Praktikum iz programiranja 3

2024/25

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy

NumPy predstavlja jednu od mnogobrojnih biblioteka u programskom jeziku Pajton.

NumPy, skraceno od "Numerical Python" se sastoji od mnostva numerickih funkcija, koje
sluze za obradu visedimenzionih nizovnih objekata.

= Prvi put se matrice pojavljuju u okviru Pajtona 1994. godine, kada ih je uveo Jim Fulton
stvorivsi biblioteku ,,Matrix Object in Python”.

= Jim Hugunin 1995. godine prosirio, stvorivsi biblioteku pod nazivom ,Numeric”.

= Posle Sest godina Perry Greenfield, Rick White i Todd Miller su stvorili biblioteku
,Numarray“. Sa bibliotekom NumPy se prvi put susrecemo 2005. godine, kada je stvorio
Travis Oliphant.

NumPy

= Koriste¢i NumPy, programer moze da izvede sledece operacije:
= Matematicke i logicke operacije nad nizovima
" Furierove transformacije i rutine za manipulaciju oblicima

= Operacije povezane sa linearnom algebrom, poput operacija nad vektorima,
matricama, resavanje sistema jednacina i tome slicno

* NumPy ima ugradene funkcije za linearnu algebru i nasumicnu generaciju
brojeva.

* NumPy se Cesto koristi zajedno sa paketima kao sto su SciPy ("Scientific Python") i
Mat-plotlib (biblioteka za grafike), u kombinaciji sa kojima nam omogucava
moderniju i kompletniju zamenu za MatlLab.

NumPy okruzenje

= Standardna Pajton instalacija ne dolazi u paketu sa NumPy modulom.

= Laka alternativa je da instalirate NumPy koristeéi popularni program za instalaciju
Pajton paketa, pip.

pip install numpy

" Preuzeti Pajton instalaciju sa python.org , prilikom instalacije odabrati da ista
ukljuCi pip paket menadzer

= Nakon instalacije u komandnoj liniji (cmd) izvrsiti ,,pip install numpy” da bi
dodatno instalirali NumPy.

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

Tipovi podataka u NumPy-u

= U NumPy paketu, najvazniji objekat, ndarray, predstavlja n-dimezionalni niz
elemenata gde svaki element zauzima neki fiksirani broj bajtova. Obicno taj broj
bajtova reprezentuje neki broj, celi, kompleksni, realni itd.

" Taj broj bajtova moze da predstavlja zapis sacCinjen od bilo kog drugog tipa
podatka (karakter, logicki tip — boolean, string itd.).

= Svaki NumPy niz ima svoj dtype objekat koji opisuje tip podataka u tom nizu.

" Ndarray predstavlja kolekciju podataka istoga tipa. Pristupa im se koristeci
indekse pocevsi od 0 do n-1 (gde je n ukupan broj podataka). Ndarray objekat se
koristi i za matrice i za vektore.

Tipovi podataka u NumPy-u

" Veza izmedu tri osnovna objekta koris¢ena da opisu podatak u nizu:

= ndarray

= dtype - tip podataka objekta koji opisuje plan jednog elementa niza fiksirane
veliCine

= array scalar — objekat (niz) koji se vraca kada se pristupi nekom elementu niza

dtype head

tip podatka ﬁ array

scalar
header 4 8 a8 é

ndarray

NumPy
ndarray

import numpy as np

[1 2 3]
a = np.array([1, 2, 3]) <class 'numpy.ndarray'>
print(a) (3,)
print(type(a)) 123
print(a.shape) #oblik niza [5 2 3]

print(a[@], a[l], a[2]) #pristupanje elementima
a[@] = 5 #promena vrednosti
print(a)

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
ndarray

tip niza moze eksplicitno da se definisSe pri kreiranju niza.

import numpy as np

Niz kreiran iz nekadasnje
liste:

[[1. 2. 3.]
a = np.array([[1, 2, 3], [4, 5, 6]], dtype = "float')[a, 5. 6.7]]

kreiranje niza od liste sa realnim tipom:

print ("Niz kreiran iz nekadasnje liste:\n", a)
Niz kreiran iz nekadasnje

: : : torke:
kreiranje niza od torke: [9 8 7]
b = np.array((9, 8, 7))
print ("\nNiz kreiran iz nekadasnje torke:\n", b) Niz inicijalizovan sa nulama:
[[6. 0. 0. 0O.]
[0. O.

