ha: median of med_score - 6 > 0
	 Pr(#positive >= 25) =
	 Binomial(n = 42, x >= 25, p = 0.5) = 0.1400

Ho: median of med_score - 6 = 0 vs.
Ha: median of med_score - 6 < 0
	 Pr(#negative >= 17) =
	 Binomial(n = 42, x >= 17, p = 0.5) = 0.9179

Two-sided test:
Ho: median of med_score - 6 = 0 vs.
Ha: median of med_score - 6 != 0
	 Pr(#positive >= 25 or #negative >= 25) =
	 min(1, 2*Binomial(n = 42, x >= 25, p = 0.5)) = 0.2800

6.5.6 � How is the result of  a sign test interpreted?

The sign test, like the t test, shows the right-, left-, and two-tailed probabili-
ties. Unlike the t test, which uses the symmetrical t distribution, the binomial 
distributions used here in the sign test have different left- and right-tailed 
probabilities. However, because we are concerned with whether the median of 
the current sample O2 reserve differs from the median of the previous sample’s 
O2 reserve, we are interested in the interpretation of the two-tailed probability. 
The interpretation of the sign test is similar to the result obtained with the 
one-sample t test. Since p is >0.05 (5%), we have no reason to reject the null 
hypothesis of no significant median difference comparing the hypothesized 
median with the sample median.

6.6 � Other types of t tests

6.6.1 � A paired sample t test (dependent t test or t test 
for correlated data)

6.6.1.1 � What is a paired t test?

A paired, correlated data, or dependent t test involves a single group or 
one-sample hypothesis testing and compares the means of  two scores from 
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related samples. This is a very popular test when pre- and posttest mea-
sures are involved in a study and the scale of  measurement is continuous.

6.6.1.2 � What are the assumptions in a paired t test?

The assumptions for a paired t test are (a) both variables (pre- and post-test 
measures) are at interval or ratio scales, (b) both variables are normally dis-
tributed, (c) both are measured with the same scale, (d) data collection utilizes 
the same instrument, and (e) if  different scales are involved, the scores are 
converted to z scores before t test analysis.

6.6.1.3 � When is the paired t test required in hypothesis testing?

This test is appropriate when the same subjects are measured on a numeri-
cal scale and data are obtained before (baseline measure/pretest) and after 
(postintervention/posttest data) intervention. For example, if  an investiga-
tor wanted to determine the effect of  treatment with drug A in controlling 
the plasma glucose level in patients with diabetes mellitus and glycosyl-
ated hemoglobin (HbA1c) is measured in the same subject before and after 
(30 days after treatment), a paired t test is appropriate in determining 
the mean difference (with a higher level indicative of  a poorly controlled 
plasma glucose level).

6.6.1.4 � How is the paired t test computed?

A paired t test, as noted earlier, is adequate for studies using paired samples, 
in which two sets of measurements are taken from the same subjects. This 
design, in which each subject becomes its own control, eliminates between-
subject variability. A study to examine the effect of dopamine in increasing 
blood pressure in women with low pulse and low blood pressure may use 
a paired t-test technique if  there is no control and BP is measured before 
the administration of dopamine and 12 h after. In this design, factors that 
influence BP, such as age, diet, and stress, are not expected to influence the 
posttreatment BP measure dramatically, implying a significant reduction in 
confounding factors.

We present the formula for the paired t test as t = d/(SD/√n), and d is 
normally distributed with mean Δ and variance σd

2 . SD is the sample stan-
dard deviation, while d = (d1 + d2 + d3 + … … + dn)/n, and di (difference 
between the baseline or pretest and posttest measure) = Xi2 − Xi1. We are 
simply testing the hypothesis that H0 Δ = 0 against Ha: Δ ≠ 0, implying that 
if  Δ > 0, then treatment with dopamine is associated with increased pulse 
and BP; if  Δ < 0, then dopamine is associated with decreased pulse and 
BP; and if  Δ = 0, then there is no mean difference between baseline and 
post or follow-up BP.
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. ttest sbp_bl== sbp_fu

Paired t test

Variable   Obs   Mean    Std. Err.   Std. Dev.  [90% Conf. Interval]

  sbp_bl    10  115.6    3.259857    10.30857    108.2257   122.9743
  sbp_fu    10  120.4    4.182503    13.22624    110.9385   129.8615

    diff    10   -4.8    1.443761    4.565572   -8.066013  -1.533987

     mean(diff) = mean(sbp_bl - sbp_fu)                  t = -3.3247
 Ho: mean(diff) = 0                      degrees of freedom =       9

 Ha: mean(diff) < 0     Ha: mean(diff) != 0       Ha: mean(diff) > 0
 Pr(T < t) = 0.0044    Pr(|T| > |t|) = 0.0089    Pr(T > t) =  0.9956

The above output shows t = −3.32 and the significance level for the null 
hypothesis, 0.009, which is <0.05, implying that we reject the null hypoth-
esis of no mean difference in SBP comparing baseline to follow-up SBP after 
dopamine treatment. We can conclude that dopamine significantly increased 
systolic blood pressure in postmenopausal women.

Next, we present another example of a paired t test using STATA com-
mand. The syntax for the paired t test is ttest varlist1 = varlist2, 
where varlist1 represents the pretest or baseline measure and varlist2 
represents the posttest or postintervention measure utilized.

Paired t test

Variable   Obs      Mean   Std. Err. Std. Dev.  [95% Conf. Interval]

   SBP_1    19  115.3158    2.232211   9.72998   110.6261   120.0055
   SBP_3    19  120.4737    2.612798  11.38892   114.9844    125.963

    diff    19 -5.157895     .912112  3.975804  -7.074171  -3.241619

     mean(diff) = mean(SBP_1 - SBP_3)  t = -5.6549
 Ho: mean(diff) = 0 degrees of freedom =      18

 Ha: mean(diff) < 0     Ha: mean(diff) != 0       Ha: mean(diff) > 0
 Pr(T < t) = 0.0000    Pr(|T| > |t|) = 0.0000     Pr(T > t) = 1.0000

Vignette 6.5: Consider a study conducted to determine the effect of 
dopamine in increasing pulse and systolic blood pressure in postmeno-
pausal women, age 55 to 85 years. The baseline SBPs were 115, 104, 105, 
126, 138, 115, 119, 107, 112, and 115, while the follow-up SBPs were 
117, 102, 109, 132, 145, 122, 128, 106, 115, and 128. If  SD is 4.566, cal-
culate the t statistic and state whether or not dopamine increases SBP.

Solution: Substituting in the paired t-test formula above, t = 4.80/
(4.566/ 10  = 4.80/1.444 = 3.32. With df = 9, t = 2.262, and because 
t = 3.32, thus greater than t = 2.262, the null hypothesis of Δ = 0 is 
rejected with the two-tailed significance test, α = 0.05. We can also 
use  STATA to illustrate this computation, using this syntax: ttest 
baselinesbp = = followupsbp.
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Note: A study (hypothetical) was conducted to determine the effectiveness of 
a blood pressure medication in lowering blood pressure in 19 subjects. The 
systolic blood pressure was measured before and after treatment. A paired 
t test showed a statistically significant difference in the mean SBP comparing 
pretreatment to posttreatment SBP, p < 0.001, which means the rejection of 
the null hypothesis at the significance level of 0.05.

6.6.1.5 � What is the nonparametric alternative to parametric 
paired t test?

Nonparametric tests are also referred to as distribution-free or nonnormal sta-
tistical inference tests. These tests do not require the assumption of normality 
or the assumption of homogeneity of variance as in two-sample or independent-
sample t tests. They compare medians rather than means and therefore are not 
sensitive to outliers like parametric tests of means. A gross violation of the 
normality assumption requires the use of these tests (nonparametric) for that 
reason. However, parametric tests are preferred since they have more statistical 
power, and with a small sample size, they are able to detect minimal differences 
in means, for example, and are therefore more likely to result in the rejection 
of a false null hypothesis, should the sample data lack evidence in support of 
the null hypothesis. The low statistical power in nonparametric tests is due to 
the loss of information from the conversion or ordering data from the lowest 
to the highest value as is used in these nonparametric alternative tests. Because 
information was collected in a ratio or interval scale, this conversion or rank-
ing leads to the loss of some data, rendering nonparametric tests less statisti-
cally powerful relative to parametric tests.

When data violate the normality assumption and information was 
obtained from the same individual, before (pretest or baseline) and after 
intervention (postintervention), the Wilcoxon signed-rank test is consid-
ered appropriate. Therefore, since the t test assumes that variables fol-
low a normal distribution, when data involve outliers or are nonnormal 
because of  the small sample, it is appropriate to utilize a median-based 
test that does not assume normality, such as the Wilcoxon signed-rank 
test. While the Wilcoxon signed-rank test is the nonparametric alternative 
to the paired t test, the Wilcoxon rank-sum test serves as the nonparamet-
ric alternative to the two-independent-sample t test.

6.6.1.6 � How is the Wilcoxon signed-rank test computed?

This test is based on the sum of ranks, hence rank sum. Consider two oint-
ments used as chemoprophylaxis for urticaria: (a) URTI-A and (b) URTI-B. 
If  the effect of these two ointments is measured on a 10-point scale, with 
10 being worst and 1 being best outcome of urticaria, can one test the null 
hypothesis that these two ointments are equally effective?
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This test involves (a) ranking the differences between positive and nega-
tives scores of the two ointments for instance, (b) computation of the rank 
sum of the positive differences, and (c) test computation using the formula 
(not presented here because of the ease of computing this with statistical 
software). Statistical software, including STATA, can be used to compute a 
nonparametric alternative to the paired t test. We present an example of the 
Wilcoxon signed-rank test using STATA here. The Wilcoxon signed-rank test 
assumes only that the distributions are (a) continuous and (b) symmetrical. 
Using this test on the same data used for the paired t test provides the same 
result. Since these two tests provide the same result—the statistically signifi-
cant effect of the treatment in lowering systolic blood pressure—we can assert 
the conclusion with more certainty.

STATA syntax:  signrank sbp3=sbpl
signrank sbp3=  sbpl

Wilcoxon signed-rank test
     sign   obs sum ranks expected

 positive  0 0 95
 negative  19 190 95
     zero   0 0 0

      all   19 190 190

unadjusted variance 617.50 
adjustment for ties –0.38 
adjustment for zeros 0.00
              
adjusted variance 617.13
Ho: sbp3 = sbpl
 z = -3.824
  Prob > |z| = 0.0001

6.6.2 � One-sample analysis of  variance

This method assumes normal distribution, implying a known shape of the 
distribution, thus supporting the use of a parametric test, such as analysis 
of variance (ANOVA). A commonly used example is the repeated-measure 
ANOVA.

6.6.2.1 � What is repeated-measure ANOVA?

This test statistic compares how a within-subjects treatment or experimen-
tal group performs in three or more experimental settings.12 It therefore 
compares whether the mean of  any of  the individual settings (measurement 
cycle) differs significantly from the aggregate mean across the treatment set-
ting or conditions.
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6.6.2.2 � When is repeated-measure ANOVA used as a test statistic?

As noted earlier, in this statistical method, each subject serves as its own con-
trol. The subjects are measured to obtain the baseline data as a preinterven-
tion measure, and then after an intervention (surgery, medication, education 
session) or at a later time (during the follow-up period), the subjects are mea-
sured again (postintervention measures). This design is appropriate in assess-
ing the effectiveness of an intervention since it controls for extraneous factors 
that might influence the results if  the control group was selected from the 
source population. Such selection may introduce selection bias into the study, 
thus compromising the internal validity of the study. Therefore, any differ-
ences caused by the treatment may not be influenced by, or masked by, the 
differences among the study subjects themselves.

6.6.2.3 � When is repeated-measure ANOVA appropriate?

The one-way repeated-measure ANOVA is appropriate if  (a) the dependent 
variable is measured on a continuous scale, (b) the dependent variable follows 
a normal distribution (with a central theorem assumption, n > 30 follows a 
normal distribution), and (c) the independent variable, experimental setting, 
or condition has three or more categories. For example, a study was con-
ducted to determine the effectiveness of titanium instrumentation in correct-
ing and maintaining correction for curve deformities in adolescent idiopathic 
scoliosis; if  investigators intended to have no control group but to utilize 
repeat measures of thoracolumbar and thoracic curves during the preopera-
tive (baseline measure establishment) and immediate postoperative periods 
(6  months, 12 months, and 24 months, measured on a continuous scale—
curve angle), with sample size (n) = 41 (assumption of normal distribution), 
then the repeated-measure ANOVA is an appropriate test statistic.

6.6.2.4 � How is the result in repeated-measure ANOVA interpreted?

The effectiveness of instrumentation is demonstrated by the mean curve 
angles, SD, degrees of freedom, F value (a statistical test for comparing two 
variances), and the significance level (p value). The model p value is indicative 
of either acceptance or rejection of the null hypothesis should there occur a 
large deviation from the mean of any of the three means for instance. It does 
not, however, illustrate where the large mean difference or statistically signifi-
cant mean difference occurs. In order to examine in which measurement cycle 
the significant differences occur, a pairwise multiple comparison is recom-
mended. An example of post hoc or posteriori multiple comparison is that of 
Bonferroni. This method increases the critical F value (follows F distribution, 
which is the probability distribution used to test the equality of two estimates 
needed for the comparison to be accepted as significant). This adjustment 
depends on (a) the number of comparison, a multiplier that is based on the 
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level of treatment and the degree of freedom, and (b) sample size, an increase 
implies a higher power, meaning that the null hypothesis is correctly rejected 
more often than not. Some statisticians prefer to use Tukey’s HSD (honestly 
significant difference) procedure, while others prefer Scheffe’s and Dunnett’s 
procedures. Most statistical software today has all these procedures for pair-
wise comparison, allowing one to select from the menu. We also recommend 
the use of box plot to examine these mean differences while considering the 
model p value and a meaningful interpretation of the result.

6.6.2.5 � What is the nonparametric equivalent of one-way 
repeated-measure ANOVA?

The Friedman test by ranks is the alternative of the one-way repeated-measure 
ANOVA.12 This test does not require the dependent variable to follow a nor-
mal distribution and therefore suits the nonparametric method for nonnor-
mal statistical inference. Since this is nonparametric and hence less efficient 
compared to its parametric counterpart, repeated-measure ANOVA, a larger 
sample size is required to detect the different or effectiveness in treatment 
should one really exist. The investigators using this test should ensure that 
there is an adequate sample (increase power) and hence increase the ability of 
the study to determine the effectiveness of treatment if  it really exists.

The SPSS output of  the Friedman nonparametric test for repeated mea-
sures given in Table 6.1 is a result of  the preoperative and the 3-year and 
10-year follow-up of  children with cerebral palsy who were diagnosed with 
stiff  knee and treated for the disease with rectus femoris transfer surgery. 
The toe drag was used to measure the outcome of  surgery as an improve-
ment. And since this measure was nonnumeric, measured on a discrete 
binary scale (nominal scale), a repeated-measure ANOVA was inappropri-
ate in testing the hypothesis of  at least one difference in the variance com-
paring the three variances (baseline, 3 years, and 10 years). The preceding 
table only presents a subgroup of  the patients in this study, n = 12, with TD0 
and the baseline, preoperative toe drag, TD1 for 3 years postoperative, and 

Table 6.1  �The effect of rectus femoris transfer in reducing toe drag 
in children with stiff  knee gait

Variable Mean rank
Chi-square 

(df) n p

19.42 12 <0.0001

Toe drag = 0 2.83
Toe drag = 1 1.54
Toe drag = 2 1.63

Notes:	 Friedman Test, non-parametric alternative to repeated measure ANOVA.
Abbreviations:	 TD, toe drag; 0 = preoperative, 1 = 3 years postoperative, and 
2 = 10-year follow-up.
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TD2 for the 10 years postoperative toe drag. The chi-square value, 19.42; 
degree of  freedom, 2; and the p value, <0.0001 are indicative of  a significant 
reduction in toe drag comparing baseline toe drag to the postoperative toe 
drag.

6.7 � Summary

One-sample hypothesis testing is used to examine inference in normal and 
nonnormal or distribution-free random variables. Such tests are used in study 
designs in which the same patient is observed repeatedly over time or data are 
acquired before and after an intervention. In this context, we seek to make 
inferences about individuals in the target population who are treated in the 
same way as the sample studied.

The choice of a test statistic depends on (a) distribution and (b) scale of 
measurement of the variables of interest. In any case, the application of infer-
ence assumes that the variables are random. The assumption of distribution, 
that is, normally distributed data that are symmetric and bell curve–shaped, 
favors the use of parametric inferential tests, while the distribution-free data 
are used to demonstrate the comparison between measurements with the less 
powerful or effective nonparametric tests. The scales of measurement used in 
clinical research are (a) cardinal—interval and ratio scales, (b) ordinal, and 
(c) nominal. The parametric inference is applied to cardinal data, and the vio-
lation of normality of the cardinal data suggests the use of a nonparametric 
alternative in this circumstance. Because both ordinal and nominal data are 
nonnormal, parametric tests are adequate in making inferences about them.

With one-sample hypothesis testing, the mean difference comparing the 
population to the sample mean can be achieved using a one-sample t test 
(Figures 6.2 and 6.3). And if  the normality assumption is violated or the data 
are ordinal, the sign test remains the nonparametric equivalent. A paired, 
correlated data, matched, or dependent t test is used when data are collected 
from the same subjects more than once, as illustrated in test and retest, pre-
test and posttest, preoperative and postoperative measures. The appropri-
ate assumptions for the use of this statistic must be met: (a) random sample 
implying that a simple random sample from the population was chosen with a 
known sampling probability, (b) normality assumption, and (c) cardinal scale 
of measurement. The violation of normality requires the use of the nonpara-
metric alternative, the Wilcoxon signed-rank test, and not the Wilcoxon rank-
sum test, as it is commonly erroneously used interchangeably.

A repeated-measure ANOVA is another parametric test used in hypothesis 
testing involving one sample. This test is necessary when measurements are taken 
more than twice from the same subject. A paired t test is inappropriate when 
repeated measures are more than two in the study design. The violation of the 
normality assumption or when data are collected on an ordinal scale suggests 
the use of the nonparametric equivalent, the Friedman test for repeated-measure 
ANOVA.
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Figure 6.2  Selection of statistical test for one-sample data.
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Questions for discussion

	 1	 Sodium restriction favorably affects hypertension. To test the effect of 
dietary sodium restriction, 12 men were observed for 1 month. The 
baseline systolic blood pressures were obtained: 117.3, 111.3, 117.4, 
122.8, 126.4, 115.8, 133.3, 96.2, 109.9, 123.6, 100.0, and 119.7, while the 
follow-up SBPs were 108.4, 107.0, 110.4, 126.3, 121.6, 113.2, 128.9, 95.7, 
107.7, 123.8, 98.8, and 117.3. Examine the baseline and follow-up data 
for possible inference on the effect of dietary sodium restriction and SBP 
lowering. (a) Which test is adequate for the comparison of the SBP differ-
ence? (b) Using preferred statistical software, compute the test. (c) What 
can be concluded based on this evidence regarding the effect of dietary 
sodium restriction on SBP?

	 2	 The mean duration of hospital stay tends to vary from hospital to hospi-
tal given the same diagnosis. Below is the duration of stay of 10 patients 
in a hospital after diagnosis for chronic bronchitis: 3, 17, 11, 30, 14, 5, 
11, 6, 10, and 5 days. If  the mean population of hospital stay is 10.0 days 
and the standard deviation is 2.3 days, determine whether or not the hos-
pital stay of this sample differs from the population mean hospital stay. 
(a) Which test statistic will be appropriate? (b) What can be concluded 
based on the evidence from the data?

	 3	 Below are the data on the white blood cells (×103) of 16 patients admitted 
to the pulmonary and allergy department of a comprehensive treatment 
center in Nocity: 8, 5, 12, 4, 11, 6, 8, 7, 7, 12, 7, 3, 11, 14, 11, and 9. If  
white blood cells are known not to be normally distributed in the popula-
tion, using the appropriate test statistic, determine if  the WBC count in 
this sample differs from that of the population if  the population estimate 
is said to be 7.0 × 103. Second, what can be concluded from these data 
regarding the WBC counts of this sample relative to the population?

	 4	 Suppose you are to conduct a study on the effectiveness and safety of 
titanium instrumentation in correcting and maintaining correction of 
scoliosis in adolescent idiopathic scoliosis, and there are four measure-
ments of main curve during a 2-year follow-up period. (a) Which design 
will you consider to be appropriate in this study? (b) What assumptions 
will you consider in the selection of the test statistic for the inference? 
(c)  What distribution will you assume, and how will you interpret the 
critical value obtained from this test? (d) State the null hypothesis and 
discuss its rejection and acceptance of the alternate hypothesis.
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7.1 � Introduction

In clinical research, two-sample hypothesis testing is more frequently used rela-
tive to one-sample hypothesis testing. In this statistical inference, the underlying 
parameters of two different populations are compared but the parameters are 
not assumed to be known, as observed in one-sample t test for example. We 
discussed in previous chapters hypothesis testing when a single or one sample is 
involved. Specifically, we compared the parameters of the population from which 
the sample was drawn with that of the larger population, whose parameters were 
assumed to be known. To recap, single-group hypothesis testing provides an esti-
mation of the proportion (binary or categorical measures), mean (continuous 
scale variable), or a comparison of the observed continuous or ordered/ranked 
values to a norm or standard. For example, a one-sample hypothesis testing is 
appropriate in comparing the mean weight of children (0 to 19 years old) with 
leukemia with that of same age children in the United States (values of US chil-
dren 0 to 19 years assumed to be known). Also, when a single group is measured 
twice (paired sample) or more (repeated measures), which allows us to estimate 
how much the proportion or mean in the single group changes between measure-
ments, a single-sample hypothesis testing technique is used.

Two independent groups hypothesis testing involves the comparison of 
means or proportion in two independent groups.1 Independent groups refer 
to groups in which information obtained from one is not influenced or depen-
dent on the observation or information from the other.2 In addition, this 
hypothesis testing assumes that the groups represent random samples (each 
study sample with equal chance of being selected from the larger population 
into the study population or sample) from a larger population in which statis-
tical inference could be drawn.

This chapter presents the rationale and assumptions and study designs 
suitable for the application of two-sample or independent-sample (when data 
points in one sample are unrelated to the data points in the second sample) 
hypothesis testing and examples of hypothesis testing techniques as statistical 
methods in two-sample statistical inference. A simplified approach is taken in 
presenting these techniques: when, where, why, and how these tests are used. 

Two independent samples 
statistical inference

7
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Clinical examples and the study design used are presented with the analysis of 
the inference using the STATA statistical package example.

7.1.1 � What are the examples of two-sample hypothesis tests?

Two independent groups hypothesis testing involves the use of two-sample or 
independent sample t tests (test the null hypothesis of no mean difference—
equality of means) when observations are (a) numerical, meaning that the 
variables are measured on either an interval or ratio scale—continuous; 
(b) normality is assumed; and (c) the intent of investigators is to determine 
whether or not the two means are significantly different. For example, in a 
retrospective cohort study conducted to examine the risk associated with post-
operative pancreatitis, the mean estimated blood loss was compared between 
cases and noncases using a two-sample t test. A nonparametric alternative to 
the two sample t test is the Mann Whitney U test despite the fact that the two 
tests are similar, which is appropriate when (a) the normality assumption of 
the two-sample t test is violated, (b) data are measured on an ordinal scale, 
and ​(c) there is a small study sample (small study sizes are more likely to be 
skewed, thus violating the normality assumption). A z distribution can be used 
to test proportions involving independent groups, as well as a chi-square statis-
tic and Fisher’s exact test when the sample sizes are not large, as seen in small, 
expected, and not observed cell frequency. A disadvantage of the chi-square 
test is its inability to form a confidence interval, hence dichotomous signifi-
cance tests (rejection or nonrejection of the null hypothesis of no difference).

7.2 � Independent (two-sample) t test and nonparametric 
alternative (Mann–Whitney u test)

If a study is conducted using a longitudinal or follow-up design to determine 
the effect of calcium supplement intake on prostate cancer incidence, will a two-
sample t test or paired t test be adequate in assessing the mean prostate-specific 
antigen (PSA), assuming the same cohort is measured at baseline and followed 
for 20 months? The investigators identified a group of older men (65 and older) 
who were not currently on supplement calcium intake, measured their PSAs, 
followed them for 24 months and ascertained a subgroup of men who had 
become calcium supplement users and measured their PSA. Again, is a two-
sample test or a paired t test an appropriate statistical inference in concluding 
that calcium is associated or not with prostate cancer risk (PSA as end point)?

Whenever a research question involves the comparison of means in two 
separate groups, a t test for two independent groups is appropriate, and it is 
widely used in clinical research. In fact, the t test or Student’s t test is the most 
commonly used statistical technique in clinical research, though it is often 
erroneously used by researchers. For example, investigators comparing means 
between three independent samples sometimes use the t test by comparing the 
interventions to the control in a pairwise comparison manner. This approach is 
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inappropriate and should be discouraged. However, if  the population standard 
deviation is known, which is highly unlikely, a z test is equally suitable in test-
ing a hypothesis involving two independent means. Therefore, it is unusual to 
know the true standard deviation of the target population, but the population 
standard deviation (σ) termed the parameter (unknown attributes of the target 
population) can be estimated by the sample standard deviation, S, termed sta-
tistic (functions of values in the sample), and (x − μ)/(S/√n) has a completely 
specified distribution, which is a t distribution.3 This distribution as discussed 
earlier belongs to the family of bell-shaped distributions, which are symmetric 
about zero. And t = difference in sample means/standard error of difference of 
sample means. Mathematically, the t statistic (tn − 1) is given as follows:

	 t xstatistic / /= − √( ) ( )µ S n

and has a t distribution with n − 1 degrees of freedom. In comparison to z 
distribution (discussed earlier as well), the S of  a t statistic is greater than 
that of a standard normal distribution as a result of imprecision in S as an 
estimate of σ. However, as sample size increases, S becomes a more and more 
accurate estimate of σ and tn − 1 (t statistic) approaches z statistic (standard 
normal distribution).4 We can recall that as sample size increases, we are more 
confident in the estimates of the population mean, implying that the observed 
differences between the two samples’ means is not due solely to random sam-
pling. In other words, the increase in sample size leads to a reduction in the 
uncertainty of the estimate of the true population mean as obtained from the 
sample (standard error): ↑ sample size →↓ standard error of the mean. The 
SE (standard error) = σ/√n, where σ is the standard deviation of the popula-
tion being the source of the sample and n is the size of the study. Likewise, the 
increase in sample size implies the decrease in the uncertainty in the estimate 
of the differences of the means between the two independent samples relative 
to the differences of the means.

The Mann–Whitney U test is a nonparametrize equivalent to independent 
sample t text. The notion of nonparametric is a misnomer since all statistical 
test of hypothesis draw inference from the sample data (statistic) to compare 
with the population parameter. Specifically all hypothesis tests are paramet-
ric, implying that a clear and meaningful distinction in statistics should be 
between parametric as probability distribution-based, and distribution-free 
(non-shape) based data as parametric and nonparametric, respectively.

7.2.1 � Terms explanation

Independent sample refers to the notion that the observations (values/data) 
from one group do not provide any information about the observations in 
the second group. For example, if  investigators intended to examine the mean 
differences in age of African-American women and Caucasian women diag-
nosed with breast cancer in the Surveillance Epidemiology and End Results 
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(SEER) database of the National Cancer Institute (NCI), the observations 
on age for African-American women with breast cancer must not provide any 
information about the observation on the age of Caucasian women diagnosed 
with breast cancer, in order for the two groups or samples to be termed inde-
pendent. Graphically, error bars can be used to compare the means of two or 
more independent groups. This method is fairly accurate when there are rela-
tively large sample sizes, so that n > 10 in each sample.5 However, caution is 
required in the interpretation of error bars, since the selected standard errors 
for the graph must consider the sample size. As a rule, when n > 10, the 95% 
CI = mean ± 2SE or 2SD (if  data are normally distributed). In terms of the 
interpretation, whenever there is no overlap between the top of one error bar 
with the bottom of the other bar, one can be 95% confident or sure that the 
means in the two groups are significantly different.6

7.2.2 � Independent/two-sample t test

7.2.2.1 � What is an independent (two-sample) t test?

A t test is a test statistic to examine the null hypothesis of  no mean differ-
ence in two groups or independent samples when the population standard 
deviation is unknown, which is the case in clinical research. To examine this 
hypothesis, the test statistic considers (a) the difference in sample means and 
(b) the standard error of  difference of  the sample. Simply, t = difference in 
sample means/the standard error of  the difference of  sample means.

7.2.2.2 � When is the independent or two-sample t test appropriate?

An independent t test is adequate if a study is conducted to determine the mean 
differences between two groups and the two groups are said to be independent. 
For example, consider a retrospective cohort study conducted to examine the 
factors related to deep wound infection after posterior spine fusion in children 
with neuromuscular scoliosis in which the age at surgery was a potential predic-
tor variable. Since cases were independent from noncases, a two-sample t test was 
appropriate in determining the mean age at walking between cases and noncases.

7.2.2.3 � What are the assumptions of the independent t test?

An independent samples t test compares the means of two samples, with the 
assumptions that (a) the two groups being compared should be independent of 
each other, (b) the scores should be normally distributed, (c) dependency must 
be measured on an interval or ratio scale, (d) the independent samples should 
have only two discrete levels, and (e) the assumption of equal standard devia-
tions or variance, termed homogeneous variance. The assumption of equality 
of variance could be ignored given the equality of the sample sizes. However, 
it is essential to test and examine whether or not SDs are similar or equal. If  
the SDs are not equal, a special t test—t test with unequal variance—should be 
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used. Using the unequal variance test will adjust the degrees of freedom down
ward, which renders the null hypothesis more difficult to reject if indeed the null 
hypothesis of no difference in the two means is true. The independent t test is 
robust to normality, and its violation may not necessarily imply not computing a 
t test. However, this violation may produce a p value that is lower than expected, 
implying a rejection of the null hypothesis of no difference when indeed the null 
hypothesis is true (no difference between the two means compared).

7.2.2.4 � How is the independent t test computed?

The intent of the two-sample t test computation is to compare the relative 
magnitude of the differences in the sample means with the amount of vari-
ability that would be expected. With the null hypothesis of no difference in 
mean, the two-sample t test is computed by using the formula: t(n1+n2−2) = 

(X1 − X2)/SDp [( ) ( )]1 11 2/ /n n+ , where (n1 − 1) + (n2 − 1) represents the degree 

of freedom (n1+n2−2) and SDp is the pool standard deviation. Simply, t = differ-
ence of sample means/standard error of difference of sample means, implying 

mathematically: t = − +X X S x S x1 2
2

1
2

2/ , and in terms of sample standard 

deviation, t = − +X X S n S n1 2 1
2

2
2/ / / .  Because t is a ratio, the smaller the 

value, the less likely it is that both samples were drawn from a single popula-
tion (statistically insignificant mean difference). In contrast, the larger the 
ratio, the more unlikely it is that the samples were drawn from a single popula-
tion (statistically significant mean difference).