kreiranje 3X4 niza sa svim nulama: 0. 0.]
[0. 0. 0. 0.]]
c = np.zeros((3, 4))

print ("\nNiz inicijalizovan sa nulama:\n", c

Institut za matematiku i informatiku, Prirodno-matematicki foZulTe‘r, Uiverzitet u Kragujevcu

NumPy
ndarray

kreiranje konstantne vrednosti niza kompleksnog tipa:
d = np.full((3, 3), 6, dtype = 'complex')

print ("\nNiz inicijalizovan sa svim 6s. Tip niza je kompleksan:\n", d)
Niz inicijalizovan sa

. . . ‘ svim 6s. Tip niza je
kreiranje niza sa random vrednostima: kompleksan:

e = np.random.random((2, 2)) [[6.40.] 6.+0.] 6.+0.7]
print ("\nRandom niz:\n", e) [6.4+0.] 6.40.] 6.40.7]
[6.40.] 6.+0.] 6.+0.7]]
kreiranje niza celih brojeva od © do 30 sa korakom 5: p odom niz:
f = np.arange(0, 30, 5) [[0.90989476 0.84011767]
print ("\nNiz celih brojeva sa korakom 5:\n", f) [0.72367953 0.24145321]]

Niz celih brojeva sa
korakom 5:

© 5 10 15 20 25]

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kro!-;ujevcu

iz od 10 vrednosti izmediju ©

I 5:
NumPy [O. ©0.55555556
1.11111111 1.66666667
ndarra 2.22222222 2.77777778
3/ 3.33333333 3.88888889
kreiranje niza od 10 vrednosti u rangu od © do 5: 444884444 5.]
g = np.linspace(@, 5, 190) Originalni niz:
print ("\nNiz od 10 vrednosti izmedju © i 5:\n", g) [[1 23 4]
Promena oblika 3X4 niza u 2X2X3 niz: Fl) ; g ﬂ]
h = np.array([[l, 2, 3, 4]: [5) 2, 4, 2]: [1J 2, 0, 1]]) . .
hl = h.reshape(2, 2, 3) gﬁiﬁgfle promenjenos
print ("\nOriginalni niz:\n", h) [[[1 2 3]
print ("Niz posle promenjenog oblika:\n", hl) %?45221]]
spljosten niz: [2 0 1]]]
1= np.array([[l, 2, 3]: [4: 5, 6]])
. . Originalni niz:
il = i.flatten() [[1 2 3]

print ("\nOriginalni niz:\n", 1) [4 5 6]]

print ("Spljosten niz:\n", il) Spljosteni niz:

2345 6]

1
Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Krogujl\/cu

NumPy
Indeksiranje nizovo

a = np-aPPaY([[1:2:3:4]: [5)6)7)8]) [9:1@)11)12]])

b =a[:2, 1:3] [[2 3]
print(b) 6 7
c=np.copy(a[:2,1:3]) [:2 3
print(c))
print(a[0, 1]) 6
b[@o, 0] = 77 2
print(afe, 1]) 77

77
c[0, 0] = 100

print(a[0, 1])

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Indeksiranje nizovo

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)
b = np.array([0, 2, 0, 1])

print(a[np.arange(4), b])
a[np.arange(4), b] += 10
print(a)

[

L[

1 2 3
4 5 6]
7 8 9]
10 11 12]]

[1 6 7 11]
11 2 3]
4 5 16]
17 8 9]
10 21 12]]

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Indeksi sa ispunjenim uslovom

a = np.array([[1,2], [3, 4], [5, 6]])

bool idx = (a > 2)
print(bool idx)

print(a[bool idx])
i

print(afa > 2])

[True

| True
[345 6]
[345 6]

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

[[False False]

True]

True]

NumPy
Vrste | kolone

Postoje dva nacina za pristupanje vrstama/kolonama

[5 67 8] (4,)