To compute the independent t test using STATA, the syntax is ttest y, 
by (x), or ttest y, by (x) unequal (where equal variance is not assumed). This syn-
tax performs a two-sample t test of the null hypothesis that the population mean 
of y is the same for both categories of variable x. Using the sample data from the 
deep wound infection after posterior spine fusion study, the two-sample t test for 
the age at surgery between cases and noncases was computed as follows:

 ttest   ageatsurgery,by  (deepwound_infeect)

Two-sample t test with equal variances

   Group   Obs       Mean   Std. Err.   Std. Dev.  [95% Conf.  Interval]

       0   214   13.86916   .2348174   3.435083     13.4063   14.33202
       1    22   13.94545    .669358   3.139567    12.55345   15.33746

combined   236   13.87627   .2214786   3.402419    13.43993   14.31261

    diff        –.0762957   .7633827              -1.580277   1.427685

    diff = mean(0) - mean(1)                               t =  -0.0999
Ho: diff = 0                              degrees of freedom =      234

     Ha: diff < 0           Ha: diff ! = 0           Ha: diff > 0
  Pr(T < t) = 0.4602    Pr(|T| > |t|) = 0.9205   Pr(T > t) = 0.5398

Note: Data used with permission from the investigative team including the 
author (LH).
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A study on insulin insensitivity on women with hyperthyroidism compared 
the insulin level among normal and overweight patients (hypothetical). An 
independent sample t test was used to determine the exposure effect of weight 
in these independent samples (normal versus overweight). The assessment of 
the effect of weight requires exploratory analysis and visualization of the data.

. tabstat  Ins_sen, stat (mean, sd, variance, n)

   variable        mean           sd      variance          N

    Ins sen    .3829286     .2739265      .0750357        112

. tabstat Ins_sen, stat (mean, sd, variance, n) by ( Weight)

Summary for variables: Ins_sen

     by categories of: Weight 

     Weight        mean           sd       variance         N

         1         .55     .2423169       .0587175        64

         2    .1601667     .0990859        .009818        48

     Total    .3829286     .2739265       .0750357       112

    diff = mean(1) - mean(2) t =  10.4978
Ho: diff = 0 degrees of freedom =      110

       Ha: diff < 0                Ha: diff != 0              Ha: diff > 0
   Pr(T < t) = 1.0000          Pr(|T| > |t|) = 0.0000      Pr(T > t) = 0.0000

. ttest  Ins_sen,  by  ( Weight)

 Two-sample t test with equal variances

     Group    Obs      Mean    Std. Err.    Std. Dev.    [95% Conf. Interval]

         1     64       .55     .0302896     .2423169      .4894711   .610529
         2     48  .1601667     .0143018     .0990859      .1313951  .1889382

  combined    112  .3829286     .0258836     .2739265      .3316384  .4342187

      diff         .3898333     .0371349                   .3162407   .463426

 . ttest  Ins_sen,  by  ( Weight)  unequal

 Two-sample t test with equal variances

     Group     Obs       Mean    Std. Err.    Std. Dev.   [95% Conf. Interval]

         1      64         .55    .0302896     .2423169     .4894711   .610529
         2      48    .1601667    .0143018     .0990859     .1313951  .1889382

  combined     112    .3829286    .0258836     .2739265     .3316384  .4342187

      diff            .3898333    .0334963                    .32327  .4563967

    diff = mean(1) - mean(2) t  =  11.6381
Ho: diff = 0 Satterthwaite's degrees of freedom =  88.3369

    Ha: diff < 0               Ha: diff ! = 0                 Ha: diff > 0
Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000

.
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. tabstat le, stat (mean sd, var sem p50 iqr range min max n)

 variable       mean       sd  variance   se(mean)  p50       iqr   range   min   max    N

       le   30.67667 3.945451  15.56658   .272262  30.7  5.899998    15.1  23.4  38.5  210

. tabstat  le , stat (mean sd, var sem p50 iqr range min max n) by ( race)

Summary for variables: le

     by categories of: race

 

    race        mean        sd  variance  se(mean)    p5       iqr  range   min   max    N

       1    28.77333  3.416399  11.67178  .3334064  28.7  6.299999     11  23.4  34.4  105

       2       32.58  3.506571  12.29604  .3422063  32.2  6.200001   11.6  26.9  38.5  105

   Total    30.67667  3.945451  15.56658   .272262  30.7  5.899998   15.1  23.4  38.5  210

The above test assumes unequal variance in the two groups (cases and 
noncases). Likewise, there is a difference in the sample size of  the two sam-
ples (22 for cases and 214 for noncases). Assuming unequal standard devia-
tions in the two groups, the STATA syntax is ttest ageatsurgery,by 
(deepwound_infeect)unequal. The inclusion of  unequal in this 
syntax causes the Satterthwaite’s test for groups with unequal variance to 
be computed. As indicated in the following, the standard deviations in the 
cases and noncases are not very similar, and the sample sizes are not equal; 
it is unlikely that this test provides similar results to the test above that 
assumes equal variance. Since the degrees of  freedom substantially differ 
when unequal variance is assumed and in our case the absolute value of  the 
t statistic changed from 0.099 to 0.107, in this example, the loss in statistical 
power due to not assuming equal variance is consequential.7

Vignette 7.1: Assuming the life expectancy (le) at 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 53, and 54 is 38.5, 37.6, 36.7, 35.7, 
34.8, 33.9, 33.0, 32.1, 31.2, 30.3, 29.5, 28.6, 27.7, 26.9, and 26.0 for 
Caucasian females and 34.4, 33.6, 32.7, 31.9, 31.1, 30.3, 29.5, 28.7, 
27.9, 27.1, 26.4, 25.6, 24.9, 24.1, and 23.4 for African-American 
females in the United States, (a) is there any difference in the mean 
life expectancy between white and black women, age 40 to 54? 
(b) What evidence can be drawn from these data regarding ethnic/
racial disparities in life expectancy among US females?

Solution: Using STATA, the two-sample t test is computed with 
the output below:
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7.2.2.5 � Independent sample t test

. ttest  le, by ( race)

Two-sample t test with equal variances

   Group   Obs      Mean   Std. Err.  Std. Dev.  [95% Conf. Interval]

       1   105  28.77333    .3334064   3.416399   28.11218    29.43449
       2   105     32.58    .3422063   3.506571   31.90139    33.25861

combined   210  30.67667     .272262   3.945451   30.13994     31.2134

    diff       -3.806667    .4777708             -4.748561   -2.864773 

    diff = mean(1) - mean(2)                           t =  -7.9676
Ho: diff = 0                          degrees of freedom =      208

     Ha: diff < 0           Ha: diff != 0            Ha: diff > 0
  Pr(T < t) = 0.0000   Pr(|T| > |t|) = 0.0000    Pr(T > t) = 1.0000

. ttest  le, by ( race) unequal

Two-sample t test with equal variances

   Group   Obs      Mean  Std. Err.  Std. Dev.  [95% Conf. Interval]

       1   105  28.77333   .3334064   3.416399   28.11218   29.43449
       2   105     32.58   .3422063   3.506571   31.90139   33.25861

combined   210  30.67667    .272262   3.945451   30.13994    31.2134

    diff       -3.806667   .4777708             -4.748564  -2.864769

    diff = mean(1) - mean(2) t =  -7.9676
Ho: diff = 0 Satterthwaite's degrees of freedom =  207.859

     Ha: diff < 0           Ha: diff != 0            Ha: diff > 0
  Pr(T < t) = 0.0000   Pr(|T| > |t|) = 0.0000    Pr(T > t) = 1.0000

The output above indicates the difference in the mean life expectancy for 
two independent samples of  US women, age 40 to 54. African-American 
women (2) had a mean life expectancy of  28.8 years for women aged 40 to 
54, while Caucasian women had a 32.17-year life expectancy for the same 
period. The data support the evidence that Caucasian women are more 
likely to live longer than African-American women (the null hypothesis of 
no mean life expectancy difference is rejected, p = 0.019).
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ttest LExpect, by(race) unequal

Two-sample t test with unequal variances

   Group   Obs       Mean    Std. Err.     Std. Dev.     [95% Conf. Interval]

       1    15   32.16667     1.031119     3.993507      29.95514     34.3782
       2    15   28.77333    0.9087127     3.519429      26.82434    30.72233

combined    30      30.47    0.7451321     4.081257      28.94603    31.99397

diff = mean(1) − mean(2) t = 2.4690
H0: diff = 0 Satterthwaite's degrees of freedom = 27.5645

Ha: diff < 0  Ha: diff != 0  Ha: diff > 0
Pr(T < t) = 0.9900 Pr(|T| > |t|) = 0.0200 Pr(T > t) = 0.0100

The unequal variance output does not seem to vary from the equal vari-
ance test computed above in terms of the statistical stability (p = 0.02), which 
indicates an inclination to accept the equal variance result as inconsequential.

7.2.3 � Test of  the equality of variance

The Levene test for equal variances is often recommended and is adequate in 
testing the equality of variances even when more than two groups are involved. 
However, one must be careful in interpreting this test since the Levene test is 
strictly a test of the absolute value of the distance each observation is from 
the mean in that group, thus testing the hypothesis that the average deviations 
from the mean in each group are similar in the two samples or groups. A sta-
tistically significant result of the Levene test of equality of variance implies 
that, on average, the deviations from the mean in one group are greater than 
those in the other group or sample.

. tabstat  le , stat  (mean sd, var sem p50 iqr range min max n) by ( race)

Summary for variables: le
     by categories of: race

    race       mean        sd   variance  se(mean)   p50       iqr   range   min   max  N

       1   28.77333  3.519429   12.38638  .9087127  28.7  6.299999      11  23.4  34.4  15
       2      32.58   3.61232   13.04886   .932697  32.2  6.200001    11.6  26.9  38.5  15

   Total   30.67667  4.003333   16.02668  .7309053  30.7  5.899998    15.1  23.4  38.5  30

. ttest  le, by ( race)

Two-sample t test with equal variances

   Group       Obs         Mean    Std. Err.   Std. Dev.    [95% Conf. Interval]

       1        15     28.77333     .9087127    3.519429     26.82434   30.72233
       2        15        32.58      .932697     3.61232     30.57956   34.58044

combined        30     30.67667     .7309053    4.003333      29.1818   32.17154

    diff              -3.806667     1.302184                -6.474069  -1.139264

    diff = mean(1) - mean(2)                                        t =  -2.9233
Ho: diff = 0                                     degrees of freedom   =       28

     Ha: diff < 0                Ha: diff != 0                   Ha: diff > 0
  Pr(T < t) = 0.0034       Pr(|T| > |t|) = 0.0068            Pr(T > t) = 0.9966
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Prior to performing unequal variance test, the variance test below must be 
conducted and interpreted. This test indicates the equality of variance, imply-
ing retaining the equal variance test above. However, for illustration purpose, 
the unequal variance test is conducted below with identical results compared 
with the equal variance test above.

32.58
28.77333

30.67667

.3334064

.3422063

.272262

3.416399
3.506571

3.945451

28.11218
31.90139

30.13994

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

1
2

105
105

210

29.43449
33.25861

31.2134combined

ratio = sd(1) / sd(2)
Ho: ratio = 1

Ha: ratio < 1

Pr(F < f) = 0.3955
Ha: ratio != 1

2*Pr(F < f) = 0.7910

f =   0.9492
degrees of freedom = 104, 104

Ha: ratio > 1
Pr(F > f) = 0.6045

Variance ratio test

. sdtest le, by ( race)

Group

Variance ratio test

Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

1
2

56
55

111

47.92857
37.2

42.61261

1.465592
.7065828

.961688

10.96748
5.240158

10.13201

44.99146
35.78339

40.70677

50.86568
38.61661

44.51845combined

ratio = sd(1) / sd(2)
Ho: ratio = 1

Ha: ratio != 1Ha: ratio < 1 Ha: ratio > 1
Pr(F < f) = 1.0000 Pr(F > f) = 0.00002*Pr(F > f) = 0.0000

f = 4.3805
degrees of freedom = 55, 54

. sdtest age, by( Sex)

The above Stata output illustrates the equality of variance test using 
“sdtest.” The null hypothesis is based on the equality of variance while the 
alternate states that the variances are not equal, implying the variance is not 
equal to 1.0. The null hypothesis is rejected implying inequality of the vari-
ances comparing male and female with respect to age. The appropriate test in 
this context is the independent t test with unequal variance.

1
2

56
55

47.92857
37.2

1.465592
.7065828

.961688

1.627027

10.96748
5.240158

10.13201

44.99146
35.78339

40.70677

7.4901710.72857

42.61261111

50.86568
38.61661

44.51845

13.96697

combined

diff

diff = mean(1) - mean(2)
Ho: diff = 0

Ha: diff < 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(T > t) = 0.0000

t =  6.5940
Satterthwaite's degrees of freedom = 79.1821

Ha: diff != 0
Pr(|T| > |t|) = 0.0000

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Two-sample t test with unequal variances

. ttest  age, by( Sex) unequal

.
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. ttest  le, by ( race) unequal

Two-sample t test with unequal variances

   Group   Obs       Mean     Std. Err     Std. Dev.   [95% Conf.  Interval]

       1    15   28.77333     .9087127      3.519429     26.82434   30.72233
       2    15      32.58      .932697       3.61232     30.57956   34.58044

combined    30   30.67667     .7309053      4.003333      29.1818   32.17154

    diff        -3.806667     1.302184                  -6.474151  -1.139183

    diff = mean(1) - mean(2)                                    t =   -2.9233
Ho: diff = 0                   Satterthwaite's degrees of freedom =    27.981

     Ha: diff < 0              Ha: diff != 0                  Ha: diff > 0
 Pr(T < t) = 0.0034       Pr(|T| > |t|) = 0.0068           Pr(T > t) = 0.9966
.

ttest ageatsurgery,by (deepwound_infeect) unequal

Two-sample t test with unequal variances

   Group      Obs      Mean    Std. Err.   Std. Dev.     [95% Conf. Interval]

       0      214  13.86916    0.2348174    3.435083       13.40631   4.33202
       1       22  13.94545     0.669358    3.139567       12.55345  15.33746

combined      236  13.87627    0.2214786    3.402419       13.43993  14.31261

    diff = mean(0) − mean(1)         t = −0.1076
H0: diff = 0 Satterthwaite's degrees of freedom = 26.4474

Ha: diff < 0  Ha: diff != 0  Ha: diff > 0
Pr(T < t) = 0.4576 Pr(|T| > |t|) = 0.9152 Pr(T > t) = 0.5424

Note: Data used with permission from the investigative team including the 
author (LH).

7.2.4 � Is there a nonparametric alternative to the independent t test?

The Wilcoxon rank-sum test mentioned earlier is the alternative or analog 
nonparametric test to the two independent samples t test. This test is also 
called the Mann–Whitney U Test and the Mann–Whitney–Wilcoxon rank-
sum test. The Wilcoxon rank-sum test examines whether or not the two medi-
ans are equal—it tests the equality of medians when there are two separate or 
independent groups. This test is effective and appropriate when the indepen-
dent t test’s assumptions are not met and data are ordinal.

Suppose the quality of life (QOL) of children with leukemia who received 
a full cycle of chemotherapy is compared to that of children who did not com-
plete the cycle because they were too ill to do so, and QOL is measured on a 
Likert scale: 1 = not satisfied, 2 = slightly unsatisfied, 3 = not sure, 4 = slightly 
satisfied, and 5 = satisfied. The Wilcoxon rank-sum test is the appropriate 
statistical inference. The Wilcoxon rank-sum test tests the null hypothesis that 
H0: medianCC = medianIC, where medianCC = median QOL of children who 
had completed the chemotherapy cycle while medianIC is the median QOL of 
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those who did not complete the chemotherapy, and the alternate hypothesis is 
H1: medianCC ≠ medianIC.

Two-sample Wilcoxon rank-sum (Mann–Whitney) test
  chemo    obs    rank sum     expected

      1     12         209          150
      2     12          91          150

combined    24         300          300

unadjusted variance 300.00

adjustment for ties −15.91

adjusted variance 284.09

H0: qol(chemo==1) = qol(chemo==2)
 z          = 3.500
 Prob > |z| = 0.0005

P{qol(chemo==1) > qol(chemo==2)} = 0.910

The above output shows a significant difference in the median QOL of the 
two independent samples. Children diagnosed with leukemia who received 
the full chemotherapy cycle compared to those who did not complete chemo-
therapy were more likely to report their QOL as being satisfactory.

7.3 � z Test for two independent proportions

The difference between two independent proportions could be tested using 
a z-test statistic. For example, if  we conducted a study to determine the dif-
ference in proportion of diabetic patients with diabetic keto-acidosis (DKA) 
who developed renal failure and died and those without DKA who developed 

Vignette 7.2: The QOLs of children with leukemia who complete the full 
cycle of chemotherapy are 5, 5, 4, 3, 5, 4, 4, 5, 4, 4, 3, and 5, and those 
who did not complete are 4, 3, 3, 2, 2, 1, 4, 3, 3, 1, 2, and 2. (a) Is there 
a difference in the QOL of those who did and did not complete chemo-
therapy? (b) What can you conclude from the data?

Solution: Using STATA, the syntax for the Wilcoxon rank-sum test 
is ranksum qol, by(chemo) porder
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renal failure and died, with renal failure as our end point, a two-tailed z test 
is appropriate.

7.3.1 � What is a z test for two independent proportions?

A z-test statistic is that which allows one to test the difference in pro-
portion when two groups are independent. This distribution, unlike bino-
mial (discrete), is continuous, with a small correction required in order to 
obtain a more accurate approximation (continuity correction). This conti-
nuity correction involves a subtraction of  0.5 (½) from the absolute value 
of  the numerator of  the z statistic.

7.3.2 � When is it appropriate to use a z test?

Comparing two independent proportions involves the use of  a z test. 
However, comparing frequencies of  proportion in two groups can be 
achieved with the chi-square test of  independence. And to be precise, 
the chi-square tests the hypothesis of  expected frequencies, which is not 
the purpose of  the z score for the test of  two independent proportions. 
Therefore, the z test is adequate in testing the null hypothesis of  equality of 
two independent proportions.

7.3.3 � How is the z test for two independent proportions computed?

Remember that the formula for the z test for a single proportion test is z = 
ρ π π π− −/ ( ) /1 n , where the standard error is the square root of π (1 − π), 
represented as π π( )1− .

In using the z test for two independent proportions, the mathematical for-
mula is as follows:

	
z n n= − − +ρ ρ ρ ρ1 2 1 21 1 1/ ( ) [( ) ( )]/ /

where ρ1 is the proportion in one group, ρ2 is the proportion in the second 
group, and ρ is the average or pooled proportion denoted by n1p1 + n2p2/​
n1 + n2.

For example, in the deep wound infection data, if  we wanted to test the 
null hypothesis that the cerebral palsy patients who had deep wound infec-
tions (cases) were equal to those who had none (noncases) with respect to 
the proportion that had skin breakdown after posterior spine fusion, the two 
independent sample proportion is an appropriate test.
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0
1

.0095238

.3181818
.0067022
.0993026

diff

-.0036123
.1235523

-.5037303

.0226599

.5128113

-.1135857
-7.13 0.000

-.308658 .0995285
.0432722under Ho:

Variable Mean Std. Err. z P>|z| [95% Conf. Interval]

Two-sample test of proportions

. prtest  rodproblem, by (  deepwound)

0: Number of obs =       210
1: Number of obs =        22

z =  -7.1329

Ha: diff > 0Ha: diff < 0
Pr(Z > z) = 1.0000Pr(Z < z) = 0.0000

Ha: diff !=0
Pr(|Z| < |z|) = 0.0000

diff = prop(0) - prop(1)
Ho: diff = 0

With the Z, −7.133, and p < 0.0001, one must reject the null hypothesis 
that there is no difference in the proportion of those who had skin breakdown 
regardless of whether or not they had deep wound infection. Therefore, one 
must conclude that those who had skin breakdown were more likely to have 
deep wound infection.

7.4 � Chi-square test of proportions in two groups

The chi-square statistic is a distribution-free (nonparametric) statistical tech-
nique used to determine if  a distribution of observed frequencies differs from 
the theoretically expected frequencies. This test uses nominal (categorical) or 
ordinal level data, thus instead of using means and variances, this test uses 
frequencies, comparing the observed to the expected. Simply, the χ2 statis-
tic summarizes the discrepancies between the expected number of times each 
outcome occurs (assuming that the model is true) and the observed number 
of times each outcome occurs, by summing the squares of the discrepancies, 
normalized by the expected numbers, over all the categories.8

7.4.1 � Types of chi-square tests

The chi-square test for goodness of fit compares the expected and observed values 
to determine how well an experimenter’s predictions fit the data. The chi-square 
test for independence compares two sets of categories to determine whether the 
two groups are distributed differently among the categories (Figure 7.1).9

7.4.2 � What is a chi-square test?

This test is used in comparing frequencies of  proportion in two samples 
or groups and is a test of  independence, relationship, or association.10 It 
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is based on a null hypothesis of  no difference/relationship/association or 
dependency. Unlike the t test discussed earlier, the chi-square test is nonpara-
metric, meaning that it is distribution-free. The following are examples of 
research questions involving two independent proportions and two or more 
categories that could be tested with a chi-square test: (1) Is there a difference 
in the proportion of  older men treated for prostate problems who received 
hormonal therapy relative to those who did not receive hormonal therapy? 
(2) Is there an association or relationship between women with autoimmune 
disorder and race?

Hypothesis testing involving
categorical variables – inference
about categorical independent

sample data

Null hypothesis: �ere is no relationship
between race and abnormal

childhood BMI

Are the outcome
(BMI) and independent

(race) variables measured
on categorical scale? 

No Yes

Are the
samples

independent?
YesNo

Perform
chi-square

test for
independence

Is the expected
cell count <2 in
any of the cells?

Report Fisher’s exact
to compensate for

small cell counts since
Pearson applies to

fairly large expected
cell count Yes

NoReport chi-square
result with df and

p value 

One-sample median
test, McNemar test

(binary)

What is the scale
of measurement
of the variables?

Karl Person (1900) proposed
the chi-square to determine

whether the sample data
agree with the hypothesized

values.
Chi-square; Σ[(0–E)2÷E] 

Figure 7.1  Hypothesis testing involving categorical scale—chi-square statistic.
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7.4.3 � When is it appropriate to use the chi-square statistic 
to compare proportions in two independent samples 
or groups?

The chi-square statistic is used to test the equality of these two proportions. 
For example, the null hypothesis for dependency is that there are no racial 
differences among women with autoimmune disorders or, simply, women 
with autoimmune disorders do not differ by race. If  investigators conducted 
a study to examine the association between the types of leukodystrophy and 
the race/ethnicity of children with this condition, a chi-square statistic would 
be appropriate. The data from such an investigation can be organized in a row 
(R) and column (C) contingency table. The intent is to compare the observed 
with the expected frequency. The greater the difference between the observed 
and the expected cell counts, the more likely it is that the null hypothesis will 
be rejected.

7.4.4 � What are the assumptions for χ2 statistic?

The following assumptions and conditions apply to the chi-square statistic:

	 1	 The expected frequency for each category should not be less than 2.
	 2	 No more than 20% of the categories should have expected frequencies 

of <5.
	 3	 The sample and hence the variable should be randomly drawn from the 

population.
	 4	 Data should be reported in raw counts of frequency.
	 5	 Measured variables must be independent.
	 6	 Values of independent and dependent variables must be mutually exclu-

sive. Please note that statisticians differ with respect to the smallest cell 
counts.

7.4.5 � How is the chi-square statistic computed?

Chi-square is computed based on the observed and expected frequencies 
(Table 7.1).

Mathematically, it appears as follows: χ2 = (O − E)2/E, where O is the 
observed frequency, E = the expected frequency → χ( )df

2 = Σ  (observed 
frequency  − expected frequency)/expected frequency.11 If  no relationship 
exists, the observed frequencies will be very close to the expected frequency, 
thus rendering the chi-square value small. If  more than 20% of the expected, 
not the observed, frequency is <5 → Fisher’s exact test.12

Below is the STATA illustration of how chi-square is computed. In this 
example, investigators examined the association between the type of cerebral 
palsy and recurrent surgery for equinus foot deformity.
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. tab  group cptype, cchi2 chi2 row column exact

                       Cptype

      Group    1         2         3           Total

      0        12        78        83          173
               2.0       4.4       12.8        19.2
               6.94      45.09     47.98       100.00
               37.50     44.32     83.00       56.17

      1        20        98        17          135
               2.5       5.6       16.4        24.6
               14.81     72.59     12.59       100.00
               62.50     55.68     17.00       43.83
 
      Total    32        176       100         308
               4.5       10.0      29.2        43.8
               10.39     57.14     32.47       100.00
               100.00              100.00      100.00 |

Pearson chi2(2) = 43.8113             Pr = 0.000, implying p <0.0001
since pr is never 0.
        Fisher's exact = 0.000, implying  p <0.0001

Table 7.1  Chi-square statistic illustrating the formulae with different degrees of freedom

If xi (i = 1, 2, … n) are independent and normally distributed with mean μ and 
standard deviation σ, then

xi
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This is a chi-square distribution with n degrees of freedom (df).
If  μ is unknown, chi-square can be estimated using a sample mean:
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This is a chi-square distribution with (n − 1) degrees of freedom.
Using a contingency table, the chi-square test statistic can be computed using the 
following:

χ χ2
2

2

1

= − =
=

∑ ( )O E
E

i i

ii

n

Oi = observed frequency
Ei = expected frequency
This is a chi-square with n − 1 degrees of freedom.
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The expected cell count in the hemiplegic group (1) and nonrecurrence surgery 
(0) was 2.0, and the Fisher’s exact test was reported. However, with or without 
this adjustment for the small cell count, the significance test indicated a statisti-
cally significant difference in the recurrence surgery by the type of cerebral palsy, 
p < 0.0001. With this significance level, p < 0.0001, there is an association between 
the type of cerebral palsy and recurrent surgery for equinus foot deformity.

7.5 � Summary

Two-sample statistical inference is used to test the hypothesis when two inde-
pendent samples are involved (Figure 7.2). The choice of the test statistic 

Two-sample data –
hypothesis testing

involving two samples

Independent sample

No

Yes No

Correlated
sample testCategorical

Normality
assumed?

Continuous
(cardinal data-
ratio/interval

scale)

Yes

For paired samples,
Wilcoxon rank-sum
test is appropriate

Chi-square test
Fisher’s exact

Also applicable to
independent samples

ordinal data

Mann-Whitney
U test

Independent
sample t test

Figure 7.2  Hypothesis testing involving independent or two-sample data.
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depends on (a) the scale of measurement of the variable, (b) the shape of 
the distribution, and (c) the size of the study. The parametric tests are shape-
dependent, with normality assumption. An example of a parametric test for 
a two-sample statistical inference is the independent t test (with and without 
equal variance). Typically, this test is appropriate when data are measured in a 
continuous scale, normality is assumed, and the two samples are independent. 
A nonparametric alternative to the independent t test is the Wilcoxon rank-
sum test. This statistical inference tests the equality of the medians of the two 
independent samples.

A z test for statistical inference involving two samples is used in testing 
two independent proportions, while a chi-square is used to test the hypoth-
esis regarding frequencies of proportion. Chi-square is a commonly used and 
abused test in clinical research. This test is appropriate when the two variables 
are measured on categorical scales, rendering it adequate in testing hypoth-
eses about qualitative variables. There is an assumption regarding expected 
cell frequency, and where the expected cell count is <2.0, the Fisher’s exact 
test is recommended.

Questions for discussion

	 1	 Suppose you are required to study the effect of a standard drug (A) and 
a new drug (B) in treating intensive care unit–acquired pneumonia due to 
mechanical ventilation. If  there are 36 patients assigned to drug A and 
38 assigned to drug B, the outcome is the number of bacterial counts, 
and the two groups are administered these two agents for 8 days, (a) what 
is the appropriate test statistic and why? (b) What are the assumptions 
of the selected test? (c) How will you interpret the result of this test?

	 2	 A group of investigators decided to study the relationship between the 
use of recreational steroids and the development of prostate cancer. If  
they found that of the 116 prostate cancer patients, 16 had used recre-
ational steroids and of 115 men without prostate cancer, 6 had used rec-
reational steroids, (a) what will be an appropriate test statistic to examine 
this relationship? (b) How will you interpret the result of this test?

	 3	 Consider a hypothetical study conducted to prevent asthmatic attacks 
among Hispanic children in South Houston. Twenty-two children were 
selected as participants and 11 were randomized to drug A and 11 to drug 
B. The number of attacks over 6 months for each participant is given: 
drug A—4, 0, 3, 4, 4, 3, 3, 4, 5, 3, and 6 and drug B—7, 8, 9, 8, 4, 4, 3, 6, 6, 
7, and 3. Test the hypothesis that drug A prevents asthmatic attack. (a) Is 
a one- or two-sample test appropriate? (b) Is a one-sided test appropriate 
here? (c) Of these tests, which ones will be appropriate: (i) two-sample 
t  test with equal variance, (ii) two-sample t test with unequal variance, 
(iii) F test for the equality of  two variance, (iv) one-sample t test, or 
(v) paired t test?
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8.1 � Introduction

In the previous chapters, we mentioned that when numerical or continuous 
variables represent the outcome (response or dependent), means are used as 
appropriate measures of  effect. Likewise, when the scale of  measurement is 
continuous, the summary statistics involve the mean and standard deviation. 
For example, in the study on the prevalence and risk factors in postopera-
tive pancreatitis after spine fusion in patients with cerebral palsy, the mean 
was used to determine the preoperative Cobb angles, preoperative WBC 
count, and hematocrit, comparing cases with noncases. In these three mea-
sures, the investigators were interested in the differences in these preoperative 
measures between cases and noncases. The statistical inference used was the 
two-sample t test. Suppose researchers were interested in examining the dif-
ferences in these three preoperative measures between three groups. The t test 
will not be an adequate test statistic. To examine these differences, the inves-
tigators will need a global test in order to determine whether or not any 
differences exist in the data before testing the combination of  the means for 
individual group differences. Since there are three groups in this situation, 
simply comparing these three groups will generate three probability values 
for statistical inference. The test hypothesis will be H0: μ1 = μ2, H0: μ1 = μ3, 
and H0: μ2 = μ3. Therefore, each comparison will falsely be termed significant 
at 5%, implying the occurrence of  a type I error three times. The probability 
or chance, which is the product of  alpha (0.05 = −5%), and the number of 
groups (3) declaring one of  the comparisons incorrectly significant will be 
15%.1 Consequently, the use of  the two-sample t test in comparing the differ-
ences in the means between three groups inflates the error and results in an 
invalid statistical inference.

To illustrate how differences between groups could be tested, let us sug-
gest a hypothetical study to examine the effect of diet on abdominal fat as 
measured by waist circumference. We randomly selected four hundred healthy 
children, age 12 to 19, and have four groups. Suppose one group (control) 

Statistical inference in three 
or more samples

8
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continue eating normally; the second group is assigned to spaghetti only; the 
third group eats vegetables only; and the fourth group eats red meat only. 
After 3 months, the waist circumference of all participants is measured. The 
null hypothesis is that diets have no effect on abdominal fat or waist circum-
ference. Since we are not able to examine the entire population, the question 
is then if  we observe differences, how do we decide if  these differences are 
true based on our sample. Secondly, if  there are differences, are these differ-
ences due to the fact that the different groups of children ate differently or 
are they simply due to the random variation in waist circumference between 
individuals. Since the samples are drawn at random from a single population 
with some variance, we would normally expect the samples to have different 
means and standard deviations. However, if  the hypothesis that diet has no 
effect on waist circumference is true, then the observed differences would be 
due to random sampling.

We can start to examine the data by computing the means and standard 
deviations of  the waist circumferences for the total sample and then do the 
same for each of  the four groups. If  the samples were all drawn from the 
same population, the variability within each sample, which is measured 
by the standard deviation, will be approximately the same. Thus, the vari-
ability in the mean values of  the sample will be consistent with the vari-
ability one will observe within the individual samples. Conversely, if  the 
variability among sample means is much larger than one would expect, from 
the variability within each sample, then the samples are different. We will 
then conclude that at least one of  the sample means appears to differ from 
the others. Since the standard deviation or variance, which is the square 
of  standard deviation (a good measure of  variability), the analysis of  vari-
ance (ANOVA) measures the variability between samples when two or more 
groups are observed and assumptions of  normality and random samples 
are met.

Designs that involve multiple observations or more than two group means 
employ the analysis of variance tool, termed ANOVA. Like we stated above, 
ANOVA prevents error inflation. Thus, if  the model significance level based 
on the comparison of the variance (F test) indicates a significant mean dif-
ference or differences in the means, then comparison between the pairs or 
combinations of groups becomes feasible.

This chapter presents the statistical inference when two or more groups are 
compared and explains the rationale and assumptions regarding the selec-
tion of appropriate statistical techniques. The parametric test, ANOVA, is 
presented with its rationale, assumptions, and examples as well as its com-
putation. The different research situations involving the use of ANOVA are 
discussed with hypothetical data using STATA examples. The nonparametric 
statistical method analog of ANOVA is presented as the Kruskal–Wallis sta-
tistic (based on ranks).
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8.2 � Analysis of variance (ANOVA)?

The ANOVA is a statistical technique (constructed from variance) used to test 
the null hypothesis of no difference when two or more than two groups are 
compared and data are assumed to be normally distributed. This test is based 
on variability among sample means, which is quantified by the standard devi-
ation and its square, the variance. Since these parameters are used to describe 
normally distributed data, ANOVA is a parametric test. The ANOVA could 
be termed (a) one-way or single factor, which is one factor (used to compare 
the mean differences in more than two groups while evaluating the effect of 
one factor); (b) two-way, which is two factors (used to compare the mean dif-
ferences in more than two groups while evaluating the effect of two factors); 
and (c) multiple, which is multiple analysis of variance (MANCOVA). By 
considering the effect of one or more factors, ANOVA represents a statistical 
technique for regressing a dependent variable against one or more classifica-
tion variables.2 Also, the one-way ANOVA is the generalization of the two-
sample t test.

8.2.1 � When is one-way ANOVA feasible?

A hypothetical prospective study was conducted to determine the effect of 
posterior spine fusion in three types of scoliosis. If  the investigators mea-
sured the thoracic curve as the main curve to assess curve correction at the 
end of the two-year follow-up and there were no significant mean differences 
between the three clinical subtypes of scoliosis, a one-way ANOVA is fea-
sible. One-way ANOVA is also feasible in comparing the means of a numeri-
cal (continuous) variable when there are two or more than two categories or 
groups.

8.2.2 � What is the hypothesis and possible computation 
for one-way ANOVA?

ANOVA is based on the null hypothesis of no difference in the means of 
two or more groups compared. To understand ANOVA, we must consider 
(a) variation between each subject and the subjects’ group means and (b) the 
variation between each group mean and the grand mean. While the mathemat-
ics of ANOVA cannot be presented here because of the focus of this book, 
applied biostatistics, please note that this complex computation involves 
(a) the between-group sum of squares, (b) the within-group sum of squares, 
(c) the between-group degrees of freedom, (d) the within-group degrees of 
freedom, and (e) the within-group mean square. Considerable variation is 
expected between the group means and the grand mean if  the groups’ means 
are different from each other.3
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8.2.3 � What are the assumptions of ANOVA?

The null hypothesis in ANOVA is stated as previously noted: H0: μ1 = μ2 = μ3; 
the alternative hypothesis is H1: μ1 ≠ μ2 ≠ μ3. The assumptions of ANOVA 
are similar to those of a t test, as ANOVA is a parametric test. The ANOVA 
assumptions are (a) normality—Gaussian distribution—each sample drawn 
must be normally distributed; (b) equal variance—the population variance is 
the same in each group, implying that σ1 = σ2 = σ3; thus, even if  they are dif-
ferent (no effect), the variance must be equal; (c) random sample/independent 
observations, implying that the observation s are independent and that the 
value of one observation is not related in any manner to the value of another 
observation. For example, the value of a subject’s mean systolic blood pres-
sure must have no influence on that of any other subject; (d) independent sam-
ple (each sample must be independent of the other samples)—if data consist 
of repeated measures, one-way ANOVA is inappropriate. This assumption is 
critical in ANOVA.

The dependent variable or outcome is assumed to be normally distrib-
uted within each group or factor (termed independent categorical variable). 
Since ANOVA assumes that data from the study are sampled from pop-
ulations that follow a Gaussian bell-shaped distribution or are normally 
distributed, violation of  this assumption may benefit from the transforma-
tion of  such data. The benefit is that such transformation or normalization 
increases the power of  the analyses to detect differences should they really 
exist. However, ANOVA works well even if  the distribution is approximately 
normally distributed, especially with a large sample. Not all the assump-
tions above are equally important, since a moderate departure from the nor-
mality assumption does not affect the results of  the F test. In contrast, the 
F test is more influenced by the equality of  variances or homogeneity of 
variances assumption.

8.2.4 � How is ANOVA computed?

The computation involved in ANOVA is complex, but it is easily achieved 
today with statistical software such as SPSS, STATA, SAS, R-Plus, and 
S-Plus. While these packages facilitate this computation, they cannot select 
the appropriate test or the variables in the appropriate order. Therefore, no 
matter how sophisticated your package is, knowledge of these assumptions is 
essential to the understanding of ANOVA and other related statistical tests.

The ANOVA is computed as a ratio termed F-test statistic:

	

F = population variance estimated from sample meanns

population variance estimated as average o/ ff sample variance
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Below, we performed the test of normality to test the assumption for the 
use of ANOVA. We examined the distribution of systolic blood pressure as a 
dependent variable to be used in testing the mean differences in systolic blood 
pressure between three groups. This is the first step in examining the assump-
tion of ANOVA.

The STATA output for the test of  the shape and distribution of  systolic 
blood pressure shows a normally distributed BP in the overall sample, p = 
0.74, as well as normally distributed individual samples, group 1, p = 0.29, 
group 2, p = 0.38, and group 3, p = 0.59.

BOX 8.1  F TEST AND F RATIO

•	 The F test is used to test the ratio of the variance among means 
to the variance among subjects within each group.

•	 The F ratio is obtained by dividing the estimate of the variance 
of means (mean square among groups) by estimate of the vari-
ance within groups (error mean square).

•	 Based on the null hypothesis that the two variances are equal 
and that if  they are, the variation among means is not much 
greater than the variation among individual observations within 
any given group. 

•	 The null hypothesis in one-way ANOVA is rejected when the F 
statistic is large, while a small F provides no evidence against 
the null hypothesis.

BOX 8.2  p VALUE INTERPRETATION

•	 The p value is the probability or chance of getting a test statis-
tic at least as extreme as the calculated test statistic if  the null 
hypothesis is true.

•	 This is not the probability that the null hypothesis is true. Since 
population parameters are fixed numbers, the null hypothesis 
about the population parameter is either true or false.

•	 Strictly, as it is commonly incorrectly explained, p value is not 
the probability that the sample results are due to chance or 
sampling variability.

•	 For example, Holmes et al.4 reported a p value of 0.81 on the 
association between female condom use and education level.

•	 Because their significance level was 0.05, they failed to reject 
the null hypothesis of no association between female condom 
use and education level.
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Normality test for group differences

. sktest SBP

                   Skewness/Kurtosis tests for Normality

                                                         joint
  Variable    Obs   Pr(Skewness)   Pr(Kurtosis)   adj chi2(2)     Prob>chi2

       SBP    111      0.6630         0.0000        19.96            0.0000

.  sktest SBP if Race==1

                   Skewness/Kurtosis tests for Normality
                                                         joint
  Variable    Obs   Pr(Skewness)   Pr(Kurtosis)   adj chi2(2)     Prob>chi2

       SBP     54      0.0009         0.0644        11.70            0.0029

. sktest SBP if Race==2

                   Skewness/Kurtosis tests for Normality
                                                         joint
  Variable    Obs   Pr(Skewness)   Pr(Kurtosis)   adj chi2(2)     Prob>chi2

       SBP     31      0.2631         0.7676        1.44             0.4876

. sktest SBP if Race==3

                   Skewness/Kurtosis tests for Normality
                                                         joint
  Variable    Obs   Pr(Skewness)   Pr(Kurtosis)   adj chi2(2)     Prob>chi2

       SBP     26      0.8264         0.1898        1.93             0.3802

Notes and abbreviations: Race: 1 = white, 2 = black, and 3 = other. Whereas  
the sbp was not normally distributed or rather the Gaussian distribution was 
violated in the overall sample, the test indicated Gaussian distribution for 
black and other and not white.

The STATA output  demonstrates the computation of ANOVA follow-
ing the test of normality. The assumption of equal variance is examined and 
indicates the equality of variance, p = 0.51. In addition, it is assumed that the 
data are from random samples and that the samples are independent. The 
summary or descriptive statistics are presented as mean and standard devia-
tion for the individual groups as well as the overall sample. The ANOVA also 
presents the between-group ratio, F as 19.44, with df = 2, and p < 0.001. We 
conclude that the samples are not drawn from a single population and reject 

•	 The most appropriate interpretation of this p value is that the 
probability of getting a test statistic at least as extreme as the 
calculated test statistic is 0.81, if  the null hypothesis is true, 
implying that 81% of all possible samples produce test statis-
tics at least as extreme as the calculated test statistic if  the null 
hypothesis is true.
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the null hypothesis that there are no differences in the systolic blood pressure 
comparing these three groups. Therefore, there is at least a difference in one 
group mean relative to the others.

. oneway SBP Race, tab bon

                        Summary of SBP
    Race           Mean      Std. Dev.    Freq.

       1       111.7963     14.195906        54
       2      142.45161      9.735977        31
       3      134.26923     15.472705        26

   Total      125.62162     19.201351       111

             Analysis of Variance
     Source          SS         df      MS           F       Prob > F

Between groups    21046.556      2    10523.278    58.25       0.0000
 Within groups   19509.5521    108   180.644001

    Total        40556.1081    110   368.691892

Bartlett’s test for equal variances: chi2(2) =  6.4197  Prob>chi2 =  0.040

                      Comparison of SBP by Race
                            (Bonferroni)
Row Mean- 
Col Mean           1            2

       2     30.6553
               0.000

       3     22.4729     -8.18238
               0.000        0.072

The Bonferroni’s multiple comparison is comparable to that of Scheffe’s  
performed above. Without these tests, we are unable to determine where the 
differences are since we are comparing more than two groups, and the ANOVA 
does not specify this in the model. These posthoc comparisons are clinically 
meaningful in decision-making since this information is necessary not only for 
the appraisal of the mean difference (effect size), but for the generalization of 
the subpopulation mean difference in sbp for the treatment of future patients 
with comparable characteristics who were not in the sample (target population).

8.2.5 � What is post hoc comparison?

Post hoc or a posteriori comparison is a method of  comparing the difference 
between the two means, μ1 = μ2, μ1 = μ3 or μ2 = μ3, after the computed 
ANOVA is significant (F test and significant probability value, p). It is termed 
post hoc or a posteriori since, as its technique implies, it is conducted after 
the analysis of  ANOVA. When the multiple comparison is planned before 
the analysis, it is termed a priori or planned, with the most commonly used 
being the Bonferroni t procedure or Dunn’s multiple-comparison procedure.5
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The post hoc comparisons commonly used and recommended include the 
following:

	 a	 Tukey’s HSD (honestly significant difference) procedure, a procedure 
named after the statistician who introduced the stem-and-leaf and box-
and-whisker plots. This test is effective for pairwise comparison, but also 
in comparing all pairs of means.

	 b	 Scheffe’s procedure is effective for all types of comparison, including 
pairwise. A higher critical value of this test is used to determine the sig-
nificance, and compared to Tukey’s HSD, it is more conservative and 
allows the formation of a confidence interval.

	 c	 Newman-Keuls
	 d	 Dunnett’s procedure is used when the intent is to compare several treat-

ment means with a single control mean. Compared to Tukey’s HSD or 
Scheffe’s test, it is less conservative, implying a relatively low critical value.

Most statisticians recommend the use of Scheffe’s, Tukey’s HSD, and Dunnett’s 
procedure as a post hoc multiple comparisons procedure in that order.6

. oneway SBP Race, tab scheffe

           Summary of SBP
 Race         Mean      Std. Dev.    Freq.

    1      111.7963     14.195906       54
    2     142.45161      9.735977       31
    3     134.26923     15.472705       26

Total     125.62162     19.201351      111

             Analysis of Variance
  Source              SS         df        MS          F       Prob > F

Between groups    21046.556       2    10523.278     58.25       0.0000
 Within groups   19509.5521     108   180.644001

    Total        40556.1081     110   368.691892

Bartlett’s test for equal variances: chi2(2) =   6.4197  Prob>chi2 =  0.040

                    Comparison of SBP by Race
                           (Scheffe)

Row Mean-  
Col Mean            1              2

       2      30.6553
                0.000
           
       3      22.4729       -8.18238
                0.000          0.077
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The above ANOVA model indicates statistically significant racial differ-
ences in SBP, requiring multiple comparison analysis to determine whether or 
not there is a statistically significant difference between white (1) and black 
(2) patients (1 versus 2), white and other (3) patients (1 versus 3), as well as 
between 1 (white) and 3 (other), and 2 (black) and 3 (other). While whites 
clinically and statistically significantly differed from black and other, blacks 
(2), though clinically meaningfully different from other (3) with respect to 
the mean sbp, was statistically marginally different from other (3), imply-
ing marginal but not a strong evidence against the null hypothesis that the 
mean difference in SPB between 2 and 3 equals zero (Ho: µ2 (black) – µ3 
(other) = 0).

The STATA output above shows Scheffe’s multiple comparisons after sig-
nificant ANOVA. While the model p value only indicates that at least the 
means differ, the post hoc comparison of the means shows a nonsignificant 
difference between the pairs, group 1 SBP versus group 2 SBP (p < 0.20), but 
a significant difference between group 1 SBP and group 3 SBP (p < 0.001) and 
between group 2 SBP and group 3 SBP (p < 0.001).

. oneway SBP Race, tab bon

           Summary of SBP
 Race          Mean      Std. Dev.    Freq.

    1      111.7963      14.195906      54
    2     142.45161       9.735977      31
    3     134.26923      15.472705      26

Total     125.62162      19.201351     111

             Analysis of Variance
  Source              SS         df        MS          F       Prob > F

Between groups    21046.556       2    10523.278     58.25       0.0000
 Within groups   19509.5521     108   180.644001

    Total        40556.1081     110   368.691892

Bartlett’s test for equal variances: chi2(2) =   6.4197  Prob>chi2 =  0.040

                    Comparison of SBP by Race
                           (Bonferroni)

Row Mean-  
Col Mean            1              2

       2      30.6553
                0.000
           
       3      22.4729       -8.18238
                0.000          0.072
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The Bonferroni’s multiple comparison is comparable to that of Scheffe’s 
performed above. Without these tests, we are unable to determine where 
the differences are since we are comparing more than two groups, and the 
ANOVA does not specify this in the model. These posthoc comparisons are 
clinically meaningful in decision-making since this information is necessary 
not only for the appraisal of the mean difference (effect size) but also for the 
generalization of the subpopulation mean difference in sbp for the treatment 
of future patients with comparable characteristics who were not in the sample 
(target population).

Graph 8.1 illustrates the median (p50) SBP of the three samples (middle 
line in the box). The upper line represents the upper quartile (p75) SBP, while 
the bottom line represents the lower quartile SBP (p25). The boxes are verti-
cal, as is the default in STATA.

The box plot below shows the vertical presentation of the box plot. This 
is STATA’s default and requires no modification in the command. However, 
where horizontal box plots are required, the modification of the syntax is 
required: graph box var, over (group var).

Graph 8.2 is termed the dot plot and shows the separate SBP means on 
separate lines.

Below is the STATA syntax used to construct the graphs: graph box 
sbp1, over(group), graph hbox sbp1, over (group),  graph 
dot (mean) sbp1, over (group).

Also below are the STATA syntax used to generate Graph 8.3. The graph 
shows the means as dots and the error lines.
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Graph 8.1  �Box plot of median systolic blood pressure (SBP) in three independent 
samples.
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Graph 8.2  Dot lines of systolic blood pressure in three independent samples.
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Graph 8.3  �The mean values with error line or bars of systolic blood pressure in three 
independent samples.
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8.3 � Other hypothesis tests based on ANOVA

There are other designs where ANOVA is feasible, and examples of these 
designs include two-way ANOVA, which is similar to one-way but involves two 
factors or two independent variables. For example, if  a study was conducted 
to examine the effect of reactive airway disease (RAD) and gastroesophageal 
reflux disease (GERD) on the development of postoperative pancreatitis, a 
two-way ANOVA would be adequate to demonstrate the combined effect of 
these independent variables in postoperative pancreatitis. The design would 
address the following questions: (1) Do differences exist between patients with 
and without postoperative pancreatitis in relation to RAD? (2) Do differences 
exist between patients with and without postoperative pancreatitis in relation 
to GERD? (3) Do differences occur that are due to neither RAD nor GERD 
alone, but the combination of RAD and GERD, termed interaction? If  after 
the two-way ANOVA is computed and the graph of interaction is produced 
and if  the lines connecting the RAD and GERD means are parallel, this is 
interpreted as no interaction, implying an additive effect. However, the inter-
section of the lines representing the RAD and GERD means is indicative of 
a multiplicative effect.

. gen race_sex = Sex*Race

. anova SBP Race Sex race_sex

                     Number of obs =      111      R-squared      =  0.5777
                     Root MSE      =  12.7718      Adj R-squared  =  0.5576

          Source     Partial SS    df       MS            F        Prob > F
      
           Model      23428.558     5    4685.7116      28.73        0.0000
                   
            Race     14057.9512     2   7028.97558      43.09        0.0000
             Sex     1583.81077     1   1583.81077       9.71        0.0024
        race_sex     6.97902402     2   3.48951201       0.02        0.9788
                   
        Residual     17127.5501   105   163.119525
      
           Total     40556.1081   110   368.691892

predict sbp1mean
(option xb assumed; fitted values)
. label variable sbp1mean “Mean SBP Scale”
. predict SEsbp1, stdp
. serrbar sbp1mean SEsbp1 group, scale (2)

. serrbar sbp1mean SEsbp1 group, scale (2) plot
(line sbp1mean group, clpattern(solid)) legend (off)
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The STATA output above shows a two-way analysis of variance (ANOVA), 
implying two factors included in the model, namely, race and sex, as well as 
race and sex interaction. This model indicates significant racial variability in 
SBP, as well as a statistically significant sex difference that the mean difference 
in SBP between male and female is not zero (0), and with p = 0.002, the null 
hypothesis is rejected, implying that there is a very strong evidence against 
the null hypothesis ((Ho = µ1 (male) – µ2 (female) = 0)). However, there is no 
interaction between race and sex as indicated by the low value of the F test 
(0.02 with 2 degrees of freedom) and the significance (p = 0.98), implying 
no evidence against the null hypothesis that race and sex interaction influ-
ence the observed clinically meaningful and statistically significant differences 
between racial and sex subgroups in the sample.

The evidence from this model is suggestive of presenting the ANOVA 
results without interaction. The information below illustrates ANOVA with-
out interaction, indicating the effects of race and sex on the observed SBP in 
this sample.

. anova SBP Race Sex

                     Number of obs =      111      R-squared      =  0.5775
                     Root MSE      =  12.6545      Adj R-squared  =  0.5657

          Source     Partial SS    df       MS            F        Prob > F
      
           Model      23421.579     3   7807.19299      48.75        0.0000
                   
            Race     14368.9306     2   7184.46529      44.86        0.0000
             Sex     2375.02291     1   2375.02291      14.83        0.0002
                   
                   
        Residual     17134.5292   107   160.135786
      
           Total     40556.1081   110   368.691892

A randomized factorial design usually involves one or two factors with the 
possibility of three or more factors. For example, if  a study has three factors 
and two levels, there will be eight treatment groups.

Randomized block designs are effective when variation is attributed to a 
confounder. Because this design involves controlling for the confounding fac-
tor, analysis of covariance (ANCOVA) is adequate. Using the hypothetical 
SBP data with age groups, sex, and high-density lipoprotein (HDL) as a con-
founding variable, the ANCOVA was computed to illustrate the confounding 
effect of HDL on SBP. From this analysis, no significant relationship is shown 
between HDL and SBP when sex and age are controlled (p = 0.81). Because 
ANCOVA represents a special case of regression, the regress option 
is added to the ANOVA command, which is the extension of the two-way 
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ANOVA, by encompassing mixed categorical and continuous independent 
(HDL) variables present in the regression result.

. table   Race Sex, contents (mean  SBP ) row col

                        Sex
  Race             1          2       Total

     1           118   108.6944    111.7963
     2      145.4091   135.2222    142.4516
     3      138.3125      127.8    134.2692
         
 Total      134.5714   116.5091    125.6216

Note and abbreviation: Race: 1 = white, 2 = black, and 3 = other; Sex: 1 = male 
and 2 = female. Regardless of the race, the SBP is consistently higher among 
males and the same observation holds in the total sample.

In this sample, males and females tend to have the same systolic blood 
pressure (151.72 vs. 151.68). In the old group (1), men seem to have higher 
SBP, and in the older old group (2), women seem to have higher SBP, with 
similar observations seen in the oldest old group (3).

                     Number of obs =      111      R-squared      =  0.9132
                     Root MSE      =  5.76336      Adj R-squared  =  0.9099

          Source     Partial SS    df       MS            F        Prob > F
      
           Model     37035.1834     4   9258.79586     278.74        0.0000
                   
            Race     1083.50797     2   541.753983      16.31        0.0000
             Sex     44.6444254     1   44.6444254       1.34        0.2489
             HDL     13613.6045     1   13613.6045     409.85        0.0000
                   
        Residual     3520.92468   106   33.2162706
      
           Total     40556.1081   110   368.691892
                   

. anova SBP Race Sex HDL, continuous ( HDL)

The above STATA output illustrates ANCOVA model, which is an exten-
sion of ANOVA to include a potential confounding variable in the model. 
Since low level of serum high density lipoprotein (HDL) had been shown to 
have an adverse effect in the cardiovascular health, this variable was added 
to the model that initially assesses the association between race and sex. This 
model indicates a significant association with HDL, F = 409.9, p < 0.0001. 
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However, the observed significant association with sbp and sex was removed, 
F = 1.34, p = 0.25, implying that in this sample of hypertensive patients on a 
new antihypertensive agent versus standard of care, the association between 
sex and SBP did not persist after controlling for HDL.

Using the regress option: since two-way ANOVA and ANCOVA do 
not provide descriptive information (provided by the tabulate command) 
about how the SBP, age, sex, and HDL are related, except the explicit model 
and the parameter estimates, the regression option furnishes such descriptive 
data as illustrated below.

. anova SBP Race Sex HDL, continuous ( HDL) regress

   Source  

    Model  
 Residual  

    Total  

     SS       df       MS                  Number of obs =     111
                                                      F( 4,   106)  =  278.74

 37035.1834    4   9258.79586              Prob > F      =  0.0000
 3520.92468  106   33.2162706              R-squared     =  0.9132

                                                      Adj R-squared =  0.9099
 40556.1081  110   368.691892              Root MSE      =  5.7634

      SBP      Coef.    Std. Err.        t     P>|t|   [95% Conf.   Interval]

_cons       267.474     7.007688     38.17     0.000     253.5806    281.3675
Race
        1  -7.395181     1.53937     -4.80     0.000    -10.44713    -4.34323
        2    1.05746    1.566775      0.67     0.501    -2.048825    4.163745
        3  (dropped)
Sex
        1  -1.496824    1.291108     -1.16     0.249     -4.05657    1.062923
        2  (dropped)
HDL        -2.590087    .1279391    -20.24     0.000    -2.843738   -2.336435

The above STATA output illustrates a similar effect of HDL on SBP and 
very importantly shows the subgroup results of race and sex effect on SBP.

. anova SBP Race Sex  LDL,  continuous ( LDL)

                     Number of obs =      111      R-squared      =  0.8089
                     Root MSE      =  8.55157      Adj R-squared  =  0.8017

          Source     Partial SS    df       MS            F        Prob > F
      
           Model     32804.3933     4   8201.09831     112.15        0.0000
                   
            Race     1526.81555     2   763.407774      10.44        0.0001
             Sex     76.1509439     1   76.1509439       1.04        0.3098
             LDL     9382.81429     1   9382.81429     128.30        0.0000
                   
        Residual     7751.71486   106   73.1293854
      
           Total     40556.1081   110   368.691892
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In the STATA output above, a similar ANOVA model for SBP was used, 
controlling for low density lipoprotein (LDL) in this sample. A high level of 
LDL (>120 milligrams per deciliter) is implicated in cardiovascular disease 
(CVD) including hypertension. The model indicates a significant effect of 
LDL on SBP, F(d) = 120.3(1), p < 0.0001. Also, similar to the HDL, there is 
no significant association with sex, given LDL in the model.

. anova SBP Race Sex LDL, continuous ( LDL) regress

   Source       SS       df      MS                   Number of obs =     111
                                                      F( 4,   106)  =  278.15
    Model   32804.3933    4   8201.09831              Prob > F      =  0.0000
 Residual   7751.71486  106  73.12938854              R-squared     =  0.8089
                                                      Adj R-squared =  0.8017
    Total   40556.1081  110   368.691892              Root MSE      =  8.5516

      SBP      Coef.    Std. Err.       t     P>|t|      [95% Conf. Interval]

_cons     -42.48273     15.20002    -2.79     0.006     -72.61824   -12.34721
Race
       1   -10.1047     2.263029    -4.47     0.000     -14.59138   -5.618026
       2  -1.872056     2.418141    -0.77     0.441     -6.666256    2.922143
       3  (dropped)
Sex
       1  -2.062101     2.020777    -1.02     0.310     -6.068488    1.944285
       2  (dropped)
LDL        1.591331     .1404882    11.33     0.000      1.312799    1.869862

The above STATA output, which is ANOVA extension using egress, indi-
cates a similar but direct association between SBP and LDL in contrast to 
HDL. However, in these two instances, the association between SBP and sex 
did not persist.

. oneway  SBP  HNT_TX,  tab

                         Summary of SBP          
   HNT_TX         Mean    Std.  Dev.        Freq.

        1    113.03077     12.016875           65
        2    143.41304     11.971403           46

    Total    125.62162     19.201351          111

                        Analysis of Variance
  Source               SS          df       MS              F       Prob > F

Between groups     24865.0175       1    24865.0175      172.73       0.0000
 Within groups     15691.0906     109     143.95496

   Total           40556.1081     110    368.691892

Bartlett’s test for equal variances:   chi2(1) =   0.0008  Prob>chi2 =  0.978

Notes: HTN_TX = antihypertensive agent. The test for an equal variance, 
which is a requirement in ANOVA, indicates that the variance comparing the 
two treatment groups are equal, justifying the application of ANOVA.
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. anova SBP HNT_TX Sex LDL,  continuous ( LDL) regress

   Source     SS         df      MS                  Number of obs  =     111
                                                     F( 3,   107)   =  127.77
    Model   31705.7821    3   10568.594              Prob > F       =  0.0000
 Residual   8850.32605  107  82.7133276              R-squared      =  0.7818
                                                     Adj R-squared  =  0.7757
    Total   40556.1081  110  368.691892              Root MSE       =  9.0947

       SBP     Coef.     Std. Err.      t      P>|t|     [95% Conf. Interval]

_cons      -36.17714     23.18042    -1.56     0.122     -82.12961   9.775339
HNT_TX
        1  -7.376525     3.242007    -2.28     0.025     -13.80343   -.949623
        2  (dropped)
Sex
        1  -.6621888      2.26559    -0.29     0.771     -5.153458    3.82908
        2  (dropped)
LDL         1.517217     .2025943     7.49     0.000      1.115598   1.918837

The above ANOVA model examines the treatment effect of  the anti-
hypertensive agent (HTN_TX) and sex, controlling for LDL. The HTN 
significantly reduced SBP and the effect remained after controlling 
for LDL in this model, with LDL significantly associated with SBP. Since 
subgroup results are not computed by the two-way ANOVA as in this 
example, the regress command is used to obtain the subgroups effects 
above.

Nested designs involve the nesting of one or more treatments within levels 
of another factor.

Repeated measures design involves the relationship among measures that 
are repeated and is effective in controlling for individual variation, since sub-
jects serve as their own controls (eliminating the variability due to individual 
differences, and hence increasing the power of  the study).7 The detail of  the 
technique was covered in the chapter on hypothesis testing involving one 
or a single sample. We would like to mention the interpretation of  some of 
the output of  this test from the statistical package that may be used for the 
computation. Regardless of  the software, the test of  sphericity means that 
the investigators wish to examine the assumption of  equal variance, and if  
this is not met, the Greenhouse–Geisser or Huynh–Feldt corrections should 
be used.

8.3.1 � What is the nonparametric alternative to one-way ANOVA?

Whenever the observation for the one-way ANOVA is relatively skewed or when 
the sample size is relatively small, a nonparametric alternative test is recommended. 
The alternative to one-way ANOVA is the Kruskal–Wallis nonparametric pro-
cedure. This test statistic tests the null hypothesis of equal population medians. 
Also, if the equal variance is in doubt, and issues with outliers are anticipated, 
the Kruskal–Wallis test is a safer procedure.8 However, since Kruskal–Wallis is a 
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k-sample generalization of the two-sample rank-sum test and is distribution-free 
(makes a weaker assumption of similar-shaped distributions within each group), 
it is a less powerful test compared to one-way ANOVA.9

8.3.2 � How is the Kruskal–Wallis test computed?

The hypothetical systolic blood pressure data used for one-way ANOVA, which 
met the assumptions for this procedure, are used here to illustrate the computa-
tion of Kruskal–Wallis. This test incorporates an exact method of dealing with 
ties. The result here is the same as that obtained from one-way ANOVA, which is 
a significant difference in systolic blood pressure by group (old = 1, older old = 
2, oldest old = 3). Below is the STATA syntax: kwallis sbp1, by(group).

kwallis sbp1, by(group)

Kruskal–Wallis equality-of-populations rank test

 group    Obs    Rank Sum 

   1      19      626.00  
   2      19      502.00  
   3      12      147.00  

chi-squared =   14.949 with 2 df
probability =   0.0006
chi-squared with ties =  15.115 with 2 df
probability =   0.0005

8.4 � Summary

Statistical inference involving three or more independent samples can be tested 
using parametric and nonparametric techniques. The selection of the appro-
priate test depends on the distribution and scale of measurement of the vari-
able, as well as the size of the study (Figure 8.1). If  a mean comparison of two, 
three, or more groups is expected and data are normally distributed and from 
independent samples, then the ANOVA is appropriate. This is a variability-
based test and computes the ratio (F): population variance estimated from 
sample means divided by the population variance estimated as an average 
of sample variances—F = SD /SDbetween within

2 2 , where between means between the 
groups’ variance, and within means within-group variance. Thus, if  F = σ2/
σ2 = 1, the test concludes that the data are consistent with the null hypoth-
esis, implying that the null hypothesis of no mean difference should not be 
rejected. The one-way ANOVA involves one factor, while two-way involves 
two factors and implies interaction, which could be tested for “additivity” or 
multiplicity. Other designs that ANOVA could be used for include (a) block 
designs, (b) factorial designs, and (c) repeated measures.
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If  the assumptions for the use of  ANOVA are not met and if  the study 
size is relatively small, a nonparametric analog to ANOVA is recommended. 
The nonparametric alternative to ANOVA is the Kruskal–Wallis test, which 
examines the median differences in ordered or distribution-free data. A 
repeated-measure ANOVA discussed earlier (one-sample statistical infer-
ence) illustrates the use of  ANOVA with a single sample where measurements 
are taken three times or more from an individual subject. The Friedman test 
is the nonparametric alternative to repeated-measure ANOVA.

Questions for discussion

	 1	 The following data represent left ventricular ejection fraction (LVEF) 
from a hypothetical study of the effect of drugs A and B, and no treatment 
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Figure 8.1  Statistical test selection for three or more samples.
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on patients with acute dilated cardiomyopathy. Group A (drug A): 0.19, 
0.24, 0.17, 0.40, 0.40, 0.23, 0.20, 0.20, 0.30, and 0.19; Group B (drug B): 0.24, 
0.32, 0.32, 0.28, 0.24, 0.18, 0.22, 0.23, 0.14, and 0.14; and Group C 
(control): 0.30, 0.07, 0.12, 0.13, 0.17, 0.24, 0.19, 0.07, 0.12, and 0.19. 
(a) What would be an appropriate statistical test to examine the effect of treat-
ment? (b) Can you show, using the appropriate statistical method, the differ-
ence between group A and C? (c) What can be concluded from the data?

	 2	 Using the data in question 1, construct a box plot and error lines. What is 
your interpretation of these graphs?

	 3	 Suppose you are required to test the effect of  a new anti-platelet agent 
using three independent samples: (a) new agent group, (b) standard drug, 
and (c) control. If  the data are not normally distributed and the sample 
size is small, what will be the appropriate test statistic to examine this 
effect? Comment on the limitations of this test including its power.
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9.1 � Introduction

Bivariate or univariable analysis refers to the analysis of the relationship bet­
ween one independent (X ) and one dependent variable (Y ). For example, 
if  an investigator decides to examine the relationship between the height 
and weight of  100 high school children, she or he may wish to determine 
if  weight (Y ) depends on height (X ).1 Multivariable analysis refers to the 
analysis between a single dependent variable and more than one independent 
variable (e.g., a study to determine the impact of race/ethnicity and gender 
in  the development of  colorectal cancer).2 The independent variables are 
age (X1) and race (X2), while the dependent variable is colorectal cancer (Y ). 
Multivariate analysis is the technique that involves more than one dependent 
and more than a single independent variable.3 This term is not interchange­
able with multivariable analysis, and it is often used incorrectly.

The relationship between variables can be tested linearly when variables 
meet certain assumptions involving shape; thus, normally distributed data 
can be assessed for a linear relationship using the linear regression model 
as well as the correlation coefficient. These models, which are based on 
t  test and chi-square distributions, examine the variables of  interest for a 
significant relationship. The linear regression model goes beyond mere asso­
ciation to assess whether or not the independent/predictor/explanatory vari­
able can be used to predict the outcome/response/dependent variable that 
is continuous.

When variables do not meet the assumption of normality (violate Gaussian 
distribution or the bell-shaped curve), the relationship between variables can 
be tested using the nonparametric alternative to the Pearson correlation coef­
ficient, which is the Spearman correlation coefficient, also termed Spearman 
Rho.4 A  correlation coefficient is really a measure of a linear relationship 
between two variables if  the variables are measured on a numerical scale. 
However, unlike the simple linear relationship, there is no specific dependent 
or independent variable in correlations coefficient analysis. For example, 
investigators conducted a study to examine the correlation between radio­
graphic measures of the surgically treated clubfoot (talo-calcaneal angle) and 

Statistical inference involving 
relationships or associations

9
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pedobarographic measure (heel impulse) obtained from the gait analysis of 
foot pressure. Since the data on the two variables were numerical, normality 
tests were performed on the sets of the two variables of interest. The data 
were observed not to violate normality, and Pearson correlation was used 
to examine the significant linear relationship between these radiographic and 
pedographic measures. In this context, the intent of  the investigators was 
not to determine whether or not the radiographic measure (independent/
explanatory) predicts the pedographic measure as an outcome or response 
variable in the relationship but simply to determine if  a correlation, which 
is a form of relationship, exists. Consider another example. If  investigators 
wanted to examine the linear relationship between systolic blood pressure 
(SBP) and age measured in years, the two variables are measured on a con­
tinuous scale and are normally distributed; the Pearson correlation coefficient 
is adequate once these assumptions are met. And if  the investigators also 
intended to assess whether or not SBP can be predicted based on the subject’s 
age, then the simple linear regression is appropriate.

A correlation could also be performed using an ordinal or binary and a 
numerical (continuous) variable. Let us consider a situation in which inves­
tigators wanted to determine if  there was a significant difference in age at 
surgery (numerical variable) by postoperative deep wound infection (binary 
variable). A correlation coefficient could be used. This analysis provides the 
same results that could be obtained from an independent or two-sample 
t  test, where the later test will be most appropriate to provide data on dif­
ferent mean ages at surgery for those with and those without deep wound 
infection. To illustrate this, we use the data in this study (data used with 
permission).

pwcorr ageofsurgery deep_wound, obs sig

 | age of surgery deep wound

ageofsurgery | 1.0000

   66

  

deep_wound | −0.0803 1.0000

          0.5216

   66 66

The significance level in the above correlation is greater than 0.05, imply­
ing that the null hypothesis of no significant difference in age by deep wound 
infection should not be rejected. The following STATA output shows a simi­
lar relationship, using a two-sample or independent-sample t test. The prob­
ability level is used to test the null hypothesis of no mean age difference by 
deep wound infection.
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. ttest  LDL, by ( Sex)

Two-sample t test with equal variances

    Group     Obs       Mean     Std. Err.   Std. Dev.   [95% Conf. Interval]

        1      56   115.0607      1.234629   9.239121    112.5865     117.535
        2      55     104.26      .7081993   5.252146    102.8401    105.6799

 combined     111    109.709      .8784149   9.254675    107.9682    111.4498

     diff           10.80071       1.42996               7.966578    13.63485

     diff = mean(1) - mean(2)                                      t = 7.5532
Ho:  diff = 0                                     degrees of freedom =    109

     Ha: diff < 0                Ha: diff != 0                Ha: diff > 0
  Pr(T < t) = 1.0000        Pr(|T| > |T|) = 0.0000         Pr(T > t) = 0.0000

The above STATA output examines the mean difference in LDL compar­
ing female to male patients with hypertension (n = 111) on a new antihyper­
tensive drug relative to the standard of care. While the research question is 
whether or not males and females differ in LDL serum level, the null hypoth­
esis indicates no difference in mean serum LDL comparing male to female 
patients (µ1 (male) − µ2 (female) = 0). The mean difference in this output is 
10.8 mg/dl, which is clinically meaningful (effect size), while the significant or 
precision estimate (p value) is < 0.0001, implying a strong evidence against the 
null hypothesis at a significance level of 0.05 (type I error tolerance).

One of the rationale and assumption of an independent sample t test is 
equal variance. This must be tested prior to accepting this result; otherwise, 
an independent sample t test with unequal variance is required. The STATA 
output below on summary statistics demonstrates the variances between men 
and women with respect to LDL.

. tabstat  LDL, stat (mean, sd sem var n) by ( Sex)

Summary for variables:  LDL
     by categories of:  Sex

         Sex          mean          sd      se(mean)      variance         N

           1      115.0607    9.239121      1.234629      85.36136        56
           2        104.26    5.252146      .7081993      27.58504        55

       Total       109.709    9.254675      .8784149      85.64902       111

The above STATA output clearly indicates unequal variance, which violates 
one of the independent t test assumptions, requiring a test with unequal variance.
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. ttest  LDL, by ( Sex) unequal

Two-sample t test with unequal variances

   Group    Obs      Mean    Std. Err.    Std. Dev.      [95% Conf. Interval]

       1     56  115.0607    1.234629     9.239121       112.5865     117.535
       2     55    104.26    .7081993     5.252146       102.8401    105.6799

combined    111   109.709    .8784149     9.254675       107.9682    111.4498

    diff         10.80071    1.423326                    7.971927     13.6295

    diff = mean(1) - mean(2)                                     t =   7.5884
Ho: diff = 0                    Satterthwaite's degrees of freedom =  87.4996

    Ha: diff < 0             Ha: diff != 0                    Ha: diff > 0
 Pr(T < t) = 1.0000     Pr(|T| > |t|) = 0.0000             Pr(T > t) = 0.0000

The above STATA output corrects for an equal variance assumption, 
with the null hypothesis of no mean difference between male and female in 
serum LDL. Similar to equal variance output above, there remains a clinically 
meaningful mean difference, 10 mg/dl, which is different from 0 mg/dl, as well 
as a statistically significant difference, p < 0.0001, implying that the chance 
of obtaining a mean difference in serum LDL of 10.8 mg/dl or a value as 
extreme as this magnitude is less than 1%, if  indeed the population parameter 
is different from the sample statistic (10.8 mg/dl).

The same p value is obtained with the two-sample t test performed with 
equal variance assumption. The same statistical inference could be drawn 
here, that with 0.05 as the set significance level, the p value in this test (0.52) 
implies that we fail to reject the null hypothesis of no significant difference 
with age at surgery, comparing those with and without deep wound infec­
tion by the age at surgery. Assuming inequality of variance, we performed a 
two-sample t test and obtained the same statistical inference but with a slight 
difference in the significance level compared to that obtained with the correla­
tion analysis. Therefore, the closest approximation of the Spearman correla­
tion coefficient in this example is the t test with equal variance.

STATA syntax: ttest ageofsurgery, by(deep_wound) unequal

Two-sample t test with unequal variances

Group      Obs        Mean     Std. Err.    Std. Dev.    [95% Conf. Interval]
       0   44     14.51818     0.5313857    3.524814     13.44654    15.58982
       1   22     13.94545      0.669358    3.139567     12.55345    15.33746
combined   66     14.32727     0.4170188    3.387876     13.49443    15.16012

       diff = mean(0) - mean(1) t = 0.6701
Ho: diff = 0 Satterthwaite’s degrees of freedom = 46.7437

      Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.7470              Pr(|T| > |t|) = 0.5061     Pr(T > t) = 0.2530



Statistical inference involving relationships or associations  195

While correlation and regression assess linear relationships and are similar 
in some respects (the slope of the regression line has the same negative or 
positive sign as the correlation), the two differ in that correlation is scale-
independent, but regression is scale-dependent, which affects the values of 
a and b in the regression equation.5 For example, the correlation between the 
pedobarograph and the x-ray are the same regardless of what measure is used 
to assess the pedobarograph. However, the equation, because of regressing 
pedograph on the x-ray (predicting x-ray measured in angles or measured in 
x unit vs. y unit) gives different values for the constant (a) and the slope (b) in 
the equation:

	 Simple linear regression → = +Ỳ a bX

where `Y is the predicted pedobarograph (response or regressand), a is the 
constant, b is the coefficient of regression, and X is the x-ray (independent or 
regressor). Please note that unlike this complete model (Ύ = β0 + β1X1 + ε), in this 
regression equation, because it describes the relationship, the error term (ε) 
is not used (simplification of the relationship). Consider a study to assess the 
proliferative and prognostic marker in hepatocellular carcinoma. The investi­
gators first wanted to assess the linear relationship between these two mark­
ers, assuming an inverse relationship before testing their relationship with 
clinicopathologic covariates.

 STATA syntax : regress  p27tum agnor

   Source      SS         df      MS                Number of obs  =      40
            F(  1,    38)  =    7.78
    Model   6819.37465     1   6819.37465           Prob > F       =  0.0082
 Residual   33293.5414    38   876.145825           R-squared      =  0.1700
            Adj R-squared  =  0.1482
    Total    40112.916    39   1028.53631           Root MSE       =    29.6

 
   p27tum         Coef.   Std. Err.     t     P>|t|     [95% Conf. Interval]
 
    agnor    -9.633796    3.453133   -2.79    0.008     -16.6243   -2.643293
    _cons     97.93353    23.95502    4.09    0.000     49.43912    146.4279

The above STATA output indicates an inverse linear relationship between 
the proliferative marker (p27tum) and prognostic marker (agnor). This 
method (simple regression) of analysis is appropriate because the two vari­
ables are assumed to be normally distributed and are both measured on a 
continuous scale. However, since the proliferative marker was not normally 
distributed, sktest, p = 0.005, a robust regression is suggested. The use of 
robust regression with the STATA syntax rreg is described below in other 
examples involving the stiff  knee gait and the kinematics.



196  Applied biostatistical principles and concepts

 . regress  LDL HDL

   Source       SS        df      MS               Number of obs  =      111

           F(  1,   109)  =   588.32

    Model   7948.71635     1   7948.71635          Prob > F       =   0.0000

 Residual   1472.67537   109   13.5107832          R-squared      =   0.8437

           Adj R-squared  =   0.8423

   Total    9421.39172   110   85.6490156          Root MSE       =   3.6757

 

      LDL        Coef.   Std. Err.     t      P>|t|     [95% Conf. Interval]

 

      HDL    -1.379894   .0568902   -24.26    0.000    -1.492649   -1.267139

    _cons     183.1206   3.046652    60.11    0.000     177.0822     189.159

 

The above STATA output illustrates a simple linear relationship between 
HDL and LDL. The significant regression line is obtained in this output 
indicative of the feasibility of using patients’ serum HDL to predict their 
serum LDL level: Serum LDL = 183.1 – 1.38 (HDL). The coefficient of deter­
mination provided by R-squared of 0.84 is indicative of 85% changes in LDL 
as a function of HDL, implying that increasing HDL on average results in 
84% reduction in LDL in this sample.

. rreg LDL HDL

   Huber iteration 1:  maximum difference in weights = .62796098

   Huber iteration 2:  maximum difference in weights = .1484032

   Huber iteration 3:  maximum difference in weights = .04888443

Biweight iteration 4:  maximum difference in weights = .27234337

Biweight iteration 5:  maximum difference in weights = .03553642

Biweight iteration 6:  maximum difference in weights = .04432487

Biweight iteration 7:  maximum difference in weights = .00988001

Robust regression                                      Number of obs =    111
                                                       F( 1,  109)   = 994.28
                                                       Prob > F      = 0.0000

    LDL           Coef.    Std. Err.       t    P>|t|    [95% Conf. Interval]

    HDL      -1.321647     .0419143   -31.53    0.000    -1.40472   -1.238575
  _cons       178.7614     2.244643    79.64    0.000    174.3126    183.2103

With the normality assumption requirements for simple linear regression, 
a robust SE/variance analysis is required to adjust for the assumption viola­
tion. Above and below are examples of how to apply this method in linear 
regression model.
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. regress LDL HDL, robust

Linear regression                                     Number of obs =     111
                                                      F(  1,  109)  =  785.46
                                                      Prob > F      =  0.0000
                                                      R-squared     =  0.8437
                                                      Root MSE      =  3.6757

                             Robust
    LDL         Coef.      Std. Err.       t    p>|t|    [95% Conf. Interval]

    HDL     -1.379894       .049236   -28.03    0.000     -1.477478  -1.28231
  _cons      183.1206      2.723784    67.23    0.000     177.7222   188.5191

The following STATA output with the robust regression demonstrates a 
statistically significant indirect or inverse relationship between the tumor pro­
liferative marker (p27) and tumor prognostic marker (agnor) − β = −10.46, 
t = −2.87, and p = 0.007. Also note the value of F ratio, 8.21, confirming the 
relationship between the two statistics (t and F ): F = t2.

 STATA syntax: rreg p27tum agnor
 Huber iteration 1:  maximum difference in weights = .41297509
 Huber iteration 2:  maximum difference in weights = .02492165
 Biweight iteration 3:  maximum difference in weights = .12620827
 Biweight iteration 4:  maximum difference in weights = .00112964
 
 Robust regression                                 Number of obs   =      40
                                                   F(  1,    38)   =    8.21
                                                   Prob > F        =  0.0067
 
 
   p27tum         Coef.    Std. Err.      t    P>|t|    [95% Conf. Interval]
 
    agnor     -10.45858    3.649444   -2.87    0.007   -17.8465    -3.070667
    _cons      102.6055    25.31687    4.05    0.000    51.3542     153.8568

Besides simple linear regression, which involves just one independent vari­
able (x), linear regression can be performed with more than one independent 
variable. This method is termed multivariable (not multivariate) linear regres-
sion. The intent of this analysis is to assess simultaneously how each variable 
in the model influences or could be used to predict the outcome while main­
taining others at constant, implying controlling for the effect (assuming that 
x2, x3, and x4 are important confounders) of x2, x3, and x4 in order to deter­
mine how x1 predicts the outcome Y. Therefore, multiple or multivariable lin­
ear regression is an extension or generalization of simple linear regression in 
which there are two or more repressors or independent or predictor variables. 
However, since simple linear regression only assesses a linear association, how 
linear is multiple linear regression? For example, if  investigators in a study to 
assess the outcome of posterior spine fusion in correcting curve deformities 
in pediatric patients with neuromuscular scoliosis intended to determine how 
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estimated blood loss could be used to predict parked blood cells given intra­
operatively, as well as control for cell saver given during surgery, a multivari­
able linear regression would be an adequate statistical analysis method. Thus, 
predicted parked red blood cells (Y) = a (constant) + (β1) regression coeffi­
cient1 (estimated blood loss –x1) + (β2) regression coeficient2 (cell saver − x2). 
This equation could be simply written as Y = a + m1X1 + m2X2 (mathematical 
model) or by using a probabilistic model:

	 Y X X Y a b X b X= + + = + +β β β0 1 1 2 2 1 1 2 2or

where Y is the predicted parked red blood cells, b1 is the coefficient of regres­
sion for estimated blood loss, and X1 is the estimated blood loss. Likewise, 
b2 is the coefficient of regression for cell saver while X2 is the cell saver. The 
linear risk model of this function is

	 R x x( )1 1 1= +α β

R x x R x x R( ) ( ), ( ) ,1 1 1 1 1 1 11 1+ = + + = + =α β α β βand then (( ) ( )x R x1 11+ −

where β1 is the difference in risk between subpopulations defined by having 
X1 = x1 + 1 and the subpopulation defined by having X1 = x1 and the difference 
does not depend on the reference level x1 for X1 where comparison is made.

While regression function (commonly referred to as regression) and model 
(estimates the true regression function) specification are introduced in this 
chapter, detailed discussion of model specification is presented in intermedi­
ate and advanced epidemiologic and biostatistics texts.6 We saw earlier the 
importance of a scale of measurement in selecting linear regression function 
and correlation (numeric or continuous response variables). Recollect that 
when considering a regression function E(Y | X = x), Y is the response vari­
able (regressand) and x is the regressor or covariate. For example, in the pre­
vious illustration on age at surgery and postoperative deep wound infection, 
if  Y is deep wound infection and x is age at surgery, E(Y | X = x) represents 
the average age of subjects (regressor), given deep wound infection, x (regres­
sand). Regression analysis can be performed with binary outcome or regres­
sand, such as binomial and logistic regression functions and models.

With a binary outcome, let us consider a hypothetical prospective cohort 
study conducted to assess the risk of developing endometrial carcinoma 
among women aged 18 to 30 years diagnosed with polycystic ovarian syn­
drome (POS). If we consider the regressand to be endometrial carcinoma and 
it is indicated by Y, and Y = 1 (presence of the disease or outcome) and Y = 0 
(absence of disease or outcome), then the E(Y  | X = 1) is the average of the endo­
metrial cancer among women aged 18 to 35 years with POS and E(Y  | X = 0) is 
the average of endometrial cancer among women aged 18 to 35 years without 
POS and E(Y  | X = x) is a binary regression.
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In epidemiologic studies, logistic regression is suitable for obtaining the 
odds ratio in case–control studies while binomial regression is appropriate 
for risk ratios from prospective or retrospective cohort designs.7 However, 
where the prevalence of disease or outcome of interest is low, the odds ratio 
approximates the risk ratio, and logistic regression is an adequate method for 
estimating the effect of an explanatory or regressor on a regressand or out­
come with a binary scale of measurement.

In a logistic regression technique, the probability of the outcome is pre­
dicted given the value of an explanatory variable, which may be measured on 
a continuous, binary, or categorical scale called a mixed scale. Consider π [x] 
to be the probability that a child with neuromuscular scoliosis who has skin 
breakdown (x) after posterior spine fusion develops a deep wound infection, 
the probability function will be presented as follows:

	 π α β α β[ ] exp[ ] / ( exp[ ])x x x= + + +1

And the probability of not developing deep wound infection is presented as 
follows:

	

1 1 1

1 1

− = + + − +
+ + = +

π α β α β
α β

[ ] exp[ ] exp[ ]

exp[ ] ex

x x x

x

/

/ pp[ ]α β+ x

where α and β are unknown parameters associated with the target population. 
The odds of developing deep wound infection are represented by P/1 − P = 
π [x]/1 − π [x], and the log odds of developing deep wound infection are as 
follows:

	
Log / thus logit /π π α β π π[ ] [ ] , [ ] log [x x x1 −  = + = (( )]1 − π

Finally, exp [β] = odds ratio, which is the measure of the effect or point esti­
mate in a logistic regression technique utilizing case–control design.

Regression is also used in analyzing time-to-event data. A Cox regression (the 
proportional hazard model or Cox proportional hazard model) is used in the 
failure-time model, where the event may be death from a specific cause, overall 
death, or even system failure.8 This technique involves censored data, implying 
data where the event beyond a particular temporal point was not observed.

In practice, understanding survival data involves examining censoring 
(those who survived their follow-up interval, but for whom, it is not known 
how much longer they lived thereafter or who were lost to follow-up), trun­
cation, survival probability, survival function and Kaplan–Meier survival 
curve, probability density function, cumulative probability of failure as 
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Kaplan–Meier failure estimates, Nelson–Aalen hazard estimates, and equal­
ity of survival using several test statistics including the most commonly used 
log-rank test and hazard rate. The distribution of the data is essential, and 
most survival data are nonnormal in distribution; they are right skewed, with 
varying degrees of censoring, thus requiring the use of nonparametric or 
semiparametric tests to determine whether the survival curves are statistically 
different from one another. Briefly, let us consider a cohort of cerebral palsy 
pediatric patients with equinus foot deformity who underwent surgery for 
correction and recurrence as the end point (outcome)—not a very good mea­
sure of end point. If  investigators followed these patients forward in time to 
determine recurrence surgery and follow-up continues for each subject until 
recurrence, the study ends, or further observation becomes impossible, then 
these individuals are said to be censored. In this demonstration, recurrence 
surgery may not occur for all subjects during the follow-up, and for such sub­
jects, we assume that the recurrence surgery did not occur while the subjects 
were being followed and the investigators did not know whether or not recur­
rence surgery would occur at some later time. However, we can still determine 
the survival function as well as the median survival but not the mean survival 
since all the events did not occur at the end of the study.

Survival and cumulative mortality function can be determined using this 
equation:

	 S t t ti[ ] Pr [ ]= >

which is the probability of surviving until at least time t, where ti is the time 
that recurrence occurred and t is the number of subjects who are known to 
have had recurrence by this time.

The Kaplan–Meier (KM) survival function is a method of generating tables 
and plots of survival or hazard functions for time-to-event data. The KM is 
events dependent only on time. Because KM models survival based only on 
time dependence, without covariate effects, it is assumed that event probabili­
ties depend only on time. All subjects are assumed to behave similarly, and 
computed survival functions are assumed to describe all subjects. This further 
implies that censored and uncensored cases behave the same. If the censored 
cases (those for whom the event has not yet happened) are different from the 
uncensored cases, results may be biased. This is a strong assumption that may 
be violated in the real world, which is why event history and Cox regression 
models, which do take covariates into account, are now the more common 
approach for time-to-event data. The median survival time is the time at which 
half the subjects have reached the event of interest. If  the survival curve does 
not fall to 0.5 (50%), the median time cannot be computed. Rather than clas­
sifying the observed survival times into a life table, we can estimate the survival 
function directly from the continuous survival or failure times. Intuitively, 
imagine that we create a life table so that each time interval contains exactly 
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one case. Multiplying out the survival probabilities across the “intervals” (i.e., 
for each single observation), we would get for the survival function:

	
S t n j n j

j
( ) ( ) ( )

( )
= − − + =∏ /

j

t
1

1

δ

In this equation, S(t) is the estimated survival function, n is the total num­
ber of cases, and ∏ denotes the multiplication (geometric sum) across all 
cases less than or equal to t; δ( j) is a constant that is either 1 if  the jth case 
is uncensored (complete) or 0 if  it is censored. This estimate of the survival 
function is also called the product-limit estimator and was first proposed by 
Kaplan and Meier. Also, survival function can be simply expressed as follows:

	 S t T t F t( ) Pr{ } ( )= > = −1

where F(t) = Pr{T t}, giving the probability that the event has occurred by 
duration t. This function gives the probability of being alive at duration t, or 
more generally, the probability that the event of interest has not occurred by 
duration t.

To determine the effect of covariates and the combined effects of risk fac­
tors on the recurrence surgery, the Cox proportional hazard model is ade­
quate. This model allows the independent as well as joint effects of several 
variables to be assessed. Cox regression, which implements the proportional 
hazards model or duration model, is designed for analysis of time until an 
event or time between events. One or more predictor variables, called covari­
ates, are used to predict a status (event) variable. The proportional hazard 
model is the most general of the regression models because it is not based 
on any assumptions concerning the nature or shape of the underlying sur­
vival distribution. The model assumes that the underlying hazard rate (rather 
than survival time) is a function of the independent variables (covariates); 
no assumptions are made about the nature or shape of the hazard function 
(distribution-free). Thus, in a sense, Cox’s regression model may be consid­
ered to be a semiparametric method. The model may be written as follows:

	 h t z z z h t b z b zm m m( ),( , ) ( )* exp( * * )1 2 0 1 1 { } = + +

where h(t, …) denotes the resultant hazard, given the values of the m covari­
ates for the respective case (z1, z2, …, zm) and the respective survival time (t). 
The term h0(t) is called the baseline hazard; it is the hazard for the respective 
individual when all independent variable values are equal to zero. We can 
linearize this model by dividing both sides of the equation by h0(t) and then 
taking the natural logarithm of both sides:

	
log ( ), ( ) ( ) * *h t z h t b z b zm m/ { }  = + +0 1 1
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Simply, this model represents the instantaneous risk or probability of reach­
ing the end point (recurrence surgery or death) at a particular time. We assume 
proportional hazards, implying that the hazard ratio for a given explanatory 
variable or covariate is constant at all times.9

This chapter presents the simplified approach to understanding hypothesis 
testing involving these relationships: (a) correlation analysis, (b) simple linear 
regression, (c) multiple linear regression, (d) binomial regression, (e) logistic 
regression (univariable and multivariable), (f) Cox regression (univariable and 
multivariable), and (g) Poisson regression. Examples of hypothetical studies 
and their analyses are presented along with their interpretations in order to 
encourage the understanding of outputs from statistical packages.

9.2 � Correlation and correlation coefficients

A sample correlation coefficient is a method used to quantify a linear rela­
tionship, implying the use of  one variable, (x) to predict another (y), and 
is measured by sample covariance. However, because unadjusted measures 
without sample covariance are influenced by observations variability (corre­
lation), requiring such measures as correlations coefficient which adjusts for 
x and y. For example, if  sx and sy denote the SD of xi and yi, mathematically: 
r = sxy ​      /sxsy.

9.2.1 � What is a correlation coefficient?

This is a statistical technique involving the assessment of the relationship 
between two variables, but neither is considered dependent. This technique 
is applicable to normally distributed as well as distribution-free data. The 
Pearson correlation coefficient, also termed Pearson product-moment cor­
relation coefficient, is used for normally distributed variables. If  either of the 
two variables is not normally distributed, a Pearson correlation is consid­
ered inappropriate.10 Therefore, an alternate approach to analysis involves 
(1) transformation of either one or both variables in order to achieve near-
normal distribution and (2) utilization of the Spearman rank correlation coef­
ficient, which is a nonparametric test. This test allows for the strength of the 
trends between two variables measured on an ordinal scale to be quantified. 
Here, we present the nonparametric analog of the Pearson correlation coef­
ficient using STATA illustration.

STATA syntax: spearman pkf0 rom0 vkf0, stats(rho obs p)pw

The STATA syntax above is used to obtain a nonparametric correlation 
coefficient given that the peak knee flexion (pkf), velocity of knee flexion 
(vkf), and the range of motion (rom) are not normally distributed in this 
sample of children with stiff  knee gait.
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 |      pkf0      rom0     vkf0

 pkf0   |1.0000

        100

        |

 rom0|  0.3537    1.0000

        100       100

0.0003

 vkf0|0.0221      0.0984   1.0000

90        90       90

 0.8365   0.3560

Because of multiple comparisons, the correct p value is required, hence the 
use of Bonferroni, which simply multiplies the uncorrected p value from the 
uncorrected output by 3 (3 p values) above to derive the corrected p value. 
This approach is termed adjustment or correction for multiple comparison.

STATA syntax: spearman pkf0 rom0 vkf0, stats(rho obs p) pw bon

      |      pkf0       rom0        vkf0

      pkf0 | 1.0000

             100

             |

      rom0 | 0.3537     1.0000

             100        100

             0.0009

       

      vkf0 | 0.0221     0.0984      1.0000

             90         90          90

             1.0000    1.0000

The STATA syntax bon, obs, p, or pw indicates the Bonferroni correction 
for multiple comparison—obs for number of observations, p for probability 
value or significance, and pw for pairwise correlation. In both uncorrected 
and corrected p values, there remains a significant correlation between the 
range of motion and the peak knee velocity, p < 0.05.

9.2.2 � When is the correlation coefficient appropriate?

This technique is adequate in assessing a relationship between two numeri­
cal measurements made on the same subjects. The correlation coefficient, also 
termed Pearson product moment, is the measure of the linear relationship and 
is designated by r. Because the relationship between the two variables is assumed 
to be measured in a numeric scale, the violation of this assumption requires an 
alternative method called the Spearman rank correlation coefficient, which is 
the nonparametric alternative to the Pearson correlation coefficient.



204  Applied biostatistical principles and concepts

9.2.3 � How is the correlation coefficient computed?

Consider a study conducted to examine the correlation between oxygen reserve 
and walking heart rate. If the investigators wanted to determine the linear rela­
tionship between these two variables, assuming the variables are measured in a 
numeric scale and meet the Gaussian distribution assumption, the Pearson cor­
relation technique would be adequate in determining such a relationship. How 
could this be computed? Using STATA, we first test the data for normality. 
Here, we present STATA output for the test of normality of the sample data.

 STATA syntax: sktest vo2reserve walkhr
              Skewness/Kurtosis  tests  for Normality
                                         joint 
    Variable   Pr(Skewness)  Pr(Kurtosis)   adj chi2(2)   Prob>chi2
 
  vo2reserve      0.907         0.020             5.25       0.0726
      walkhr      0.310         0.674             1.30       0.5227

Since the significance level is >0.05, the two variables are normally dis­
tributed, which meets the assumptions for the Pearson correlation coefficient 
analysis. Below is the STATA output for the Pearson correlation coefficient.

 STATA syntax: pwcorr walkhr vo2reserve, sig

 |  walkhr vo2res~e
 
 walkhr |   1.0000
 voreserve |-0.8579    1.0000
 |  0.0000

. sktest SBP HDL LDL age

                Skewness/Kurtosis tests for Normality

                                               joint 

 Variable    Obs  Pr(Skewness)  Pr(Kurtosis)  adj chi2(2) Prob>chi2

      SBP    111     0.6630       0.0000         19.96       0.0000
      HDL    111     0.0001       0.7025         12.98       0.0015
      LDL    111     0.0313       0.0000         37.51       0.0000
      age    111     0.0002       0.6744         11.64       0.0030

The above STATA output illustrates the normality test for SBP, HDL, 
LDL, and age of 111 patients. The purpose is to ensure that the distribution 
of the data meet the normal probability distribution for the intended esti­
mation test and/or hypothesis testing. The result, which is based on the null 
hypothesis of the data or the random variable, is normal (Ho = data are nor­
mal; alternative hypothesis H1 = data are not normal). When the significance 
test at 5% type one error tolerance is >0.05 (5%), there is evidence against the 
null hypothesis, implying that the data are normal (reject the null hypothesis 
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and accept the alternative that the distribution of the data follows normal or 
fit Gaussian probability function).

. pwcorr SBP age HDL LDL, obs sig star(5) bonferroni

                SBP       age       HDL        LDL

      SBP    1.0000
                111
           
      age    0.7153*   1.0000
             0.0000
                111       111
      HDL   -0.9410*  -0.7453*   1.0000
             0.0000    0.0000
                111       111       111
           
      LDL    0.8767*   0.7613*  -0.9185*    1.0000
             0.0000    0.0000    0.0000
                111       111       111        111

The correlation coefficient assuming a linear relationship fits the data. 
The above STATA output illustrates the correlation between these variables, 
namely, age, SBP, LDL, and HDL. There is a significant direct/positive strong 
correlation between LDL and SBP, and age, while a very strong, indirect, and 
statistically significant correlation is observed with HDL.

. spearman SBP age HDL LDL, bonferroni

(obs=lll)

              SBP      age       HDL      LDL

    SBP    1.0000
    age    0.5951   1.0000
    HDL   -0.9994  -0.5946    1.0000
    LDL    0.9051   0.7376   -0.9057   1.0000

The above STATA data on the model that fits these data (Spearman corre­
lation coefficient) illustrate a similar correlation coefficient and the direction 
of the relationship. This model assumes no normal probability distribution, 
and is hence suitable for distribution-free analysis for linear relationship with­
out any assumption of the predictor in the model.

The r = −0.86 shows a strong negative linear relationship between oxygen 
reserve and heart rate at walking (Graph 9.1). The significance level, <0.001 
is indicative of the rejection of the null hypothesis that r is not significantly 
different from zero. In general, the r is interpreted as follows: (1) correla­
tion coefficient, r, is between −1.0 and +1.0, with r close to 0.0 considered 
to be a weak relationship; (2) 1.0 or −1.0 = strong relationship; (3) >0.7 = 
strong correlation; (4) 0.3 to 0.7 = moderate correlation, and (5) <0.3 = weak 
correlation.11



206  Applied biostatistical principles and concepts

Consider another example of data on stiff knee gait for the correlation bet­
ween peak knee flexion (pkf0), range of knee motion (ROM0), time to peak 
knee flexion (tipkf0), maximum velocity of knee flexion (mvkf0), and velocity 
of knee flexion (vkf0). The correlation coefficients are presented with the signif­
icance level and observations (sample size). The output indicates a statistically 
significant (r is different from 0) moderate positive relationship or correlation 
between peak knee flexion and the range of motion, r = 0.37 (0.4), p = 0.0001. 
Because the null hypothesis for the correlation coefficient is that the correla­
tion coefficient is zero, we reject the null hypothesis that the observed r = 0.4 
from the data is zero, and conclude that 0.4 is significantly different from 0.0.

 STATA syntax: pwcorr  pkf0 rom0 tipkf0  mvkf0 vkf0, sig obs

                    pkf0     rom0   tipkf0    mvkf0     vkf0
 
         pkf0     1.0000 
               
                     100
               
         rom0     0.3713   1.0000
                  0.0001
                     100      100
               
       tipkf0     0.0913   0.1559   1.0000 
                  0.3688   0.1234
                      99       99       99
               
        mvkf0    -0.0270  -0.0572   0.0105   1.0000 
                  0.8002   0.5925   0.9219
                      90       90       90       90
               
         vkf0     0.0350   0.0637  -0.0680   0.3819   1.0000 
                  0.7434   0.5510   0.5240   0.0002
                      90       90       90       90       90
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Graph 9.1  �Scatter plot of the correlation between volume of reserved 02 and walking 
heart rate. Note: The graph of the sample data illustrates a strong nega­
tive linear relationship between walking heart rate and volume of reserved 
oxygen—as reserved oxygen increases, the walking heart rate decreases.
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Since the correlation coefficient is based on the assumption that the vari­
ables are normally distributed, this normality could be tested graphically by 
using quantile normal plot or normal probability plot. The above result indi­
cates the uncorrected correlation coefficient, and since we had five correla­
tions of interest, the corrected significance level is required. To obtain this 
adjustment, we used the Bonferroni correction (bon). Thus, the individual 
significance level is multiplied by five to obtain the corrected p value. For 
example, the uncorrected p value for the correlation between peak knee flex­
ion and range of motion was 0.0001, the corrected p value from Bonferroni = 
(0.001 * 5 = 0.0014). Therefore, in either uncorrected and corrected tests or 
adjustment for multiple comparisons, the coefficient is significantly different 
from zero, p < 0.05.

.STATA syntax: pwcorr pkf0 rom0 tipkf0 mvkf0 vkf0, sig obs bon
      |        pkf0    rom0      tipkf0    mvkf0      vkf0

      pkf0|1.0000
             100
       
      rom0|0.3713      1.0000
             0.0014
             100       100
       
      tipkf0|0.0913    0.1559    1.0000
             1.0000    1.0000
             99        99        99
       
      mvkf0|−0.0270    −0.0572   0.0105    1.0000
            1.0000     1.0000    1.0000
            90         90        90        90
       
      vkf0|0.0350      0.0637    −0.0680   0.3819     1.0000
           1.0000      1.0000    1.0000    0.0020
           90          90        90        90         90

We can test the normality of the range of motion of the knee (ROM0) and 
the peak knee flexion (pkf0) by using these two tests:

STATA Syntax: swilk pkf0 rom0 *(for Shapiro-Wilk) sfrancia pkf0 

rom0 *(for Shapiro-Francia) sktest pkf0 rom0 *(for skewness and 

kurtosis)

Below is the output of the normality test for the three variables, based on 
the STATA commands above.

Shapiro-Wilk W test for normal data
Variable| Obs  W        V      z      Prob>z
pkf0      100  0.95593  3.639  2.865  0.00208
rom0      100  0.97380  2.163  1.712  0.04346
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Shapiro-Francia W’ test for normal data
Variable| Obs  W’       V’     z      Prob>z
pkf0      100  0.95177  4.358  2.897  0.00189
rom0      100  0.97805  1.984  1.377  0.08427

Skewness/Kurtosis tests for Normality

Variable| Pr(Skewness)  Pr(Kurtosis)  adj chi2(2)  Prob>chi2
pkf0      0.001         0.003         15.61        0.0004
rom0      0.128         0.057         5.70         0.0578

The above three tests for normality, skewness-kurtosis (sktest), Shapiro-
Wilk (swilk) and Shapiro-Francia (sfrancia) are used to test the normal distri­
bution of ROM and PKF and indicate that these variables are not normally 
distributed in this sample (Graph 9.2). Since the null hypothesis for normality 
tests states that the distribution is normal, p < 0.05 indicates that the distribu-
tion is not normal, rejecting the null hypothesis of normally distributed data.

9.2.4 � r Interpretation

r takes values from −1 to +1, with r = 0 implying no relationship between x 
and y, and −1 meaning a negative or inverse relationship (negative slope), 
while 1 reflects a positive slope. Specifically, the closer r is to + 1, the more 
accurate the application of one variable, x to predict the other variable, y.
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Graph 9.2  �(a) Normal probability (pnorm) as diagnostic text for the variable of inter­
est, PKFO. Quantile–normal emphasize the tails of the distribution while 
the normal probability plots places focus on the center of the distribution.
� (Continued )
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9.3 � Simple linear regression

9.3.1 � What is a simple linear regression?

A simple linear regression is a method for examining a relationship between a 
single response or dependent variable and one predictor, explanatory, or inde­
pendent variable, with the response variable measured as continuous while the 
independent could be continuous or binary but not categorical (Figure 9.1).12 

Therefore, in a simple linear regression, the relationship between a normally 
distributed response or dependent variable and a continuous one is examined.

9.3.2 � When is simple linear regression feasible?

If  the intent of an investigator is to examine the linear relationship between 
a continuous dependent variable and usually one independent variable, then 
this method is adequate. Also, if  the intent of the investigators is to determine 
whether or not the independent variable (continuous) could be used to pre­
dict the response or outcome variable, given that the outcome or dependent 
variable is measured on a continuous scale and is normally distributed, then 
simple linear regression is an adequate method. Recall the following:

	 Simple linear regression → = +Ỳ a bX
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Graph 9.2 (Continued)  �(b) Quantile normal (qnorm) as diagnostic text for the vari­
able of interest, PKFO. Quantile–normal emphasize the tails 
of the distribution while the normal probability plots places 
focus on the center of the distribution.
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Figure 9.1  Hypotheses testing involving linear relationship.
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9.3.3 � How is simple linear regression computed?

Consider a study conducted to examine the relationship between range of 
motion and the peak knee flexion in children with stiff  knee gait. Since the 
investigators wanted to see if  peak knee flexion could be used to predict the 
range of motion of the knee, a simple linear regression is an adequate statisti­
cal inference. A linear graph, termed a two-way scatterplot, could be used to 
graphically illustrate this relationship (Figures 9.2 through 9.4).
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Figure 9.2  Range of motion of the knee by peak knee flexion.
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Figure 9.3  Line plot of range of motion by peak knee flexion.
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STATA syntax: twoway (scatter pkf0 rom0), ytitle(range of motion, 

size(medium)) xtitle(peak knee flexion,size(medium))

STATA syntax: twoway (line rom0 pkf0, sort)

STATA syntax: twoway (line rom0 pkf0, sort) (scatter vkf0 pkf0, 

sort yaxis(2))

We can compute the simple linear regression using peak knee flexion to 
predict the range of motion of the knee in children with the STATA statistical 
package. Below is the STATA output of the relationship between knee range 
of motion and the peak knee flexion in this sample.

 STATA syntax: pwcorr pkf0  rom0 tipkf0 mvkf0 vkf0, sig obs

                   pkf0       rom0     tipkf0      mvkf0      vkf0
 
      pkf0       1.0000
              
                    100
              
      rom0       0.3713     1.0000
                 0.0001
                    100        100
              
    tipkf0       0.0913     0.1559     1.0000
                 0.3688     0.1234
                     99         99         99
              
     mvkf0      -0.0270     -0.0572     0.0105    1.0000
                 0.8002      0.5925     0.9219
                     90          90         90        90
              
      vkf0       0.0350      0.0637    -0.0680    0.3819    1.0000
                 0.7434      0.5510     0.5240    0.0002
                     90          90         90        90        90
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Figure 9.4  ROM and velocity of knee flexion by peak knee flexion.
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 STATA syntax: regress rom0 pkf0

   Source       SS        df      MS               Number of obs  =      100
           F(  1,   109)   =    15.67
    Model   3562.16533     1   3562.16533          Prob > F       =   0.0001
 Residual   22274.1805    98   227.287556          R-squared      =   0.1379
           Adj R-squared   =   0.1291
   Total    25836.3458    99    260.97319          Root MSE       =   15.076

 
     rom0        Coef.   Std. Err.     t      P>|t|     [95% Conf. Interval]
 
     pkf0     .4275568   .1080002    3.96     0.000     .2132339    .6418796
    _cons     23.22742   6.747237    3.44     0.001     9.837744    36.61709

Because the outcome variable is not normally distributed, the robust regres-
sion was used, which is a weighted least square analysis. Simply, the robust 
regression eliminated gross outliers.

 STATA syntax: rreg rom0 pkf0   * rreg means robust regression

    Huber iteration 1: maximum difference in weights = .39621995
    Huber iteration 2: maximum difference in weights = .03014185
 Biweight iteration 3: maximum difference in weights = .15081295
 Biweight iteration 4: maximum difference in weights = .00769687

 Robust regression                                    Number of obs =    100
                                                      F(  1,   98)  =  14.88
                                                      Prob > F      = 0.0002

 
     rom0       Coef.   Std. Err.      t     P>|t|      [95% Conf. Interval]
 
     pkf0    .4401077   .1141079    3.86     0.000      .2136642    .6665512
    _cons    22.05167   7.128814    3.09     0.003      7.904769    36.19857
 

. sfrancia BMI AHI OAI 02SN METC02

               Shapiro-Francia W'  test  for normal data

   Variable      Obs       W'        V'        z         Prob>z

        BMI      495    0.77305    81.201    9.639      0.00001
        AHI      505    0.74352    93.398    9.959      0.00001
        OAI      505    0.68428   114.973   10.415      0.00001
       02SN      505    0.89320    38.891    8.036      0.00001
     METC02      505    0.94374    20.487    6.629      0.00001

.  swilk  BMI  AHI  OAI 02SN  METC02

                Shapiro-Wilk W test for normal data

   Variable      Obs       W         V         z         Prob>z

        BMI      495    0.77384    75.392   10.386      0.00000
        AHI      505    0.74566    86.328   10.721      0.00000
        OAI      505    0.68279   107.669   11.253      0.00000
       02SN      505    0.88913    37.632    8.725      0.00000
     METC02      505    0.94647    18.170    6.974      0.00000
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The STATA output above demonstrates the normality test for the baseline 
(preoperative polysomnographic parameters) variables for powered intracap­
sular tonsillectomy and adenoidectomy (PITA). Of the preoperative param­
eters, namely, apnea hypopnea index (AHI), obstructive apnea index (OAI), 
oxygen saturation nadir (O2SN), mean EtCO2 level (METCO2), and BMI, 
none followed normal frequency distribution.

. spearman AHI OAI 02SN METC02 BMI, stats(rho obs p) star(0.05) bonferroni

  Key
   rho
   Number of obs
   Sig. Level

                 AHI        OAI        02SN      METCO2        BMI

      AHI     1.0000
                 495
           
              0.8693*    1.0000
                  495       495
              0.0000
           
     O2SN    -0.2611*   -0.3244*     1.0000
                 495        495         495
              0.0000     0.0000
           
   METCO2    -0.1151    -0.0472     -0.3138*     1.0000
                 495        495         495         495
              0.1039     1.0000      0.0000
           
      BMI     0.0357    -0.0550     -0.1058      0.1181     1.0000
                 495        495         495         495        495
              1.0000     1.0000      0.1849      0.0856

The above STATA output illustrates the use of a nonparametric method to 
examine the data for correlation prior to the choice of model in examining 
how BMI could be used to predict METCO2, and METCO2 to predict O2SN.

. pwcorr AHI OAI 02SN METC02 BMI, star(5) bonferroni

                AHI        OAI        02SN       METC02         BMI

     AHI     1.0000
     OAI     0.9130*    1.0000
    02SN    -0.3024*   -0.3265*     1.0000
  METC02    -0.0211     0.0135     -0.2871*      1.0000
     BMI     0.0614    -0.0209     -0.1037       0.0739      1.0000

Parametric method illustrating the correlation between the polysomno­
graphic measures and BMI.



Statistical inference involving relationships or associations  215

. regress O2SN METCO2

   Source       SS        df      MS               Number of obs  =      505
          F(1,   109)    =    45.19

    Model   6379.07591     1   6397.07591          Prob > F       =   0.0000
 Residual   71201.0746   503   141.552832          R-squared      =   0.0824

          Adj R-squared  =   0.0806
    Total   77598.1505   504   153.964584          Root MSE       =   11.898

     O2SN        Coef.   Std. Err.      t     P>|t|     [95% Conf. Interval]

   METCO2     -.501418   .0745879    -6.72    0.000    -.6479602   -.3548758
    _cons     109.1745   4.314397    25.30    0.000      100.698    117.6509

Nonrobustic simple linear regression between O2SN and METCO2, 
implying the use of METCO2 to predict O2SN.

. rreg 02SN METCO2

   Huber iteration 1:  maximum difference in weights = .76940631
   Huber iteration 2:  maximum difference in weights = .07458172
   Huber iteration 3:  maximum difference in weights = .01808082
Biweight iteration 4:  maximum difference in weights = .29375833
Biweight iteration 5:  maximum difference in weights = .02655531
Biweight iteration 6:  maximum difference in weights = .00584214

Robust regression                                      Number of obs =    505
                                                       F( 1,  503)   =  51.60
                                                       Prob > F      = 0.0000

    O2SN          Coef.    Std. Err.    t      P>|t|     [95% Conf. Interval]

  METCO2     -.4612734     .0642118   -7.18    0.000     -.5874298   -.335117
   _cons      108.3024     3.714212   29.16    0.000      101.0051   115.5997

With the violation of the normality assumption required in simple linear 
regression, the robust regression is used, which forces normality on the sample 
distribution by addressing the outliers. There is a negative or inverse relationship/
correlation between O2SN and METCO2, as well as regression equation, implying 
that METCO2 could be used to predict O2SN: O2SN = 108.3 – 0.46(METCO2).

. regress O2SN METCO2, robust

Linear regression                                    Number of obs =      505
                                                     F(1,  503)    =    29.86
                                                     Prob > F      =   0.0000
                                                     R-squared     =   0.0824
                                                     Root MSE      =   11.898

                           Robust
   O2SN         Coef.     Std. Err.        t     p>|t|   [95% Conf. Interval]

 METCO2      -.501418     .0917611      -5.46    0.000   -.6817002  -.3211358
  _cons      109.1745     5.157451      21.17    0.000    99.04167   119.3073
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The above STATA output illustrates a robust method, and the result is 
comparable to the previous (rreg syntax) method, except for the distinctive 
attribute of robust standard error and variance.

. regress METCO2 BMI

   Source       SS        df      MS               Number of obs  =      495
          F(1,   493)    =     2.71

    Model   137.164442     1   137.164442          Prob > F       =   0.1004
 Residual   24961.7446   493   50.6323421          R-squared      =   0.0055

          Adj R-squared  =   0.0034
    Total   25098.9091   494   50.8075083          Root MSE       =   7.1156

   METCO2         Coef.   Std. Err.     t      P>|t|     [95% Conf. Interval]

      BMI      .0811913    .049329     1.65    0.100     -.0157298   .1781123
    _cons      55.84081   1.013806    55.08    0.000       53.8489   57.83273

The above STATA output demonstrates a nonrobust method of using 
BMI to predict METCO2. In this sample, while BMI correlates directly with 
METCO2, it could not be used to predict METCO2.

. rreg METCO2 BMI

   Huber iteration 1:  maximum difference in weights = .79039779
   Huber iteration 2:  maximum difference in weights = .0416558
Biweight iteration 3:  maximum difference in weights = .2882931
Biweight iteration 4:  maximum difference in weights = .00471249

Robust regression                                      Number of obs =    495
                                                       F( 1,  493)   =   4.55
                                                       Prob > F      = 0.0333

  METCO2        Coef.     Std. Err.     t      P>|t|     [95% Conf. Interval]

     BMI     .0950825      .044554     2.13    0.033     .0075433    .1826217
   _cons     55.10698     .9156704    60.18    0.000     53.30788    56.90607

The above robust method is indicative of the use of BMI to predict METCO2, 
implying the feasibility of regression equation: METCO2 = 55.11 + 0.10 (BMI). 
The robust linear regression (not shown) with the same data which generates a 
robust standard error indicates a statistically marginally prediction of METCO2 
by BMI: METCO2 = 55.84 + 0.08 (BMI).

9.3.4 � How is the result of  simple linear regression interpreted?

The above outputs (nonrobust) show a significant positive linear relation­
ship between the range of motion and peak knee flexion, β (slope) = 0.43, 
p < 0.001, and 95% confidence interval (CI) = 0.21–0.64. In other words, the 
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slope, 0.43, is statistically significantly different from zero (t = 3.96, df = 98, 
p = 0.0001). Simply, a significant regression equation is obtained, showing 
that peak knee flexion could be used to predict the range of motion of the 
knee: range of motion (Y) = 23.23 + 0.43 (peak knee flexion), with R2 (coef-
ficient of determination called a pseudo square) = 0.137, meaning that a 13.8% 
change in the range of motion (response variable) is the result of a change in 
the peak knee flexion (independent variable).

9.4 � Multiple/multivariable linear regression

9.4.1 � What is multiple linear regression?

In this method, more than one independent variable is used to predict one out­
come (dependent or response) variable. This model may include discrete indepen­
dent variables provided there is a continuous independent variable in the model.

9.4.2 � When is it feasible to use multiple linear regression?

A multiple linear regression is appropriate in predicting the response or out­
come variable when there is more than one independent variable, and the 
response variable is measured on a continuous scale and assumed to be nor­
mally distributed. However, because regression analysis is robust, violation of 
normality of the dependent variable does not necessarily negate the utiliza­
tion of this method.13

9.4.3 � How is multiple regression analysis computed?

Consider a study performed to predict the maximum velocity of knee flex­
ion where independent variables were measured in continuous scales. The 
investigators wanted to assess whether or not the range of motion, peak knee 
flexion, and time to peak knee flexion could simultaneously be used to pre­
dict the maximum velocity of knee flexion. First, the response variable has to 
be tested for normal distribution using the normality test. The skewness and 
kurtosis normality test is as follows:

STATA syntax: sktest mvkf0

The output below indicates that the maximum velocity of knee flexion is 
normally distributed, p = 0.11, which means that we should not reject the null 
hypothesis of normal distribution; that is, the data, variable distribution, or 
the shape is normal.

            Skewness/Kurtosis tests for Normality
                                                   joint 
   Variable    Pr(Skewness)  Pr(Kurtosis)  adj chi2(2)    Prob>chi2
 
      mvkf0       0.038         0.847            4.45        0.1080
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Graph 9.3 shows the variables to be used in the regression model.

STATA Syntax: graph matrix mvkf0 pkf0 rom0 tipkf0

The relationship between the maximum velocity of peak knee flexion is 
shown with peak knee flexion in the second row, range of motion in the third 
row (column 1), and time to peak knee flexion in the fourth row (column 1).

Below is the STATA output for the multiple linear regression with the max­
imum velocity of the peak knee flexion (mvkf0) as the response or dependent 
variable.

 STATA syntax: regress mvkf0 pkf0 rom0 tipkf0

   Source       SS        df      MS               Number of obs  =       90
           F(  3,   86)   =     0.11
    Model   .094268202     1   .031422734          Prob > F       =   0.9545
 Residual    24.740844    86   .287684233          R-squared      =   0.0038
           Adj R-squared  =  -0.0310
    Total   24.8351122    89   .279046205          Root MSE       =   .53636

 
    mvfk0        Coef.   Std. Err.      t     P>|t|     [95% Conf. Interval]
 
     pkf0    -.0003613   .0046934   -0.08     0.939    -.0096914    .0089688
     rom0    -.0018705   .0037476   -0.50     0.619    -.0093204    .0055794
   tipkf0     .1604612   .7943862    0.20     0.840    -1.418726    1.739649
    _cons     1.303317   .6717327    1.94     0.056    -.0320429    2.638678

The data show no significant linear relationship between maximum veloc­
ity of knee flexion and peak knee flexion, while range of motion and time to 
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peak knee flexion are constant and similar for other predictors when other 
covariates are maintained at constant, F(3, 86) = 0.11, p = 0.95. For example, 
the slope for the peak knee flexion showed a very small positive slope (t = −0.08, 
p = 0.94). While the outcome or response variable (maximum velocity of 
peak knee flexion) was normally distributed but the independent variables 
were not, robust regression, which, as explained earlier, eliminates the gross 
outliers before using the ordinary least square regression residual to calculate 
case weight, was used. This method results in weighted least square regres­
sion, thus eliminating gross outliers. With this, the researcher’s intent was to 
assess whether or not the utilization of  robust regression would result in the 
slope or beta coefficient that is significantly different from zero.

STATA syntax: rreg mvkf0 pkf0 rom0 tipkf0

In the robust regression, the result is similar to the regression performed 
above, that ROM, time to peak knee flexion, and peak knee flexion cannot be 
used to predict maximum velocity of knee flexion in these samples—F(3, 86) = 
0.21, p = 0.89. The peak knee flexion showed a very small positive insignifi­
cant slope (t = 0.06, p = 0.95).

    Huber iteration 1:  maximum difference in weights = .45787602
    Huber iteration 2:  maximum difference in weights = .05462326
    Huber iteration 3:  maximum difference in weights = .00884795
 Biweight iteration 4:  maximum difference in weights = .1585585
 Biweight iteration 5:  maximum difference in weights = .00538792

 Robust regression                                    Number of obs =     90
                                                      F( 3,  86)    =   0.21
                                                      Prob > F      = 0.8908

 
   mvkf0         Coef.    Std. Err.    t     P>|t|     [95% Conf.  Interval]
 
     BMI     .0003027     .0048453   0.06    0.950     -.0093295    .0099348
    rom0    -.0029322     .0038689  -0.76    0.451     -.0106233    .0047588
  tipkf0     .1746899     .8200996   0.21    0.832     -1.455614    1.804994
   _cons     1.280384     .6934759   1.85    0.068     -.0982006    2.658968

9.5 � Logistic regression technique

Logistic regression is a commonly used statistical method in biomedical sci­
ences and public health. This technique allows one to assess a relationship or 
association and not necessarily a causation, which is judgment beyond mere 
statistical inference.

9.5.1 � What is logistic regression?

This is a statistical technique or method used to assess the relationship or 
association between one or more independent variables with a binary out­
come variable (absence or presence of a disease or event of interest). The 
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independent variable might be binary, categorical, or continuous, hence the 
mixed scale of measurement with regard to the independent variable. For 
example, investigators conducted a study to examine the role of intraopera­
tive and other factors, including postoperative skin breakdown and residual 
postoperative Cobb angle in children with neuromuscular scoliosis, and the 
development of deep wound infection after posterior spine fusion with rod 
instrumentation. The cases were ascertained before the ascertainment of their 
controls, and the controls were comparable to the cases except for the deep 
wound infection. This design is a retrospective case–control study, which is 
appropriate for the use of the unconditional logistic regression method of 
statistical inference. Unconditional logistic regression implies that there were 
no matched controls, meaning that the controls were not matched to the cases 
by any factor, such as age or gender. When the point estimate is the odds ratio 
and the scale of measurement of the dependent variable is binary, the logistic 
regression technique is a recommended statistical technique.

9.5.2 � When is it feasible to use the logistic regression technique?

In the example with the deep wound infection, because the outcome variable 
(deep wound infection) was measured on a binary scale (absence or presence), 
the logistic regression would be an adequate statistical technique. Thus, logis­
tic regression is a feasible analytic technique if  the intent of the investigators 
is to assess the relationship or association and/or to determine whether or 
not the independent variable, such as disease risk factors, could be used to 
determine the outcome (disease or an event of interest). Therefore, in order 
for logistic regression to be performed, the outcome variable, also termed 
dependent or response, must be measured on a binary scale (0 = absence and 
1 = presence) (Figure 9.5). The independent variables, also termed predictor or 
explanatory variable, could be numerical (continuous) or discrete (categorical 
or binary). For example, if  a study was conducted to examine the association 
between alcohol consumption and peptic ulceration, with alcohol consump­
tion as the independent variable measured in a categorical scale while peptic 
ulcer is measured in a binary scale, logistic regression is an adequate method 
for a valid statistical inference.

9.5.3 � How is logistic regression computed?

This analytic method is distribution-free, meaning there is no assumption of 
normality. However it is essential to be aware of the coding of each variable, 
outcome and independent, for the interpretation of the results or output. 
For this calculation, we will address the univariable and multivariable logis­
tic regression methods through model building using the STATA statistical 
package. The analysis from the logistic regression yields an odds ratio (AD/
BC) as shown earlier in the two-by-two table for a case–control estimate of 



Statistical inference involving relationships or associations  221

Relationships –
generalized

model

Hypothesis testing involving relationships
binary outcome

Yes
Binary

outcome?

Yes No

Generalized 
linear model

Time to
event data?

Yes

No

Normality
assumed?

No

Yes

Parametric survival
analysis model

Cox proportional
hazard model

Normality
assumed?

Normality
assumed?

NoMixed
independent

variables

Yes

Logistic
regression

model

1 outcome and 1
predictor variable

1 outcome and 1
predictor variable

with matching
1 outcome and >1
predictor varaible

Ordered outcome
variable

Conditional
univariable

model

Unconditional
multivariable

model
Ordinal model

>2 levels of
outcome variable

Repeated
measures of the

outcome variable

Repeated logistic
model

Multinomial
model

Consider a sigmoid
model without

reference to survival
model

Unconditional
univariable

model

Figure 9.5  �Hypothesis testing involving binary outcomes—logistic, binomial, and cox 
proportional hazard model.



222  Applied biostatistical principles and concepts

effect measure or point estimate. Commonly used and interpretable codes 
include (a) absence of disease = 1, presence of disease = 0; low level of x = 
0, high level of x = 1; no to smoking = 0, yes to smoking = 1; normal blood 
pressure level = 0, and abnormal blood pressure level = 1. For example, sys­
tolic and diastolic blood pressure could be used to determine whether or not 
an individual is hypertensive, and the same holds true with the LDL-to-HDL 
ratio for hyperlipidemia.

The univariable logistic regression analysis is performed when there is one 
response variable measured on a binary scale and one predictor variable mea­
sured on a binary, categorical, or continuous scale. We will use the wound 
infection data to illustrate the application of the univariable logistic regres­
sion model.

 STATA syntax: logistic deep_wound skin_abrasion
 Logistic regression                             Number of obs  =         66
                                                 LR chi2(1)     =      11.68
                                                 Prob > chi2    =     0.0006
 Log Likelihood = -36.167498                     Pseudo R2      =     0.1391

 
   deep_wound   Odds Ratio    Std. Err.    z    P>|z|   [95% Conf. Interval]
 
 skin_abrra~n     20.06667    22.27958   2.70   0.007   2.277218    176.8259
 

The output above showed that compared to neuromuscular scoliosis 
patients without skin abrasion/breakdown after posterior spine fusion, those 
who had skin abrasion/breakdown were 20 times as likely to develop deep 
wound infection, odds ratio (OR) = 20.07, 95% confidence interval (CI) = 
2.28–176.82. This point estimate is significant, though with widened confi­
dence interval, indicative of imprecise measurements.

9.6 � Model building and interpretation

To simultaneously examine the predictors of deep wound infection, a mul­
tivariable model is required and involves model building. Model building 
commences with variable specification, implying that the outcome, exposure, 
and potential confounding variable effect measure modifier variables should 
be specified. Next, the investigator should identify variables that are biologi­
cally or clinically relevant to the outcome of interest. Further interaction 
should be considered between the exposure variable, such as skin abrasion/
breakdown in our example, and other potential predictors. The rationale is to 
assess for variables or the interacting variables (interaction) that may change 
or influence the relationship of the exposure (skin abrasion/breakdown) and 
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outcome (deep wound infection). There are two known traditions in model 
building: (1) backward technique—involves the introduction of the specified 
variables, including interaction into the model, and (2) forward technique—
which involves stepwise adding of variables (terms and interactions) one at 
a time and retaining in the model only those terms and interactions that are 
significant at a predetermined significance level.

Consider model building on the association between deep wound infec­
tion (outcome) and skin abrasion/breakdown (exposure) and other poten­
tial predictors. Model building will involve (1) variable specification—deep 
wound infection as outcome, skins abrasion/breakdown as the exposure, age, 
sex, packed red blood cells, cell saver, and the product term for age and skin 
abrasion/breakdown, and (2) introduction of the outcome and exposure into 
the model.

 STATA syntax: logistic deep_wound skin_abrasion
 Logistic regression                             Number of obs  =         66
                                                 LR chi2(1)     =      11.68
                                                 Prob > chi2    =     0.0006
 Log Likelihood = -36.167498                     Pseudo R2      =     0.1391

 
   deep_wound   Odds Ratio    Std. Err.    z    P>|z|   [95% Conf. Interval]
 
 skin_abrra~n     20.06667    22.27958   2.70   0.007   2.277218    176.8259

. xi:logit  DM  FMH

Iteration 0:  log likelihood = -74.940827
Iteration 1:  log likelihood = -65.148552
Iteration 2:  log likelihood = -65.042811
Iteration 3:  log likelihood = -65.042636
Iteration 4:  log likelihood = -65.042636

Logistic regression                                    Number of obs =    111
                                                       LR chi(1)     =  19.80
                                                       Prob > chi2   = 0.0000
Log Likelihood = -65.042636                            Pseudo R2     = 0.1321

      DM        Coef.     Std. Err.      z    P>|z|      [95% Conf. Interval]

     FMH     1.821612     .4341689     4.20   0.000     .9706569     2.672568
   _cons    -1.386294     .3370999    -4.11   0.000    -2.046998   -7.7255906

The above STATA output illustrates the relationship between family his­
tory of diabetes (FMI) and diabetes (DM). The logit is transformed to odds 
ratio in the STATA output below.
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. xi:logit  DM  FMH, or

Iteration 0:  log likelihood = -74.940827
Iteration 1:  log likelihood = -65.148552
Iteration 2:  log likelihood = -65.042811
Iteration 3:  log likelihood = -65.042636
Iteration 4:  log likelihood = -65.042636

Logistic regression                                    Number of obs =    111
                                                       LR chi(1)     =  19.80
                                                       Prob > chi2   = 0.0000
Log Likelihood = -65.042636                            Pseudo R2     = 0.1321

      DM   Odds Ratio    Std. Err.      z    P>|z|      [95% Conf. Interval]

     FMH     6.181818     2.683953     4.20   0.000      2.639678     14.4771
   _cons          .25      .084275    -4.11   0.000      .1291219    .4840386

The above STATA output indicates clinically meaningful (effect size) and 
a statistically significant association between the family history of diabetes 
(DM) and the prevalence of diabetes. Compared to patients without family 
history, those with family history are six times as likely to have diabetes. The 
null hypothesis claims that there is no difference in the proportion of fam­
ily history comparing those with and without diabetes ((Ho = P1 (FMH) – 
P2(no-FMH) = 0)). With p < 0.0001, there is strong evidence against the null 
hypothesis with a significance level of 0.05, implying the rejection of the null, 
that chance alone cannot explain the observed magnitude of effect of FMH 
on DM.

. proportion  DM  if  FMH==1

Proportion estimation              Number of obs     =    56

          Proportion      Std. Err.     [95% Conf. Interval]

DM      

   0        .3928571      .0658539      .260883     .5248313

   1        .6071429      .0658539     .4751687      .739117

Above is the STATA output for exploratory analysis prior to confirmatory 
analysis for the hypothesis testing. The proportion of those with family his­
tory of diabetes is higher in this sample among those with DM compared to 
those without.
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. tabodds  DM FMH

  FMH         cases      controls      odds     [95% Conf. Interval]

     0           11            44     0.25000     0.12912    0.48404
     1           34            22     1.54545     0.90397    2.64216

Test of homogeneity (equal odds): chi(1)  =  18.91
                                  Pr>chi2 = 0.0000

Score test for trend of odds:     chi2(1) =  18.91
                                  Pr>chi2 = 0.0000

. tabodds  DM FMH, or

   FMH       Odds Ratio     chi2     P>chi2    [95% Conf. Interval]

     0         1.000000        .          .            .          .
     1         6.181818    18.91     0.0000     2.416337  15.815207

Test of homogeneity (equal odds): chi2(1) =  18.91
                                  Pr>chi2 = 0.0000

Score test for trend of odds:     chi2(1) =  18.91
                                  Pr>chi2 = 0.0000

The tabulation analysis (nonpredictive model) indicates the number of 
cases (DM) and non-DM (controls) with FMH (34 versus 22) in this sample. 
The odd of the exposure given DM is higher among cases compared to con­
trols (1.55 versus 0.25) and the odds ratio is 6.18, p < 0.0001. The null hypoth­
esis for the equality of the odds implies that no difference in the exposure 
odds is rejected at 5% (0.05) significance level.

Model Building Using Backward Technique:

	

logit DWI 1 SA AGE

SEX RBC CS

P X( | )= = + +
+ + +

β β β
β β β

0 1 2

3 4 5 ++ β6SAA

 STATA Syntax: logit DWI SA AGE SEX RBC CS SAA
 Logistic regression                                 Number of obs  =     35
                                                     LR chi2(6)     =  23.27
                                                     Prob > chi2    = 0.0007
 Log likelihood = -11.456742                         Pseudo R2      = 0.5038

 
      DWI        Coef.     Std. Err.     z      P>|z|   [95% Conf. Interval]
 
       SA    -10.75584     10.56436    -1.02    0.309    -31.4616   9.949918
      AGE    -.6216451     .4161613    -1.49    0.135   -1.437306   .1940161
      SEX     .8091246     1.223385     0.66    0.508   -1.588665   3.206914
      RBC    -.0088093     .0050038    -1.76    0.078   -.0186167    .000998
       CS     .0057924     .0036763     1.58    0.115   -.0014131   .0129979
      SAA     1.021696     .7848095     1.30    0.193   -.5165024   2.559894
    _cons     11.04203     8.030465     1.38    0.169   -4.697391   26.78145
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. xi:logistics  DM  FMH  Sex  i.Race  age,  level (99)
i.Race             _IRace_1-3         (naturally coded; _IRace_1 omitted)

Logistic regression                                Number of obs  =      111
                                                   LR chi2(5)     =    90.59
                                                   Prob > chi2    =   0.0000
 Log likelihood = -29.643331                       Pseudo R2      =   0.6044

 
       DM   Odds Ratio     Std. Err.     z      P>|z|   [99% Conf. Interval]
 
      FMH     2.598801     2.025135     1.23    0.220    .3491743   19.34211
      Sex     .7075883       .53008    -0.46    0.644    .1027415   4.873216
 _IRace_2     159.7769     168.9623     4.80    0.000    10.48418   2434.968
 _IRace_3     11.79798     9.489862     3.07    0.002    1.485909   93.67492
      age     1.132434     .0598034     2.36    0.019    .9884085   1.297446
    _cons     .0003498     .0010093     2.76    0.006    2.07e-07   .5913014
 

The above STATA output illustrates the adjusted logistic regression 
model, implying the confounding effects of sex, race, and age in the associa­
tion between the FMH of DM and DM. While the unadjusted model indi­
cates a clinically meaningful effect of FMH on DM, as well as a statistically 
significant difference in the odds of exposure (FMH) comparing DM with 
non-DM, the model with adjusted indicated age, race, and sex as positive 
confounding as seen in the point estimates (adjusted OR, 2.60, 99% CI, 0.35–
19.34, p = 0.22).

The syntax logit is used by STATA to run logistic regression 
(unconditional). The outcome variable is the deep wound infection (DWI), 
and the exposure variable is skin abrasion (SA), while the covariates are age 
(AGE), sex (SEX), packed red blood cells (RBC), and cell saver (CS), and 
SAA is the product of SA and AGE. The SAA represents the interaction 
term and is introduced in the model. The output produced includes the itera­
tion (not shown). The logit is based on the dependent variable coded as zero 
(0) for absence of deep wound infection and one (1) for the presence of deep 
wound infection.

The above STATA output indicates the log likelihood of −11.46 based on 
the iteration history (not shown). The regression coefficient estimates, stan­
dard error, the test statistic (z), the p value for the Wald test, and the 95% 
confidence interval are generated. (STATA default could be set to 90% or 
99% CI). The interval label cons for constant is shown as well as the likeli­
hood ratio test statistic (23.27), and the corresponding p value (0.0007) for the 
likelihood ratio test comparing the full model with six regression parameters 
to a reduced model containing only the intercept. The test statistic follows a 
chi-square distribution with six degrees of freedom under the null hypothesis. 
The following is the STATA output with the odds ratio. OR = e(exponent)β.
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 STATA Syntax: logit DWI SA AGE SEX RBC CS SAA, or

 Logistic regression                               Number of obs  =       35
                                                   LR chi2(6)     =    23.27
                                                   Prob > chi2    =   0.0007
 Log likelihood = -11.456742                       Pseudo R2      =   0.5038

 
      DWI   Odds Ratio     Std. Err.     z      P>|z|   [95% Conf. Interval]
 
       SA     .0000213     .0002252    -1.02    0.309    2.17e-14    20950.5
      AGE     .5370602     .2235037    -1.49    0.135    .2375668   1.214116
      SEX     2.245941     2.747649     0.66    0.508     .204198   24.70274
      RBC     .9912293     .0049599    -1.76    0.078    .9815555   1.000998
       CS     1.005809     .0036977     1.58    0.115    .9985879   1.013083
      SAA     2.777902     2.180124     1.30    0.193    .5966036   12.93445

The or option added to the syntax above is used to obtain exponentiated 
coefficients as the odds ratio (or). Also in STATA, the logistic syntax 
without the or syntax produces similar output. The standard errors and the 
95% CI are those for the odds ratio estimates. The odds ratio produced by 
the logit or logistic syntax must be interpreted with caution especially when 
continuous variables and interaction terms are included in the model specifi­
cation and building.

 STATA Syntax: vce

 Covariance matrix of coefficients of logit model

      e(V)          SA         AGE         SEX         RBC          CS         SAA

 

       SA    111.60563

      AGE    3.3130275   .17319023

      SEX    -2.883925  -.00970793   1.4966697

      RBC   -.03799043    .0015325  -.00173444   .00002504

       CS   -.02426434  -.00088261   .00171574    -.000017   .00001352

      SAA   -8.1941146  -.25802177   .24369701  -.00306118   .00198176   .61592593

    _cons    -60.65636  -3.2068317  -1.7596699  -.03048614   .01661754   4.6916588

     e(V)       _cons

 

    _cons    64.488371

The vce syntax above is used to generate a variance–covariance matrix of 
the parameter estimates, which is used after running the regression. The likeli­
hood ratio test below is performed using STATA syntax lrtest. This test is 
used here to perform a likelihood ratio on the SAA interaction term. STATA 
saves the full model in memory by the syntax, lrtest, saving (1).
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 STATA Syntax: logit DWI SA AGE SEX RBC CS
 Logistic regression                               Number of obs  =       35
                                                   LR chi2(5)     =    21.66
                                                   Prob > chi2    =   0.0006
 Log likelihood = -12.258271                       Pseudo R2      =   0.4691
 
      DWI        Coef.     Std. Err.     z      P>|z|    [95% Conf. Interval]
 
       SA      4.67941     2.014123     2.32    0.020    .7318017   8.627017
      AGE    -.4358683     .2970971    -1.47    0.142   -1.018168   .1464312
      SEX     .5629871     1.131493     0.50    0.619   -1.654698   2.780672
      RBC    -.0069186     .0033196    -2.08    0.037   -.0134248  -.0004123
       CS     .0045958     .0025135     1.83    0.067   -.0003305   .0095221
    _cons     7.906475      5.93409     1.33    0.183   -3.724126   19.53708

 

The or option in the syntax below is used to obtain exponentiated coeffi­
cients as the odds ratio (or). Thus, odds ratio = eβ. Using the coefficient for SA 
(skin abrasion), we obtain e(4.67941) − STATA syntax: disp exp(4.67941) = 
disp exp(4.67941) = 107.70651.

 STATA Syntax: logit DWI SA AGE SEX RBC CS, or
 Logistic regression                               Number of obs  =       35
                                                   LR chi2(5)     =    21.66
                                                   Prob > chi2    =   0.0006
 Log likelihood = -12.258271                       Pseudo R2      =   0.4691

 
      DWI   Odds Ratio     Std. Err.     z      P>|z|   [95% Conf. Interval]
 
       SA     107.7065      216.934     2.32    0.020    2.078823    5580.41
      AGE     .6467029     .1921335    -1.47    0.142    .3612562   1.157695
      SEX      1.75591     1.986799     0.50    0.619    .1911497   16.12986
      RBC     .9931053     .0032967    -2.08    0.037    .9866649   .9995878
       CS     1.004606      .002525     1.83    0.067    .9996696   1.009568

The reduced model is run without the interaction term as indicated above. 
And after running this model, we used the STATA syntax, lrtest, using 
(1). This syntax compares the full model with the interaction term SAA. The 
reduced model is termed the model without interaction.

. lrtest, using(1)

Likelihood-ratio test      LR chi2(1) =  1.60

(Assumption: nested in LRTEST_1)  Prob > chi2 = 0.2055

The chi-square statistic with one degree of freedom is 1.60, which is statis­
tically nonsignificant, p = 0.20. Therefore, we can present the result without 
interaction since there is no significant difference between the model with and 
that without interaction.
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9.6.1 � Types of logistic regression techniques

Logistic regression can also be used in addressing relationships involving 
matched pairs as seen in unconditional logistic regression (STATA syntax: 
clogit), ordinal logistic when the dependent variable is ordered (STATA 
syntax: ologit), and polytomous as well as multinomial when the dependent 
variable has many levels (STATA syntax: mlogit), correlated dichotomous 
data (STATA syntax: xtgee), and survey data (STATA syntax: slogit). 
The application of these specific logistic models is beyond the level of this 
book, which is intended to provide clinicians with a simplified guide on how 
to conduct and interpret results for valid statistical inference as well as clinical 
relevance to the evidence from the data. Further reading from these survey 
logistic or specialized logistic models could be assessed from intermediate and 
advanced biostatistics texts in this topic. Please note that unless otherwise 
specified or qualified, logistic regression refers to the unconditional logistic 
model. With sparse data, exact logistic is used to compensate for small sample 
size, and with repeated measure and binary outcome, repeated logistic regres­
sion model remains a suitable technique to assess such data.

9.7 � Survival analysis: Time-to-event method

Survival analysis is used for time-to-an-event analysis, where the dependent, 
response, or outcome variable (time to an event or failure) is binary and one 
or more of the independent, predictor, or explanatory variables is measured 
on a discrete (binary or categorical) or continuous scale. This analysis uses 
the life table, Kaplan–Meier survival estimates, log-rank and similar tests for 
equality of survival, and the Cox proportional hazard model, also termed the 
Cox regression model.

This method, as mentioned earlier in Section 9.1, involves censored obser-
vations or data, where subjects have been observed unequal lengths of time 
and the outcome is not yet known for all subjects. Censoring could be (a) left 
and (b) right. Censoring is termed left-censored if  the episodes started before 
the period of observation and right-censored if  the episode ended after the 
period of observation.14 Survival analysis assesses the effect of independent 
variables on the event (what terminates an episode, such as death in a clini­
cal trial of drug or other therapeutics) in question. Simply, survival analysis 
examines the simultaneous effect of several variables (covariates) on length 
of survival.

9.7.1 � What is a life table?

Consider a retrospective cohort study to determine the survival of older 
women diagnosed with cervical cancer and treated for the disease. If  the inves­
tigators wanted to examine the survival by 5-year interval, a life table could be 
used to examine the survival experience of this cohort. The STATA statistical 
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package is used to generate a life table with the following syntax: ltable 
time vital, graph survival intervals(5). This syntax produces 
the interval, the number at risk as a beginning total, deaths, loss, and survival, 
as well as the standard error and the 95% CI. However, before commencing 
this analysis, the data must be first set on survival using the STATA syntax: 
stset time, failure (vital), where time is the time variable and 
vital (dead or alive) is the failure variable.

STATA syntax: ltable time vital, graph survival intervals(5)

            Beg.                                  Std.

Interval   Total    Deaths    Lost    Survival   Error   [95% Conf. Int.]

  0    5    1426       263     57     0.8118    0.0105   0.7903   0.8313

  5   10    1106       129      0     0.7171    0.0121   0.6926   0.7401

 10   15     977       109      0     0.6371    0.0130   0.6111   0.6619

 15   20     868        72      0     0.5843    0.0133   0.5577   0.6098

 20   25     796        49      0     0.5483    0.0134   0.5216   0.5742

 25   30     747        44      0     0.5160    0.0135   0.4892   0.5421

 30   35     703        32      0     0.4925    0.0135   0.4658   0.5187

 35   40     671        33      0     0.4683    0.0135   0.4416   0.4945

 40   45     638        24      0     0.4507    0.0134   0.4241   0.4768

 45   50     614        21     23     0.4350    0.0134   0.4085   0.4611

 50   55     570        16     43     0.4223    0.0134   0.3959   0.4484

 55   60     511        19     22     0.4062    0.0134   0.3799   0.4323

 60   65     470        11     31     0.3964    0.0134   0.3701   0.4225

 65   70     428         9     28     0.3878    0.0134   0.3615   0.4140

 70   75     391        17     21     0.3705    0.0134   0.3441   0.3968

 75   80     353         8     31     0.3617    0.0135   0.3353   0.3881

 80   85     314        10     34     0.3495    0.0136   0.3230   0.3761

 85   90     270         3     23     0.3454    0.0136   0.3189   0.3721

 90   95     244         9     29     0.3319    0.0138   0.3050   0.3590

 95  100     206         8     17     0.3185    0.0140   0.2911   0.3461

100  105     181         3     23     0.3128    0.0142   0.2853   0.3407

105  110     155        10     30     0.2905    0.0148   0.2618   0.3197

110  115     115         4     16     0.2796    0.0152   0.2502   0.3097

115  120      95         4     17     0.2667    0.0158   0.2362   0.2981

120  125      74         2     25     0.2580    0.0165   0.2263   0.2907

125  130      47         2     13     0.2453    0.0179   0.2109   0.2811

130  135      32         2     16     0.2248    0.0215   0.1841   0.2681

135  140      14         0     11     0.2248    0.0215   0.1841   0.2681

140  145       3         0      3     0.2248    0.0215   0.1841   0.2681

Time-to-event analysis or duration modeling is (a) parametric, where 
the shape of the baseline hazard function is assumed (e.g., Weilbull model), 
or (b)  semiparametric, where there is no assumption of the baseline haz­
ard function shape but focus is on predicting the hazards ratio (e.g., Cox 
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regression or proportional hazards model).15 Proportional hazard model (Cox 
regression) refers to the baseline hazard ratio remaining constant over time, 
which does not mean the same over time as it is often misinterpreted.

Cox regression: hazard rate (not survival time) is the function of the inde­
pendent covariates.

	 H t H b X b X b X b Xm m( ) ( ) exp( )= × + + + +0 1 1 2 2 3 3t 

X1 … Xm are predictor variables or covariates, and H0(t) is the baseline hazard 
at time t.

	 Hazard ratio (HR) [( ( )/ ( )]= = + +ln H t H t b X b X b X0 1 1 2 2 3 33 +b Xm m

H(t)/H0(t) = HR—Hazard is the probability of the end point, death. The 
following assumptions are required: (a) proportionality—given two obser­
vations with different values for the independent variables, the ratio of the 
hazard functions for these two observations does not depend on time, (b) log-
linearity—there is a log-linear relationship between the independent variables 
and the underlying hazard function. This is Cox regression assumption: a 
violation may either overestimate or underestimate the point estimate (hazard 
ratio). The survival function [S(t)] is the cumulative frequency of the propor­
tion of the sample not experiencing the event by time t (alive or surviving 
observations). Mathematically, it appears as follows: S(t) = 1 − F(t), which is 
the probability that the event will not occur until time t, which also implies the 
proportion of participants surviving beyond any given time t.16

9.7.2 � Selected terms definition

The definition of terms used in the measure of effects in survival is essential in 
the understanding of the survival model and its interpretation.

•	 Hazard is the event of interest occurring (e.g., death or biochemical fail­
ure in a clinical trial of a therapeutic agent).

•	 Hazard rate at a given time is the probability of the event given that the 
dependent = 1, occurring in that time period, given survival through all 
prior time intervals.

•	 Hazard ratio, also termed hazard function, refers to the estimate of the 
ratio of the hazard rate in group A (treatment group) to the hazard rate 
in group B (placebo group).

•	 Survival function plot enables the comparison of the survival rates of two 
or more groups in a study.

•	 Statistic includes (1) the likelihood ratio test for the model (sometimes 
score statistic is used), (2) regression coefficients (β) for the statistical sig­
nificance of individual independent variables or covariates in the model, 
and (3) log-rank test for the equality of survival function.
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9.7.3 � What is the Kaplan–Meier survival estimate?

Kaplan–Meier (KM) survival analysis, also termed product-limit method, 
refers to a nonparametric method of generating tables and plots or graphs 
of survival, failure, or hazards functions for time-to-event data.17 The KM 
survival estimates involve the following: (a) the assumption of the method is 
that the event must be dependent on time, (b) the plotting of survival function 
on a linear scale, and (c) it is not designed to assess the effect or influence of 
covariates on the time-to-event status variable. The success or effectiveness of 
a treatment is measured in terms of the time that some desirable outcome is 
maintained. Such analysis (time-related patterns of survival) techniques origi­
nated from the life table procedures. Kaplan–Meier, also termed the prod­
uct limit method, is more commonly used in biomedical and public health 
research compared to the actuarial method. Kaplan–Meier product limit and 
actuarial methods are commonly used to estimate the survival experience of 
samples. The methods are similar except that time since entry in the study 
is not divided into intervals for analysis in the Kaplan–Meier product limit 
method. Two or more life table curves could be tested to determine if  they 
are significantly different. The z test for proportion is used for the actuarial 
curves while the log-rank test is used for Kaplan–Meier curves.

9.7.4 � How are KM estimates derived or computed?

Consider a retrospective cohort study to examine the overall and cancer-specific 
survival of older women diagnosed with cervical cancer and for the disease, as 
well as the effect of treatment on survival. The Kaplan–Meier survival curve 
is feasible for addressing these overall and cause-specific survivals of the entire 
cohort and by the treatment received. Because the data have already been set to 
survival, the KM estimates could be obtained using appropriate STATA syntax. 
The following is the STATA command used to construct the KM survival esti­
mate graph (Graph 9.4).

STATA syntax: sts graph, risktable risktable(, failevents 

title(Numbers at risk and failure)) ytitle(Survival probability) 

xtitle(Follow-up in months)

STATA syntax: sts graph, by(n_treat) (risktable risktable(, 

failevents title(Numbers at risk and failure)) ytitle(Survival 

probability) xtitle(Follow-up in months)

The Kaplan–Meier survival curve here is used to compare the survival 
of older women diagnosed with cervical cancer and treated for the disease 
(Graph 9.5). The KM shows the population at risk and the failure (dead from 
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Graph 9.4  Kaplan–Meier survival estimate of survival probability.
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Graph 9.5  Kaplan–Meier survival estimate by treatment type.
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overall cause). The survival advantage is shown with treatment 3 (highest 
curve), while the lowest survival is shown by treatment 0 (lowest curve).

STATA syntax: st graph, by (race)

Graph 9.6 shows the Kaplan–Meier survival estimates by race/ethnicity. 
The curve indicates the crossing of hazards, indicating that the proportional 
hazard PH assumption is not met by race. This assumption states that the HR 
is constant over time, meaning that the hazard for one individual is propor­
tional to the hazard for any other individual, where the proportionality con­
stant is dependent on time. The Hispanics demonstrate the best survival in the 
unadjusted survival estimate, while blacks show the worst survival. Because 
the PH is not met, these curves must be interpreted with caution.

STATA syntax: sts graph, by(race) adjustfor tstage income comorbid 

gscore surg XRT chemo ADT

The KM could be plotted for a covariate of interest, such as race, adjusting 
for other covariates (Graph 9.7). The STATA syntax including adjustfor 
allows this survivor function to be plotted.

9.7.5 � What is the test for equality of survival?

The log-rank test is an approximate chi-square test and compares the number 
of observed deaths in each group with the number of deaths that would be 
expected from the number of deaths in the combined groups, implying that group 
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Graph 9.6  Kaplan–Meier survival estimate by race/ethnicity.
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membership or distinction did not matter. The null hypothesis is that there is 
no group difference in survival. The log-rank test is also referred to as the Cox–
Mantel log-rank statistic or the Mantel log-rank statistic. The log-rank test, as 
may be incorrectly interpreted, does not involve ranking, nor does it employ loga­
rithm in its computation of the survival differences of two or more groups.18

9.7.6 � How is the log-rank test estimated?

The log-rank test, also termed the Cox–Mantel log-rank test, is used to deter­
mine the equality of survival (survival function test) between two or more 
groups.19 The test is based on the alternative hypothesis that at least the sur­
vival of one of the groups is distinct. Consider a study to examine the survival 
of women diagnosed with cervical cancer and treated for the disease. If  the 
investigators wanted to determine the survival experience of the cohort by 
the treatment received, the log-rank test is an appropriate test and is most 
commonly used in such situations. The following is the STATA output on the 
test of equality of survival. The output shows four treatment groups, with the 
intent to determine if  the observed difference in the treatment groups shown 
by KM above is statistically significant.

STATA syntax: sts test n_treat

Log-rank test for equality of survivor functions

           Events        Events

n_treat   observed      expected

0               92         42.74

1              559        359.47

2              108        140.89

3              132        347.90

Total          891        891.00

             chi2(3) =    319.02

             Pr>chi2 =    0.0000
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Graph 9.7  �Kaplan–Meier survival estimate by race/ethnicity controlling for 
confounding.
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The p value above shows that at least one of the treatment groups is statis­
tically significantly different. Other tests for the equality of survival function 
include (a) Wilcoxon—STATA syntax: sts test n_treat, Wilcoxon; (b) Tarone–
Ware test—STATA syntax: sts test n_treat, tware; and (c) Peto–Peto–Prentice 
test—STATA syntax: sts test n_treat, peto.

9.7.7 � How is Cox regression computed?

The Cox regression method is a distribution-free regression model but is clas­
sified as semiparametric, which allows for the assessment of the factors or 
covariates that affect survival. Consider the previous example on cervical 
cancer survival; race/ethnicity, treatment received, tumor stage, tumor histol­
ogy, and age at diagnosis could be assessed individually (univariable Cox) or 
simultaneously (multivariable Cox) using this model.

In the above syntax, xi allows for the entry of  the categorical variables 
into the model, with the lowest group used as the referent. The STATA 
output presents the hazard ratio, standard error, z statistic, and the p value 
as well as the 95% CI for the HR. The output shows the hazard ratio 
(HR), comparing the survival between treatment, tumor stage, and histol­
ogy. Compared to treatment 0, patients with cervical cancer who received 
treatment 2 had a significant—49% (1.00 − 0.51)—decrease in the risk of 
dying, HR = 0.51, 95% CI = 0.38–0.68, p < 0.001. In contrast, compared 
with women who received treatment 0, those who received treatment 1 had 
an insignificant (12%) decrease in the risk of  dying, HR = 0.88, 95% CI, 
0.70–1.10. Please note the inclusion of  1.00 in the 95% confidence inter­
val for the statistically nonsignificant result, where 1.00 means null or no 
association.

 STATA Syntax: xi:stcox i.n_treat  i.n_stage i.n_cell
 No. of subjects =           1347                Number of obs    =     1347
 No. of failures =            891
 Time at risk    =    61196.87354                      
                                                 LR chi2(10)      =   620.42
 Log likelihood =      -5630.8466                Prob > chi2      =   0.0000

 
          _t   Haz. Ratio   Std. Err.     z      P>|z|   [95% Conf. Interval]
 
 _In_treat_1     .8819597   .1015311    -1.09    0.275   .7038151   1.105195
 _In_treat_2      .513251   .0752499    -4.55    0.000   .3850628   .6841134
 _In_treat_3     .2700747   .0390126    -9.06    0.000   .2034824   .3584601
 _In_treat_1     .1819678   .0209182   -14.82    0.000   .1452595   .2279528
 _In_treat_2     .2406867   .0278555   -12.31    0.000   .1918402   .3019705
 _In_treat_3     .3565025   .0398821    -9.22    0.000   .2863111   .4439018
 _In_treat_4     .5083186   .0562702    -6.11    0.000    .409175   .6314847
  _In_cell_1     1.134993   .1769257     0.81    0.417   .8361914   1.540568
  _In_cell_2     .6853448   .0830986    -3.12    0.002   .5403813   .8691964
  _In_cell_3     .8948169   .1245704    -0.80    0.425   .6811387   1.175527
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9.7.8 � How is Cox regression interpreted?

Hazard ratio (HR), sometimes termed the odds ratio, is given by the exponent 
(β); thus, HR = eβ. Using the prostate cancer study by Holmes et al.20 on the 
effectiveness of ADT on survival, if  HR = 1.0, this means that the covariate 
(e.g., androgen deprivation therapy, or ADT in the model) has no effect or 
impact on the time to event for the status or dependent variable (e.g., death 
from prostate cancer). If  HR > 1.0, this indicates that ADT increases in the 
risk of dying given the use of ADT. Inversely, if  HR < 1.0, this means that 
ADT diminishes or decreases the risk of dying on the subjects placed on ADT 
relative to those who are not.

Some researchers think that the end of  statistical hypothesis testing is 
to establish a statistically significant difference. This is however an appro­
priate way of  interpreting test results. Consider the effect of  the treatment 
groups on cervical cancer survival of  women diagnosed with all stages of 
cervical cancer and treated for the disease; the risk of  dying associated with 
the types of  treatment cannot be solely based on the treatment effects only 
without considering the bias and confounding, which statistical stability 
does not take into consideration. Therefore, a valid interpretation must 
consider the role played by bias, as well as possible explanation by con­
founding (tumor stage, age at diagnosis, comorbidities, tumor grade, extent 
of  disease, and sex). These factors, which are prognostics, unless balanced 
between the treatment groups, may serve as confounders to the observed 
effect of  treatment received and survival. Therefore, illustrating statistically 
significant difference alone does not constitute a valid scientific investiga­
tion of  the role of  the treatment received on cervical cancer survival, since 
without a sound design and bias minimization, treatment inference cannot 
be adequately drawn.

9.8 � Poisson regression

What sorts of data are suitable for Poisson regression? Poisson regression is 
an example of a generalized linear model, such as logistic regression and Cox 
regression. Consider the distribution of the number of fractures attributed to 
osteoporosis over a long period of time, for example, 5 years. Assuming that 
the probability of a new fracture from osteoporosis in any one month is very 
small and that the number of cases reported in any two distinct periods of 
time are independent random variables, then the number of fractures over a 
5-year period will follow a Poisson distribution. What is the distribution of 
the number of fractures due to osteoporosis from time 0 to time t, where t in 
this example is 5 years?

What assumptions should be made about the incidence of  fractures 
attributed to osteoporosis? We must assume that (a) the probability of 
observing one fracture is directly proportional to the length of  the time 
interval Δt and that Pr(1 fracture) = λΔt for some constant λ, (b) the 
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probability of  observing 0 fractures over Δt is approximately 1 − λΔt, and 
(c) the probability of  observing more than one fracture over the time inter­
val is 0. In addition, the following assumptions are necessary for Poisson 
probability distribution: (1)  the number of  fractures per unit time is the 
same throughout the time interval t, and (2) if  a fracture occurs within one 
time subinterval, it has no bearing on the probability of  a fracture in the 
next time subinterval. Also, it is essential to note that Poisson regression is 
not a good fit for the data if  the mean and variance are different, indica­
tive of  overdispersion.

Poisson regression is appropriate if  events occur independently with con­
stant probability; then, counts over a given period of time follow a Poisson 
distribution. Let rj represent the incidence rate. Mathematically, it appears as 
follows: rj = count of events (numerator)/number of time event could have 
occurred (denominator). Since the denominator or exposure is often mea­
sured in person-time, such as person-years, rj = counts of events/person-years 
observation multiplied by 1000. We can model the logarithm of the incidence 
rate as a linear function of one or more explanatory or independent variables: 
ln(rj) = β0 + β1χ1 + β2χ2 + β3χ3 … … … βkχk.

What are the uses of  Poisson regression? Consider an investigation to 
examine the presence of  pediatric blunt trauma in Newcastle, Delaware; 
if  100 cases were observed over a period of  2 years where 50 cases would 
normally be expected, could Poisson regression be used for statistical 
inference? Poisson distribution can be used to calculate the probability 
of  100 or more cases, if  Delaware’s rates for pediatric blunt trauma were 
present in Newcastle. If  the probability is smaller than the established sig­
nificance level or type I error tolerance, then investigators will conclude 
that Newcastle has excessive number of  fractures relative to the state of 
Delaware.

9.8.1 � What is an example of Poisson regression?

Suppose a study was conducted to examine the increase in death rate associ­
ated with radiation level, and the following data were available (Table 9.1); is 
there a statistically significant effect? Using the data given here, let us examine 
the use of Poisson regression in statistical inference:

The following is the STATA output of the Poisson regression analysis. We 
tested the hypothesis on whether death rate increases with exposure to radia­
tion in this cohort of patients with nonoperable meduloblastoma (fictitious 
study). The event count is mortality (deaths), which is the response or depen­
dent variable, while radiation level is the predictor or independent variable. 
The Poisson “exposure” is the person-time in each radiation category or level. 
Using the STATA command below, we tested the hypothesis on whether or 
not radiation increases death rate in this cohort: Poisson deaths rad, 
exposure(ptime) irr.
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. poisson  Death Rlevel, exposure( P_Time) irr

Iteration 0:   log likelihood = -25.940721
Iteration 1:   log likelihood = -25.933184
Iteration 2:   log likelihood = -25.933182
Iteration 3:   log likelihood = -25.933182

Poisson regression                                  Number of obs  =      11
                                                    LR chi2(1)     =   18.43
                                                    Prob > chi2    =  0.0000
Log likelihood = -25.933182                         Pseudo R2      =  0.2622

      Death          IRR    Std. Err.      z     P>|z|   [99% Conf. Interval]

     Rlevel      1.64447     .1644658     4.97   0.000     1.35175   2.00058
      _cons     .0000986     .0000334   -27.20   0.000    .0000507  .0001917
 ln(P_time)            1   (exposure)

. estat gof
         Deviance goodness-of-fit =  25.13191
         Prob > chi2(9)           =    0.0028

         Pearson goodness-of-fit  =  28.61376
         Prob > chi2(9)           =    0.0008

The STATA output indicates a 64% increase in the mortality rate with each 
increase in radiation level. The probability value shows a statistically signifi­
cant rate ratio, p < 0.0001.The coefficient of determination is 26%, which 
is not very impressive, thus requiring a goodness-of-fit test. This test com­
pares the Poisson model’s predictions with the observed counts. The STATA 

Table 9.1  Hypothetical study of the effect of radiation level on mortality

Age group Radiation level Deaths Person-time

<45 1 0 29,901
45–49 1 1 6521
50–54 2 4 5251
55–59 1 3 4126
60–64 4 3 2778
65–69 5 1 1607
70–74 3 2 3700
75–79 1 3 5520
80–84 1 2 29902
85–89 6 4 2330
90–94 1 1 1256

Note:	 The age groups (11) have more than one subject, not shown in the summary (hypothetical 
data for the illustration of Poisson distribution [11 categories for age and 6 categories for 
radiation]).
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command for this test is poisgof (used after the regression 
computation). This test is a chi-square test with n − 2 degrees of freedom. 
The goodness-of-fit test, χ = 25.13, df = 9, p = 0.003, implies that the Poisson 
model’s predictions are significantly different from the actual count (model 
does not fit the data). To obtain a better model, we included age and found no 
change in the coefficient of determination or in the goodness of fit, p = 0.002 
(rejection of the model). Finally, we checked the variance of the response 
variable, death from radiation for the proximity to the mean, and found that 
the variance (1.76), differed from the mean (2.18) but was not highly indica­
tive of overdispersion. A large difference in variance relative to the means is 
suggestive of the use of negative binomial regression (more appropriate in 
cases of overdispersion), which could be easily performed using the STATA 
command: bnreg death, rad. This test uses the likelihood ratio test of 
the overdispersion parameter alpha. When the overdispersion parameter is 
zero, the negative binomial distribution is equivalent to a Poisson distribu­
tion. When alpha is significantly different from zero, this results in the rejec­
tion of the Poisson model for the data—appropriate application of Poisson 
distribution. The likelihood ratio test obtained in this case showed a probabil­
ity value >0.05, implying that Poisson model is appropriate (alpha parameter 
is not significantly different from zero) for the data on the effect of radiation 
level and mortality.

. poisson  Death Rlevel numn_agegrp, exposure( P_Time) irr

Iteration 0:   log likelihood = -25.768359
Iteration 1:   log likelihood = -25.751968
Iteration 2:   log likelihood =  -25.75196
Iteration 3:   log likelihood =  -25.75196

Poisson regression                                  Number of obs  =      11
                                                    LR chi2(2)     =   18.80
                                                    Prob > chi2    =  0.0001
Log likelihood = -25.75196                          Pseudo R2      =  0.2674

      Death          IRR    Std. Err.    z      P>|z|   [99% Conf. Interval]

      Rlevel    1.593905    .1755274    4.23    0.000   1.284472    1.977881
 numn_agegrp    1.041627    .0704774    0.60    0.547   .9122611    1.189338
       _cons    .0000832    .0000378  -20.71    0.000   .0000342    .0002025
  ln(P_Time)           1   (exposure)

. estat gof

         Deviance goodness-of-fit =  24.76947
         Prob > chi2(8)           =    0.0017

         Pearson goodness-of-fit  =  28.42559
         Prob > chi2(8)           =    0.0004
.
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9.9 � Summary

This chapter discussed several statistical techniques in providing scientific 
evidence from the data, thus explaining how statistical methods are used to 
test scientific hypotheses involving relationships or associations. We stated the 
assumptions required for the selection of a specific test or statistical method. 
Essentially, these studies considered the analytic situations involving mak­
ing predictions about the response variable, given the predictor or explana­
tory variable/s. Like with other methods discussed earlier, we stressed the use 
of samples to estimate the population in establishing a statistical inference 
(drawing conclusions about populations based on data from limited samples). 
We must assume that our sample is representative of the entire population 
(unbiased sample) in order for the conclusions drawn from our sample to be 
generalized to the targeted population or larger group. To achieve this objec­
tive, a random sample is required, implying that every subject in the popula­
tion has an equal and independent chance of  being selected for the sample. 
Equal chance implies that all subjects are listed in the sampling frame, while 
independent chance means that the probability of selecting a subject is not 
affected by the subject selected before that subject.

Hypothesis testing involving associations commonly use the following 
statistical methods: (a) correlation coefficient, (b) simple and multiple 
linear regression, (c) logistic and binomial regression (termed general-
ized linear models [GLM]), (d) Cox regression for time-to-event data, and 
(e) Poisson regression, also a GLM. The correlation coefficient is used to test 
the hypothesis of  relationship where there is no specified independent and 
dependent variable. Both parametric and nonparametric tests are used, 
depending on whether or not there is shape assumption (Pearson correla­
tion coefficient) (Figure 9.6). When data are ordered or nonnormal, the 
Spearman rank correlation coefficient is appropriate. A linear relation, 
simple or multiple, is appropriate if  there is a straight line relationship 
in the intent of  the statistical inference and independent and response 
variables are prespecified. The logistic and binomial regressions are used 
when predicting the outcome or response variable by the independent 
variable/s and the response or outcome variable is measured on a binary 
scale. The Poisson regression is appropriate in determining the incidence 
rate of  interest when groups are compared and involves count data. When 
time-to-event data are involved and the outcome variable is measured on 
a binary scale, while the independent variables/s are measured on a mixed 
scale (binary, discrete, continuous), the Cox regression (also termed the 
proportional hazard method) is used to examine the effects of  the covariates 
on survival. Also, Kaplan–Meier’s (KM) survival estimates are useful in 
examining the survival curve, while the log-rank test is adequate in testing 
the equality of  survival.



242  Applied biostatistical principles and concepts

Scientific evidence
discovery

Probability sampling?
Consecutive sample?

Disease registry
database?

Yes

Yes

Yes

Yes

No

No

No

No

Descriptive
statistics

Semi-parametric,
no normality
assumption

Count Data?

Binary
Outcome?

Poisson
Regression

Time-to-Event
Data?

Cox Proportional Hazard
Model

Logistic regression
Binomial

regression model

Figure 9.6  �Hypothesis testing involving relationships—nonparametric and semipara­
metric models.
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Questions for discussion

	 1	 Read the study by L. Holmes et al., The impact of androgen depriva­
tion therapy (ADT) on ethnic/racial variance in the survival of older men 
treated for locoregional prostate cancer, Cancer Control 16 (2009):176–185. 
(a) Comment on the design used in this study. (b) Do you agree with the 
statistical inference used in this study? (c) The study size is considered 
relatively large. Comment on the use of  5% as the significance level. 
(d) Do you think that the conclusion drawn supports the data used in 
this study?

	 2	 Suppose you are conducting a double-blinded randomized clinical trial 
to examine the efficacy of lidocaine combined with triamcinolone, and 
Botox, with the third arm receiving placebo in reducing sciatica among 
women, aged 45 to 75 years. (a) Discuss the randomization process. 
(b) What will the measure of effect be? (c) What sort of analysis will be 
appropriate assuming that the follow-up period is 24 months and there is 
nondifferential loss to follow-up of 15%?

	 3	 Consider this to be hypothetical data on the relationship between colorec­
tal cancer incidence and consumption of vegetables and fruits among 
men, 40 to 50 years old. Among current consumers, there were 13 cases 
and 4761 number of person-years, past consumers had 164 cases and 
121,091 number of person-years, while never consumers had 113 cases 
and 98,091 number of person-years. (a) Compare the incidence density 
of colorectal cancer in current consumers versus never consumers. What 
can you conclude from these data? (b) Compare the incidence density 
of colorectal cancer in the past versus never consumers of vegetables 
and fruits. What can you conclude from these data? (c) Estimate the rate 
ratios in (a) and (b), and comment the 95% confidence interval for these 
estimates.

	 4	 Poisson regression is used in counting data. Comment on the use of this 
GLM in statistical inference. (a) What are the assumptions for the use of 
Poisson regression? (b) When is negative binomial regression an appro­
priate alternative to Poisson regression? (c) What is the interpretation of 
the goodness-of-fit test for Poisson regression and the likelihood ratio 
test for the negative binomial regression?
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10.1 � Introduction

The emergence of “big data,” complexities in disease etiology and therapeu-
tics, and the reliability and validity issues in evidence discovery signals some 
departure from traditional foundation of statistics as a tool in data collec-
tion, processing, analysis, and interpretation. With these challenges, biostatis-
tics needs to critically examine the following: (i) Big data and its implication 
in clinical decision-making in improving care and safety, (ii) reality is statisti-
cal modeling of clinical and translational research data, and (iii) tabulation/
stratification versus regression model.

“Big data,” as the name implies, reflects the accumulation of large infor-
mation nationally and globally via online and recently social media with the 
intent to influence decision-making in retail, education, manufacturing, gov-
ernment and banking, and so on. With this technology and management of 
this large stream of information, a real-time analysis is feasible, and with its 
proper analytics, decision is supported in improving services and products. 
The availability of “big data” reflecting large data size but not sample size 
raises the question on how large is large enough as well as the traditional 
foundation of statistic, implying sampling. With big data, the era of sampling 
is over, and hence the notion of statistics drifting from sampling to “popula-
tion.” This departure raises another question on population estimate from a 
“representative sample.”

With large or legacy data that have resulted in the “big data” approach to 
evidence discovery, we need to revisit the notion of hypothesis testing and 
the level of type I error tolerance, clinical and biologic relevance of our data, 
effect size (δ), and, more importantly, findings generalization for clinical 
decision-making and other decisions such as policies around healthcare and 
population health.

Without doubt, the big data concept and application portray benefits to 
evidence discovery if  properly utilized. For example, consider a study con-
ducted to examine the cost-effectiveness of hip replacement in older patients 
treated for locoregional prostatic adenocarcinoma, the assessment of a national 
registry on hip replacement with respect to cost and health outcomes is more 
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likely to result in a useful inference in terms of clinical guidelines and rec-
ommendations relative to a few center studies. The down side on the other 
hand involves inaccurate interpretation of findings from legacy or big data 
that ignores clinical or biological relevance of the study. To illustrate this, 
assume a prospective cohort study (n = 95,656) with a 5-year survival advan-
tage of 0.5% in a new antihypertensive agent compared to a standard of care, 
HR, 1.05, 95% CI, 1.03–1.08, p < 0.0001. Does this imply a change in clinical 
guidelines for HTN treatment based on the new data?

The larger the sample studied, the more likely it is that very small effect 
difference or size and clinically irrelevant findings become statistically signifi-
cant, which raises the question: How large is large enough?

Public health, epidemiology, translational and clinical research, as well as 
biomedical sciences have a unique issue in evidence discovery, mainly sam-
pling insufficiencies since most data in these fields are not probability samples. 
The problem in using these data without random variable reflects the inherent 
problem with inference. Therefore, by emphasizing reality in the statistical 
modeling of clinical and translational science data, researchers must consider 
elements of sampling and its relevance in evidence discovery. Further, the per-
petual failure of researchers to process data, visualize, and apply tabulation/
stratification analysis before regression requires a revisitation of such vital 
statistical concept and application in evidence discovery.

This chapter reflects on the “big data” concept and application in clinical 
medicine and public health, hypothesis testing and statistical significance, and 
biological relevance as effect size, namely, absolute and relative measures of 
evidence. Additionally, the ongoing research myths and realities of p value 
as a measure of evidence in the pseudo-notion of statistically significant is 
described. Also covered in this chapter is the reality in the statistical modeling 
of translational and clinical research data. Attempts are made in this spe-
cial topic section to introduce models and model specification and describe 
the elements of model building in hypothesis testing as well as appropriate 
selection of a model that fit the data. This section also delves into assump-
tions and the rationale behind models and their conformation to biologic 
and social realities in evidence discovery. Further, the last section explains 
in detail the differences in the application of tabulation, stratification, and 
regression model. Very importantly, the section describes and provides guide-
lines on when and when not to use regression model and provides example 
with a large-size data set.

10.2 � Big data and implication in evidence discovery

10.2.1 � Big data: Concept and application

While there are several notions of the big data concept that tends to vary from 
industry to industry, and business to business, this notion basically reflects the 
acquisition, storage, and analysis of large and complex data. This process of 
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accumulating and storing large volume of information for subsequent analy-
sis is not as new as currently perceived. However, the technologies and man-
agement of such data remain novel and hence the “big data” notion as used 
today. With current technological advances, volume, velocity, variety, vari-
ability, and complexities had been used to characterize big data.1,2 Since data 
continue to accumulate every second, and hence big data, the importance of 
the concept shifts to application, implying the importance.3 Therefore, the 
appropriate application of analytic tool to make sense of discovery from such 
data in supporting decision-making remains an important consideration in 
applied statistics.

What are the main sources of  big data? Big data emerge from data 
streaming, social media, and publicly available or public access data. Within 
clinical medicine and public health, US government data as illustrated with 
the National Cancer Institute (NCI), Surveillance Epidemiology and End 
Result (SEER) cancer patients data represent such public access data. Like 
disease registry, research scientists should consider this sample (data) to be 
representative of  the population of  children with cancer in the United States. 
With this consideration, evidence discovery requires the treatment of  such 
samples as probability sample, hence the justification for the quantification 
of  random error in hypothesis testing situation. Another example of  big 
data is the use of  the genome-wide data set for the assessment of  genomic 
instability and the related issues in genetic aberration and variance. Specific 
analysis in this example include (1) the detection of  differentially expressed 
genes, which is a common goal in DNA microarray experiments, implying 
genes detection with differential expression across two or more biological 
conditions,4 and (2) the identification of  exonic splicing enhancers, short 
oligonucleotide sequences that enhance pre-mRNA splicing when present 
in exons.5

Social media data such as mHealth are gaining place in health research 
especially in surveys and disease prevalence assessment. These data are mas-
sive and voluminous, and could provide reliable inference on issues pertain-
ing to those who participate in social media. However, researchers must be 
very cautious in drawing inferences from such data. For example, using social 
media such as Facebook to determine the prevalence of flu and symptoms 
severity by person, place, and time is unrepresentative of the populations at 
most risk, namely, elderly (declined/compromised immune responsiveness) 
and children (immature immune response).

Despite the inference limitation of some “big data,” if  properly managed, 
these data are reliable and valid in assessing health situations: (a) less expen-
sive as preexisting data compared to data collection by researchers, (b) stor-
age capacity availability, and (c) faster processing capability. With needed 
resources to operate on big data, the analysis and dissemination provided addi-
tional advantage relative to “non-preexisting data.” These advantages include, 
though not limited to, parallel processing, clustering, cloud computing, high 
connectivity, and high throughputs.
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10.2.2 � Statistical analysis consideration

The value of big data in medical, biomedical, and public health discoveries 
requires a careful understanding of  model specification, analysis, and inter-
pretation: (1) the types of  scales used in the measurement of  the several 
variables in the data set, which is very important in determining the sta-
tistic with respect to hypothesis testing; (2) appropriate estimator of  effect 
or a predictive model, implying averaging many predictive models together 
using such approaches as a bootstrapping sample (test utilized in sampling 
with replacement as well as when a parametric test is inappropriate and 
standard error is difficult to estimate), bagging involving bootstrap aggre-
gation (procedure involving the generation of multiple versions of a predictor, 
and averaging these predictor versions to obtain an aggregate predictor), and 
random forests; (3) multiple comparison or testing when assessing multiple 
hypothesis as observed in genome-wide analysis—departure from tradi-
tional or classical hypothesis testing with 5% type I error tolerance to false 
discovery rate (FDR)—concept applied to type I error rate, while testing 
multiple hypothesis as observed in multivariable model that utilize multiple 
comparison, and FDR controlling tends to minimize such FDR; (4) data 
smoothing, a form of  regression using smoothing splines, hidden Markov 
models, moving or rolling averages especially when such data are measured 
over space, distance, or time; (5) data plotting before model fitting, which 
allows for the visualization of  big data with MA plot (derivation of  Bland–
Altman plot—difference plot) used in genomics; the plot transforms data 
onto M (log ratio) and A (mean average) scales and then plots these values 
as seen in DNA microarray gene expression and high-throughput sequenc-
ing data; (6) interactive process implying the use of  random sample by ren-
dering big data, small and increasing the efficiency, speed, and accuracy 
in handling such data volume-enhanced inherent veracity; (7) determining 
the real sample size, since data size differs from sample size; for example, in 
genome-wide data, the data size reflects the number of  reads measured and 
not the sample size, which reflects the number of  individuals that contribute 
to the reads; (8) assessing the data for potential confounders even if  ran-
domization process was utilized at the design phase, and if  feasible, effect 
measure modifier; (9) determination of  the statistical tool/method through 
rationale and assumption behind the data and the hypothesis to be tested 
such as parametric, nonparametric, or semi-parametric; this approach based 
in part on decision theory limits data exploration or fishing, which has an 
adverse effect on inference; (10) providing access to the syntax and code 
utilized for the analysis as well as data availability to colleagues; (11) con-
sidering tabulation analysis before predictive model, probit, logit, and so on; 
and (12) avoiding regression model as a universal approach and only using 
this model when appropriate (assumptions and rationale) and reliable as a 
predictive model, and in confounding adjustment.
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10.3 � Reality in statistical modeling of translational 
and clinical science data

During the past six decades, researchers in public health and medicine have 
applied inference, meaning the quantification of random error in a nonprob-
ability sample. However, such practices are justified if  consecutive samples 
and the entire disease registry are utilized in evidence discovery. The reality in 
statistical modeling requires specification and model selection. These require-
ments are dependent on several aspects of discovery, namely: (a) research 
question that specifies primary and secondary outcome variables if  any; 
(b)  hypothesis or multiple hypotheses; (c) sound biologic or social under-
standing of the research phenomenon of interest; (d) appropriate sample size 
to ensure the statistical power of the study, implying the ability to correctly 
reject the null hypothesis if  indeed the null is true; (e) assessment and con-
trolling for confounding; (f) assessing for effect measure modifier and result 
presentation at the level of the stratum; (g) utilization of the effect size as the 
measure of evidence in the data; and (h) precise quantification of random 
error and not as a cutoff  (p > 0.05 or p < 0.05), as well as the use of confidence 
interval as the measure of precision in the data.

The statistical reasoning surrounding the measure of outcomes as primary 
or secondary evolves around the scales of measurement of the variable, mea-
surement error, sample size, and the adequacy of such measure as primary 
or secondary outcome. For example, if  a study is conducted to assess a new 
anti-neoplastic agent in prolonging survival of men with prostate cancer, the 
primary end point could be death from all causes, while the secondary end 
point or outcome could be PSA level. A good research question for the pri-
mary outcome could be: Does chemotherapy X reduce mortality in men with 
stage 3 prostate cancer compared to the standard of care and observational 
management (watchful waiting)? With respect to the second outcome or end 
point, researchers could ask: Does chemotherapy X lower PSA level of men 
with stage 3 prostate cancer relative to the standard of care and watchful 
waiting? These measures differ based on the end points specified. While the 
primary end point is measured by a binary scale, which will require a logistic 
or binomial regression model, the secondary end point involved an interval or 
ratio scale as a cardinal scale measure, requiring a different predictive model, 
specifically the analysis of variance, ANOVA, and, if  applicable, given the 
presence of a covariate, ANCOVA.

10.3.1 � Statistical modeling: Basic notion

What model is acceptable for the discovery of truth or evidence from clinical 
and translational research data? Conventional model of data analysis or infer-
ence is based on randomization and random error assumptions. Simple tabu-
lation and graphic methods are sufficient and adequate if only few variables 
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for example age, sex, treatment are assessed. Such analysis include the Pearson 
chi-square and Mantel–Haenszel odds ratio using the 2 × 2 table. However, 
given the complexities of disease etiologies and genetic heterogeneity of human 
animals that tend to influence the validity and reliability of studies, statistical 
modeling that aligns data to these realities is necessary in evidence discovery 
involving care, therapeutics, diagnostics, morbidity, and mortality.

10.3.2 � Why model?

Models remain an explicit construct (with or without theoretical basis but 
background and significance of health issues and problems) that aligns health 
data to clinical and social realities, but with the disadvantage that model spec-
ification and interpretation may not be understood by investigators as well as 
the audience (researchers and readers). Because of the expected explicitness 
of a model, accurate evidence discovery that aims at care and safety improve-
ment in health and healthcare requires an applied and replicable model.

10.3.3 � What is a model in clinical and translational research?

A model is a simplified, concise, or structural representation of system or phe
nomenon. Simply, a model could be described as a pattern of something to be 
made or something such as a construct used to visualize or explore something 
else including, though not limited to, data, treatment, or therapeutic and diag-
nostic framework.

A statistical model thus represents a parameterized set of probability dis-
tribution, and all such models make assumptions about the data. Examples 
include Cox proportional hazard (with hazard ratio [HR] estimate) − Cox, 
1972, logistic (odds ratio [OR] estimate), binomial (risk ratio [RR] estimate), 
and Poisson regressions (incident rate ratio [IRR] estimate). Extremely help-
ful devices for making estimates of treatment effects, testing hypothesis about 
those effects, and studying the simultaneous influence of covariates and con-
founding on outcome (multivariate—more than one response variable and mul-
tiple independent variables; multivariable—one response variable and multiple 
independent variable models). Since the basic tabular methods are limited 
in the number of variables that can be examined simultaneously, the real-
ity of clinical, translational, and population-based data analysis requires that 
reliable evidence be obtained through accurate application of predictive or 
regression models.

10.3.4 � Minimal model

A model that is compatible with available information and does not conflict 
with background information remains a desired model in accurate evidence 
discovery. However, in structural equation modeling, there is a requirement of 
a theory-based model in a multivariate analysis setting.
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10.3.5 � What sort of  background information?

To be credible, a selected model to examine our data must flow from the back-
ground information or solid scientific literature of the study/research ques-
tions. A scientific knowledge of the topic guides the scales of measurements 
of the variables, which is suggestive of the credible and reasonable model.

10.3.6 � Why reality in statistical modeling?

Data present with language, and we must explore this language before model 
specification: (a) shape of the distribution of data: normal or distribution-
free assumption; (b) scale of measurement of the variables: discrete or con-
tinuous; (c) probability sampling and random variable assumption must be 
assessed. Power and sample size estimations are necessary since absence of 
evidence does not imply evidence of absence. The statistical power of a study 
can be increased not only by increasing the sample size but also by reducing 
the measurement error (SD). Small-size studies are likely to yield negative 
results, and such results should not be reported with statistical significance 
without the power estimation.

Descriptive statistics should be applied when data violate sampling assump-
tion. One should simply describe the data without random error quantifica-
tion (p value) and/or precision (CI).

Researchers should use a nonparametric test when data are distribution-
free and when study size is small even with ratio or interval scale data (cardinal 
or continuous variables). It is meaningless to apply a p value to studies that 
did not apply probability sampling in the selection of study participants and 
hence did not assess random variables, except when disease registry or con-
secutive patients were used as the sample, implying a representative sample of 
the target population. Other exceptions are large sample claims/administrative 
data and research registries, since these data are assumed to be representative 
of the population of interest.

The probability value (p) should not be overemphasized in the presentation 
of clinical and translational study findings. The p value, no matter how small, 
does not rule out alternative explanation to the obtained results—bias and 
confounding. Additionally, p values do not measure evidence but partially 
reflect the size of the study.

The interpretation of biologic and clinical relevance of the findings pre-
cedes statistical inference or stability. Researchers and clinicians working in 
research settings should examine the magnitude of effect or point estimate 
and provide a clinical/public health interpretation before random error quan-
tification. Clinical and translational research results should be presented with 
the point estimate such as hazard ratio (HR), risk or rate ratio (RR), odds ratio 
(OR) or relative odds (RO), and confidence interval (CI)—lower and upper 
95% or 99%. Why the preference for CI to p value in reporting precision or 
random variability?
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10.4 � Tabulation versus regression analysis: When and when not 
to use regression

The ongoing conflicting results in basic sciences, clinical medicine, and 
population-based studies are indicative in part of sampling bias and inad-
equate statistical technique as well as inappropriate confounding adjustment 
used in evidence discovery. For translational, clinical, and epidemiologic 
research to be accountable, we must clearly understand the distribution of 
our response (outcomes—cure, control, survival) and main independent vari-
ables (exposure—treatment, medication, surgery, follow-up) as well as the 
patterns in the data, since regression models per se are less effective in pro-
viding these details. Tabulation (contingency)/stratification analysis provide 
an excellent opportunity to uncover these details, rendering these methods 
equally effective in modeling provided the assumptions are maintained! Since 
nothing explains everything in research implying the role of confounding, 
which model do we use to address the complexities in disease etiology and 
therapeutics in order to improve the care of our individual patients as well as 
the health of the population that we serve?

Hypothesis testing with a given test statistic requires the computation 
of  probability distribution of  the statistic over repetition of  the study when 
the test hypothesis is true. The validity assumptions include the following: 
(a) only chance produces differences between repetitions, and (b) absence 
of  bias or no biases are operating (selection, information, Berksonian, etc.) 
and that the statistical method used to derive the distribution is accurate. 
Within this context of  p-value interpretation, a high p value implies that the 
observations are far from what will be expected under the test hypothesis, 
while a low p value reflects the closeness or proximity of  the observations 
to this expectation.

10.4.1 � Selection of test statistic

How should one select a statistic Y as the basis for testing and estimation? 
If  we examined outcome of Ebola viral infection on patients treated with 
plasma transfusion from Ebola-free patients as absence of viral load, imply-
ing favorable outcome denoted by A, as test statistic Y, then Y = A. Also, we 
could select: Y = ln(A) or Y = logit(A/N) = ln[A/(N − A)] as test statistic for 
normal approximation. Why choose Y to be the viral load?

Precision—for reasonable-sized samples and reasonable parameter val-
ues, a valid and precise interval has an average width over the repetitions 
that is no greater than other valid intervals. The validity and precision 
reflect accuracy criteria. The availability of  computational formulas for its 
mean and variance: In Y = logit(A/N) above, approximate means and vari-
ance apply. We can select Y = viral load as a compromise between accuracy 
and simplicity.
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10.4.2 � Essential stages in scientific evidence discovery

Once data had been gathered from clinical and translational research, such 
data require the following:

	 1	 Data editing/cleaning—review of collected data for accuracy, consis-
tency, and completeness

	 2	 Data summary/data reduction—descriptive analysis
	 a	 Graphic exploration of distributions—scatterplots, box plots, histogram
	 3	 Estimation—data modeling involving statistical hypothesis testing
	 a	 Estimation stage involves the consideration of unmeasured factors that 

might have influenced subject selection, measurement/observation bias, 
confounding, as well as statistical inference issues

	 4	 Results interpretation—descriptive and inferential

10.4.3 � Tabulation analysis: Basic concept and application

Tabulation analysis is performed by contingency tables that demonstrate the 
frequency of subjects or units of observation with specific combination of 
variable values with the key variable of interest. For example, the description 
of study characteristics investigating the prevalence of colon cancer screening 
by race is indicative of the application of this process in evidence discovery. 
In this case, tabulation analysis involves the frequency or summary of the 
categorical/discrete variables by race.

10.4.4 � Rationale and assumption

Tabulation analysis allows one to appraise all the data because it contains all 
the relevant information in the data. It reflects the contingency table (2  ×  2) 
and allows for estimation, and displays relations among the main study vari-
ables. For variables such as systolic blood pressure (SBP), erythrocyte sedi-
mentation rate (ESR), estimated blood loss (EBL), and age measured on 
continuous scales, besides summary statistics utilizing the mean, SD/SEM 
or median, and IQR, scatterplots, box plots, and histograms provide further 
insights to evidence discovery. The contingency tables and visual displays of 
the data serve as a check for validity of regression models.

The application of tabulation or stratification analysis as it is sometimes 
interchangeably used assumes marginal confounders and effect measure mod-
ifiers. The model so to state is inappropriate as a sole model when assess-
ing relationship involving many confounders, where regression model is an 
appropriate choice. In such situation, the regression model remains a justifi-
able and efficient approach to evidence discovery.

Consider a study conducted using National Children Health Survey (2012) 
data on the relationship between autism and race/ethnicity (Table 10.1). The 
frequency is used to illustrate the distribution of autistic spectrum disorder 
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by race/ethnicity. Do we observe any pattern from these data? What further 
evidence do we wish to present?

10.4.5 � Confounding and covariates: What is a confounding variable?

One of the issues in validating a translational and clinical research is to assess 
whether associations between exposure and disease derived from the observed 
data are of a factual nature or not (due to systematic error, random error, 
or confounding). A covariate differs from a confounding variable though 
interchangeably used in the statistics community. This concept is described 
in an ANOVA model in epidemiology text (Holmes). Confounding refers 
to the influence or effect of an extraneous factor(s) on the relationship or 
associations between the exposure and the outcome of interest (Figure 10.1). 
Nonexperimental studies are potentially subject to the effect of extraneous 
factors, which may distort the findings of these studies.

The assessment of confounding is discussed in detail in epidemiologic text 
(Holmes, Rothman, and Greenland). To be a confounding, the extraneous 
variable must be (1) a risk factor for the disease being studied and (2) associ-
ated with the exposure being studied but is not a consequence of exposure. 
Consequently, confounding occurs (a) when the effects of the exposure are 
mixed together with the effect of another variable, leading to a bias or biased 
estimate, and (b) if  exposure X causes disease Y, Z is a confounder if  Z is a 

Table 10.1  Tabulation analysis illustrating the association between race/ethnicity 
and autistic disorder prevalence, NSCH, 2012

Autistic disorder  Race/Ethnicity Categories
  ,  Hispanic White, No Black, No Multi-rac DK/REF/SY  Total

  YES 10,939 53,788 7852 8942 1994  83,515
   11,069.9 53,578.5 7746.9 9118.2 2001.5  83,515.0
   1.5 0.8 1.4 3.4 0.0  7.2
   13.10 64.41 9.40 10.71 2.39  100.00 
   86.26 87.63 88.47 85.60 86.96  87.29 

Ever told, BDNH  39 214 38 44 8  343
   45.5 220.0 31.8 37.4 8.2  343.0
   0.9 0.2 1.2 1.1 0.0  3.4
   11.37 62.39 11.08 12.83 2.33  100.00
   0.31 0.35 0.43 0.42 0.35  0.36
NO  147 1139 123 186 29  1624
   215.3 1041.9 150.6 177.3 38.9  1624.0
   21.6 9.1 5.1 0.4 2.5  38.7
   9.05 70.14 7.57 11.45 1.79  100.00 
   1.16 1.86 1.39 1.78 1.26  1.70 

  Pearson chi2(20) = 157.5930   Pr = 0.000

Notes and abbreviations:	 Race/ethnicity is classified as Hispanic (column 2); White, non-Hispanic 
(column 3); Black, non-Hispanic (column 4); and multiracial (column 5), while Don’t 
know (DK), Refuse to answer (REF), and System missing (SY) are in column 6. Chi2 is 
the chi-square with 20 as the degree of freedom, while pr is the p value, <0.0001.
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known risk factor for disease Y, and Z is associated with X, but Z is not a 
result of exposure X.

10.4.6 � Stratification analysis

This is an extension of tabulation or cross-tabulation analysis, implying the 
cross-tabulation of data on exposure (ionizing radiation via CT) or treatment 
(medication—chemotherapy/surgery/behavioral therapy/physiotherapy) and 
disease (childhood leukemia) or outcome (tumor remission or mortality) by cat-
egories or strata of one or more variables assessed to be potential confounders. It 
is an efficient and simple means of controlling for confounding such as smoking 
in the association between coffee consumption and pancreatic neoplasm.

10.4.7 � Rationale and assumption

Stratification into categories allows for the assessment of confounding and 
effect measure modifier also termed interaction/product term in statistical 

Effect/outcome
(response)

Coffee
consumption

Cigarette 
smoking

Pancreatic
cancer

�ird extraneous
variable (confounder)

Exposure
(independent/predictor

variable)

Figure 10.1  �Confounding by cigarette smoking in the relationship between coffee con-
sumption and pancreatic neoplasm. A greater percentage of those who 
drink coffee also smoke, implying the observed relationship to be con-
founded by smoking, a known carcinogen. In effect, unless coffee or expo-
sure is stratified by smoking and nonsmoking, the relationship between 
coffee and pancreatic neoplasm will remain nonfactual, implying the need 
for stratification analysis to control for confounding.
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arena. This method allows for the generation of subgroups to assess the dif-
ferences in confounding factor, if  any, and t permits the refinement of point 
estimate from the crude estimate. If  variables are random as anticipated from 
probability samples, it allows for the application of inference and random 
error quantification. However, only one potential confounding variable is 
required in the method for practical purpose of revealing several interesting 
aspects of the data. Consequently, stratification analysis is ineffective and 
impractical in controlling for more than one confounding variable.

10.4.8 � Addressing for confounding: How?

In assessing for confounding, researchers should note that if within the cat-
egories of the stratification variable there is no meaningful variability, then 
the variable is a potential confounder. In addition, the effect being estimated is 
constant across strata, with each stratum providing a separate point estimate—
stratum-specific estimate. Is the effect measure modifier implicated if  the 
stratum-specific estimate differs substantially between strata but there is 
not much variability with the crude or unadjusted point estimate? With con-
tinuous variable, such transformation into several categories may result in less 
variability of the continuous confounding variable such as age. Assessing for 
the magnitude or degree of confounding is relevant to stratified analysis. There 
are practical issues when it comes to confounding, namely: (1) What should we 
do if the potential confounding variable presents with very little or marginal-
ized effect on the association? (2) How do we evaluate or assess for potential 
confounders? (3) What do we do if a variable is both a confounder and an effect 
measure modifier? (4) Should we use a significance test to determine whether 
the unconfounded point estimate differs from the crude point estimate with 
some difference in magnitude? These issues are addressed in detail in major 
textbooks of epidemiology (Rothman and Greenland).

Consider an example of a study conducted to examine the relationship 
between race/ethnicity and developmental disorders (DD), with sex and age 
as potential confounding variables (Table 10.2). How are these two potential 
confounders assessed before stratification? Can stratified analysis provide us 
with meaningful and reliable information with simultaneous stratification by 
these two variables (2 [sex] × 4 [race] = 8 categories)?

In this sample (NSCH, 2012), the stratified analysis by sex varied from 
the crude estimate, and with a difference in magnitude of at least 10%, con-
founding is expected by sex, given also no substantial difference in DD by sex-
specific stratum. However, while stratified by age (age categories: 2–5 years = 1,​ 
6–10 years = 2, 11–14 years = 3, and 15–17 years = 4), the stratified point 
estimate for DD differed substantially from the crude estimate, and there is 
a sizable difference between age-specific stratum for DD. This observation is 
indicative of age as an effect measure modifier as well and a confounder in the 
association between race and developmental disorder in children. Therefore, 
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given this heterogeneity by age, the data on race and DD association should 
be presented by age group, thus minimizing errors on global/crude associa-
tion between race and DD.

10.4.9 � Regression as a predictive model

Since tabular and stratification methods are limited owing to the number 
of variables that could be controlled simultaneously, the regression method 
presents an efficient alternative. Even with the sparse-strata method of 
Mantel–Haenszel, there remains a methodological flaw as more variables and 
categories are applied in stratification, resulting in empty strata with zeros (0) 
and ones (1). The regression method has an advantage over tabular and strati-
fication methods; although the regression method has explicit advantages, it 
may be difficult to be understood by the scientific audience and sometimes by 
investigators who depend on this method for their results or evidence, imply-
ing the ability to interpret the results as well as to understand the scientific 
context of the model.

The regression equation is presented as

	 Y X Xk k= + + +α β β ε1 1 

This equation fits into binary, multiple or multivariable linear, exponential 
risk models; logistic models—logit transformation, logistic model extension: 
polytomous, ordinal, multinomial; as well as rate models, namely, (a) incidence–
time and hazard model, and (b) generalized linear model—Poisson.

Statistical tests are based on assumptions regarding the variables used in 
the analysis, with the violation of such assumptions resulting in biased esti-
mates. But few researchers ever test the assumptions that their test is based 

Table 10.2  �Crude analysis of the association between race and developmental 
disorder, NSCH, 2012

 race  cases controls odds [95% Conf. Interval]

 1  338 10,584 0.03193 0.02866 0.03559

 2  2002 51,631 0.03878 0.03708 0.04055

 3  336 7517 0.04470 0.04007 0.04986

 4  364 8545 0.04260 0.03836 0.04731

Test of homogeneity (equal odds): chi2 (3) = 21.94

 Pr (chi2) = 0.0001

Score test for trend of odds: chi2(1)  16.38

 Pr (chi2) = 0.0001

=

Notes:	Race/ethnicity was defined by Hispanic, 1; non-Hispanic white, 2; non-Hispanic black, 3; 
and multiracial, 4.
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on, implying potentials for biased conclusion and inference from the data! 
Translational and clinical research must be more consequential by testing 
assumptions and examining the rationale behind the data.

Regression Method Assumption

	 Y X Xk k= + + +α β β ε1 1 

The validity of regression model depends on the following: (a) Normality—
variables are normally distributed. Regression assumes that variables have 
normal distributions. Nonnormally distributed variables (highly skewed or 
kurtotic variables, or variables with substantial outliers) can distort relation-
ships and significance tests. Exceptions are other generalized linear models 
that are semi-parametric and hence distribution-free (e.g., logistic regression, 
Cox proportional hazard model). (b) Linear relationship or approximately 
linear, implying that the independent and dependent variable must be linearly 
related. Single and multiple linear regression can only accurately estimate the 
relationship between dependent and independent variables if  the relation-
ships are linear in nature. (c) None or marginalized measurement errors—
variables are measured without errors. In simple correlation and regression, 

Table 10.3  �Regression model of the association between race/ethnicity 
controlling for sex and age

xi:logistic DD sex i.race i.n_age

i.race _Irace_1-4 (naturally coded; _Irace_1 omitted)

i.n_age _In_age_1-40 (naturally coded; _In_age_1 omitted)

Logistic regression Number of obs = 81,317

 LR chi2(7) = 377.93

 Prob > chi2 = 0.0000

Log likelihood = -12,784.442 Pseudo R2 = 0.0146

 DD  Odds Ratio Std. Err. z P>|z| [99% Conf. Interval]

 sex  .5091094 .0199495 -17.23 0.000 .4714729 .5497503

 _Irace_2  1.244359 .0746333 3.65 0.000 1.106351 1.399582

 _Irace_3  1.428749 .1124493 4.53 0.000 1.22451 1.667054

 _Irace_4  1.361277 .1049411 4.00 0.000 1.170381 1.583309

 _In_age_20  1.112351 .0583836 2.03 0.042 1.00361 1.232873

 _In_age_30  1.023837 .051301 0.47 0.638 .928068 1.129488

 _In_age_40  .7730633 .0453263 -4.39 0.000 .6891399 .867207

 _cons  .0823965 .0067816 -30.33 0.000 .0701215 .0968203

Notes:	The STATA syntax is used in the analysis of the data with the regression model. As 
indicated earlier, this model restricts details on the sample compared to tabular or 
stratification models. The reference groups are allocated OR = 1.00 in the model 
(male = 1 and female = 2 for sex, with male being referent), and type I error toler-
ance is set at 1% (0.01) due to multiple comparison and false discovery rate (FDR) 
for more accuracy or precision.
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unreliable measurement causes relationships to be underestimated, increasing 
the risk of type II errors. In the case of multiple regression or partial correla-
tion, effect sizes of other variables can be overestimated if  the covariate is not 
measured accurately. (d) Homoscadasticity—the variance of errors (ε) is the 
same across all levels of the independent variable. Therefore, meeting these 
assumptions results in increased accuracy of the estimates.

Consider the regression model of the association between race/ethnicity 
and DD controlling for age and sex (Table 10.3). The model assumptions are 
as follows: (a) Random variable implying probability sampling or consecutive 
sample—Health/Disease Registry or national survey (b) more than one con-
founding variable (age and race) to control for—simultaneous adjustment for 
multiple confounding. The point estimates (OR) and precision (99% CI) are 
comparable in either stratified or regression models.

10.4.10 � Tabular and stratification models: Benefits and limitations

The benefits of tabulation and stratification models include (a) visualization 
of exposure (risk, treatment), disease (outcome, response), and confounding 
variables that are usually obscured in multivariable regression; and (b) fewer 
assumptions needed, minimizing the potentials for obtaining a biased results. 
The difficulties to provide accurate, mutually unconfounded coefficient esti-
mates (β1, β2, β3) of two or more predictive/confounding factors such as 
smoking and family history in the association between coffee drinking and 
pancreatic malignancy, renders stratification analysis in preference of regres-
sion model: Y = β0 + β1X1 + β2X2 + β3X3 (logit transformation of general 
linear model allows for the fitting of logistic regression line).

10.4.11 � Regression model: Benefits and limitations

Regression as a predictive model is based on information from risk predictors 
and remains efficient if  properly utilized in evidence discovery. For example, 
values of predictor variables such as fever, history of travel from infected 
region, contact with symptomatic Ebola, and direct contact with patient 
saliva could be inserted into logit (logistic transformation) to predict the risk 
of Ebola virus. Controlling for multiple confounding variables for individual 
estimate of risk and for causal inference requires a regression model. This 
model provides an accurate, mutually unconfounded coefficient estimates (β1, 
β2, β3) of two or more predictive/confounding factors such as smoking and 
family history in the association between coffee drinking and pancreatic neo-
plasm: Y = β0 + β1X1 + β2X2 + β3X3 (logit transformation of general linear 
model allows for the fitting of logistic regression line). Many assumptions are 
needed, increasing the potentials for obtaining a biased result with unexam-
ined assumptions and rationales. In addition, regression obscures the visual-
ization of exposure, outcome, and confounding variables, which is extremely 
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necessary in observing data patterns. In effect, the regression model should 
never be utilized unless data are visualized and tabulated for detail assessment 
before model specification and building as a predictive model.

10.5 � Summary

The emergence of “big data” signaled a threat to the very foundation of sta-
tistics, sampling, implying a representative sample that mirrors the popula-
tion characteristics or attributes. Since statistics rarely studies the population 
but draws sample judged to be representative from the population, the sample 
parameter such as the mean remains an approximation of the population mean, 
hence the notion of estimate or estimation. The use of big data reflects volume, 
variability, veracity, and velocity. In general, streaming, social media, and public 
access data remain the source of big data. With big data, approach to evidence 
discovery varies from the traditional method utilized in making sense of data. 
Researchers handling big data should attempt at the combination of novel with 
traditional approaches. These guidelines to processing and analysis of big data 
include (a) generation of multiple versions of predictor and averaging these pre-
dictor versions to obtain an aggregate predictor, (b) smoothing, (c) adjustment 
for multiple comparison by assessing false discovery rate (FDR), (d) MA plot 
utilization for data visualization, (e) application of tabulation before regression 
model fitting, (f) avoidance of regression as a universal model, (g) addressing 
and controlling for confounding, (h) determining real sample size from data size, 
and (i) application of data reduction by obtaining random sample from big data.

Reality in statistical modeling of clinical and translational research data 
reflects the ability to provide sound background knowledge of the research 
entity of interest, appropriate sampling, internal and external validity of the 
study, effect size, application for measure of association or effect, and the 
application of confidence interval to determine data precision.

The utilization of the regression model should be handled with caution. As 
a predictive model, regression provides explicit measure of effect and predic-
tion when assumptions are met. However, the violation of these assumptions 
renders this model inadequate to fit the data. As a rule, researchers should avoid 
the regression model unless the tabulation model and data visualization are per-
formed before selecting regression. In controlling for confounding when more 
than one confounding is assessed, regression remains an efficient model.

Questions for discussion

	 1	 (a) Discuss the advantage and disadvantage of using “big data” in assess-
ing the outcome of hip replacement surgery associated with private insur-
ance. (b) Using big data, discuss the relevance of type I error tolerance in 
this context. (c) What is bagging? Explain the importance of applying this 
tool in big data scenario.
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	 2	 Supposing you are conducting a study on the effect of chemotherapy X 
on acute lymphocytic leukemia using SEER data, discuss how you will 
discover evidence on the benefit of this drug (n = 72,000). What will be 
type I error tolerance? If  multiple comparison is involved, how will you 
determine false discovery rate?

	 3	 Visit https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/DR1IFF_G.htm and 
obtain the codebook and the data to describe the demographics of the par-
ticipants and correlate between micronutrients and poverty level. Using 
effect size, determine whether it is feasible from the data policy formulation 
to address racial/ethnic variability in micronutrients in this sample.

	 4	 Wald tests and confidence interval are based on Wald’s (1934) comment 
on the use of Wald statistics in regression models. The association between 
cancer and alcohol is often confounded by age and smoking. Comment 
on overestimation or underestimation of the joint effect of these two risk 
factors and discuss the relevance of utilizing an interaction term in such a 
model.

	 5	 While using simple linear regression, we model the value of a response 
variable as a linear function of a single independent variable or explana-
tory variable. Suppose we have observations on n patients, construct a 
multiple linear regression model. Comment on the importance of the mul-
tiple regression model in an attempt to improve the ability to predict a 
response variable with several explanatory variables. Comment on the 
accuracy of multiple regression parameter estimates.

	 6	 The null hypothesis allows us to completely specify the distribution of 
a relevant test statistic, while the alternate hypothesis includes all pos-
sible distributions except the null. The probability value (p) as indicated 
in the text is the probability of obtaining a sample mean that is at least as 
unlikely under the null hypothesis as the observed value of x (hypotheti-
cal). Discuss the importance of p value as the measure of evidence (true 
mean, point estimate) in clinical, translational, and population-based 
studies.
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A

Absolute risk (AR), 21–22
Accuracy, diagnostic/screening tests, 15–17
Acute lymphocytic leukemia (ALL), 

67, 70
Acute myeloid leukemia (AML), 70–71
Adenocarcinoma, metastatic prostatic, 

110
Adolescent idiopathic scoliosis (AIS), 6
ADT (androgen-deprivation therapy), 

xxvii, 237
African-American women (AAW), 134
Age-adjusted rate, 36
Alcohol consumption, 39, 40
Allergies, 72
Analysis

bivariable, 93, 191
correlation

defined, 93–94
result of, 94–95

discriminant, 96
linear regression, 95
log-linear, 96
MANCOVA, 173
multivariable/multivariate, 93, 191
preanalysis screening, 77
regression, see Regression analysis, 

tabulation vs.
research questions, 93–94, 96
statistical, consideration, big data, 250
stratification, 257
survival, see Survival analysis
techniques, in clinical research data, 

93–94
time series, xxviii
univariable, 93, 191

Analysis of covariance (ANCOVA), 93, 
183

Analysis of variance (ANOVA), 173–188
assumptions, 174
computation, 174–177
feasibility, 173
hypothesis and possible computation, 

173
Kruskal–Wallis

statistic, 172
test, computation, 188

MANCOVA, 173
normality test, xxvi
null hypothesis in, 173, 174, 175
one-sample, 142–145
one-way, nonparametric alternative 

to, 187–188
other hypothesis tests, 182–188
overview, 172, 173
post hoc/posteriori comparison, 

177–182
RANOVA, xxvi
repeated-measure, 126, 142–143

appropriate, 143
defined, 142
one-way, nonparametric equivalent 

of, 144–145
results, interpretation, 143–144
used as test statistic, 143

test, 92–93
two-way, 182–185
variability, measurement, 172

ANCOVA (analysis of covariance), 93, 
183

Androgen deprivation therapy (ADT), 
xxvii, 237

ANOVA, see Analysis of variance 
(ANOVA)

Antagonism, 38
Antibiotics, erythromycin, 69
Apoptosis, in transgenic mice, 6

Index
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Applications
big data, 248–249
CI in assessing evidence, xxxi–xxxiv
inferential statistics, 125
probability model, 77
significance level, 125
stratification analysis, 255
tabulation analysis, 255

Applied biostatistics
binary outcome, xxvi–xxvii
CI, see Confidence intervals (CIs)
confounding, see Confounding
data, see Data
design process, see Design(s)
errors, types, see Errors
hypothesis testing, see Hypothesis 

testing
inference, see Inferences
null hypothesis, see Null hypothesis
poolability, fixed and random effect, 

xxviii
p value, see Probability (p) value
sampling, see Sample and sampling
statistical power, see Statistical power
statistical significance, see Statistical 

significance
survival analysis (time-to-event data), 

see Survival analysis
time series analysis, xxviii

ARD (absolute risk difference), 21
ARR (absolute risk reduction), 21–22
Asbestos, 40
Associations, statistical inference 

involving, 191–240
correlation and correlation 

coefficients, 202–209
appropriate, 203
computation, 204–208
defined, 202
interpretation, 208–209
overview, 202–203
STATA syntax, 202–203

logistic regression technique, 
219–222
computation, 220, 222
defined, 219–220
feasibility, 220
unconditional, 220, 226, 229

model building and interpretation, 
222–229
backward technique, 223, 225–228
logistic regression, types, 229
overview, 222–225

multivariable/multivariate linear 
regression, 197, 217–219
computation, 217–219
defined, 217
feasibility, 217

overview, 191–202
Poisson regression, 237–240

example, 238–240
overview, 237–238
uses, 238

simple linear regression, 209–217
computation, 211–216
defined, 209
feasibility, 209
interpretation, 216–217

survival analysis, time-to-event 
method, 229–237
Cox regression, computation, 236
Cox regression, interpretation, 

237
definition of terms, 231
equality of survival, test for, 234–235
KM estimates, derivation/

computation, 232–234
KM survival estimates, 232
life table, 229–231
log-rank test, estimation, 235–236
overview, 229

Association study, 113
Asthma, 47, 49
Autistic spectrum disorder, 255–256
Autoimmune disorders, race/ethnicity 

and, 165, 166

B

Back pain, 33
Backward stepwise elimination, 98
Backward technique, model building 

using, 223, 225–228
Baclofen, 28
Balancing, benefits and harmful effects 

in medicine, 21–22
Baseline hazard, 201
Bayesian theorem, 12, 20
Bayes’s theorem, PPV, 12
Bell-shaped curve, defined, 132
Benefits

balancing benefits, in medicine, 21–22
diagnostic tests, 14–15, 18
regression model, 261–262
screening tests, 14–15, 18–19
tabulation and stratification models, 261
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Bernoulli trial, 80
Beta error rate, defined, 10
Biases

in disease screening and detection, 19
handling, 36–37
lead-time, 19
length, 19
research design, 36–39

Big data, 248–250
concept and application, 248–249
sources of, 249
statistical analysis consideration, 250

Binary/dichotomous variable, 83
Binary outcome, xxvi–xxvii
Binomial distribution model, 72, 83
Binomial regression, 80–82

defined, 80
use, 80–82

Biomedical and clinical research, 3–22
balancing benefits and harmful effects 

in medicine, 21–22
conducting, 5–6
diagnostic (confirmation) tests, 8–21; 

see also Diagnostic tests
generalization, 7–8
overview, 3–4
sample size and power estimations, 8
sampling, 7
screening (detection) tests, 8–21; 

see also Screening tests
standardized distribution, z score 

statistics, 68
study subjects, 6
subject selection, 6–7

Biostatistical inference, 45
Biostatistical modeling

evidence discovery, see Evidence 
discovery

overview, 75
statistical considerations, in 

clinical research, see Statistical 
considerations

statistical inference, see Statistical 
inference

statistical power estimations, see 
Statistical power

Biostatistical reasoning
defined, 45
involvement, 45–46
overview, xxxi–xxxii, 45–46
purpose, 48–49
statistical vs., 49

Biostatistics, populations, 45–47

Bivariable analysis, 93, 191
Bivariate association, defined, xxii
Bland–Altman plot, 250
Blood pressure (BP), dopamine in, 139, 

140, 141
Body mass index (BMI)

descriptive/summary statistics, 52
normality test for distribution, 51

Bonferroni correction, 203
Bonferroni procedure, 177, 180
Bootstrapping, sample, 250
Botulinum toxin, 28
Box plot

central tendency and dispersion, 
measures of, 60–65

of median SBP, 180
Breast cancer, diagnosis, 153–154

C

Calcium supplement, 152
Cancers

breast, diagnosis, 153–154
cervical, see Cervical cancer
colorectal, 191
endometrial, 198
hepatocellular carcinoma, 195
locoregional prostatic 

adenocarcinoma, 247
lung, 40
oral, 39, 40
prostate, see Prostate cancer

Cardinal variable, 136–137
Cardiomyopathies, 91
Case–control studies

nonexperimental design, type of, 31
sample size estimation for, 121–122
sampling, 35

Censored data, 199–200, 229
Central location, measurement, 50
Central tendency, measurement, 49–68

choice of, 51
defined, 50
descriptive/summary statistics, BMI, 

52
median, 53–55
mode, 55–56
normality tests

for distribution of BMI, 51
SK and SBP, 53
skewness/kurtosis test, 57
SK of 31 subjects with SBP, 54

overview, 49–53
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quartiles and interquartile range and 
box plot, 60–65

range, 56–60
SBP and, 54, 55
variance, standard deviation, and 

SEM, 66–68
Cerebral palsy

curve deformities in, 45
deep wound infection, 77, 163
equinus foot deformity, 166, 171, 200
follow-up, 144
population, sample and, 84–85
postoperative infection in, 22
recurrent surgery and, 166, 168
spine fusion in, 77, 163, 171
types, 136, 166, 168

Cervical arthrodesis, 78–79, 80, 119
Cervical cancer

diagnosis, 82, 232–234
survival, 237
treatment, 237

Cervical spine instability, 126
Cervical stability, on SKD pediatric 

patients, 80
Characteristics

confounding, 39–40
ROC curve, 17–18

Characterization, sample size, 110
Chemoprophylaxis, for urticaria, 

141–142
Chemotherapy, leukemia, 161, 162
Chi-square statistics, 79–80

assumptions, 91
defined, 79
use, 79–80

Chi-square test
disadvantage of, 152
of independence, xxv
proportions in two groups, 164–168

assumptions, 166
compare proportions, 166
computation, 166–168
defined, 164–165
hypothesis testing, 165
overview, 164
types, 164–165

Chronologic age, 40
Clinical phase, early disease detection, 18
Clinical reasoning, 20–21
Clinical research

data
analysis techniques in, 93–94
statistical modeling of, xxxi

statistical considerations in, see 
Statistical considerations

Clinical science data, statistical modeling 
of, 251–253

Clinical trials
conducting, 33
cost, 32–33
defined, 27
minimum detectable difference in, 107
parallel design in, 112
phases, 34
prospective cohort/two-group 

comparison in, 120–121
randomized crossover, 33
randomized placebo-controlled, 

33–34
RCT, 33–34
sample size in, 110

Clubfoot, surgically treated, 191–192
Cobb angle, 77, 220
Cohort studies, 31, 35
Colorectal cancer, 191
Computation

paired t tests, 139–141
sample size, 110, 112–114

Conditional probability, 70–71
Conducting

biomedical and clinical research
diagnostic test, 9
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