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) [[5 6 7 8]] (1, 4)

row rl = a[1, :]

row r2 = a[1:2, :] [2 6 10] (3,)

print(row_rl, row_rl.shape) ([2
print(row_r2, row_r2.shape) i 6:
(10]] (3, 1)

col rl1 = af:, 1]

col r2 = af[:, 1:2]
print(col rl, col rl.shape)
print(col r2, col r2.shape)

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Tipovi elemenata

X = np.array([1, 2])

print(x.dtype) int64

X = np.array([1.0, 2.0])

print(x.dtype) floatos
X = np.array([1, 2], dtype=np.float64) float64
print(x.dtype) [1. 2.]
print(x)

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Operacije nhad nizovima

a<b
[[True False]

. [False False]
import numpy as np [False False]]

a = np.array([[0,2],[3,8],[1,6]]) &ﬁls]
b = np.array([[1,0],[0,1],[1,1]]) Eigh
print("a<b\n",a<b) a+b
print("a+1\n",a+1) £§17?

print("a+b\n",a-b) aLg o

print("a*10\n",a*10) f%ié?

print("a**2\n",a**2) aﬂ26ml
[[@ 4]
[9 64]
[1 36]]

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Operacije nhad nizovima

X = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

print(x + y) ili print(np.add(x, y))
[[6.0 8.0]
[10.0 12.0]]

print(x - y) ili print(np.subtract(x, y))
[[-4.0 -4.0]
[-4.0 -4.0]]

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy

Vektorski proizvod

= < <K X
I

print(v.dot(w))
109
print(x.dot(v))
[29 67]
print(x.dot(y))
[[19 22]

[43 50]]

= np.array([[1,2],[3,4]])

np.array([[5,6],[7,8]])
= np.aPPay(:9,19:)

= np.array([11, 1])

ili print(np.dot(v, w))

ili print(np.dot(x, v))

il print(np.dot(x, y))

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Sumiranje, fransponovan|a

x = np.array([[1,2],[3,4]])

print(np.sum(x))
print(np.sum(x, axis=0))
print(np.sum(x, axis=1))

print(x)

print(x.T)

v = np.array([1,2,3])
print(v) print(v.T)

10
[4 6]
[3 7]

[[1 2]
[3 4]]

[[1 3]
[2 4]]

[1 2 3]

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

Primer 1

" Napisati funkciju SahovskaTabla(n) koja vraca matricu dimenzija nxn
u kojoj se jedinice nalaze na mestima gde stoje crna polja, a nule na
mestima gde su bela polja.

def SahovskaTabla(n):
vO=np.array([0,1]*(n//2+1))
vl=np.array([1,0]*(n//2+1))
b=np.array([vO,v1]*(n//2+1))
c=b[O:n,0:n]
print(c)

SahovskaTabla(8)
SahovskaTabla(5)

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

Primer 2

= U matematici skalarni proizvod predstavlja algebarsku operaciju koja
uzima koordinate dva vektora iste veliCine i vraca jedan broj. Definicija
skalarnog proizvoda:

X -y = X[y«)

= odakle je

L
=il

<%(X, V) = arccos

=
=T

= Postupak raéunanja ugla izmedu dv vektora x = (5,2,—3) iy = (—1,0,9):

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

Primer 2

import numpy as np

X = np.array([5, 2, -3])
y = np.array([-1, 0, 9])
na osnovu ova dva vektora se racuna njihov skalarni proizvod:
skal = np.dot(x, y)

racunanje modula vektora x i vektora y:

mod _x = np.sqgrt((x*x).sum())

mod_ y = np.sqgrt((y*y).sum())

racunanje cosinusa ugla izmedu x i y vektora:

cos_xy = skal/mod x/mod_y

racunanje ugla izmedu vektora x i y:

ugao = np.arccos(cos_xy)

print("Ugao izmedju vektora x i y u radijanima: ", ugao)

prebacivanje ugla iz radijana u stepene:

ugao stepeni = ugao*180/np.pi

print("Ugao izmedju vektora x i1 y u stepenima: ", ugao_stepeni)

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Resavanje sistema jednacind

" Jedan od najcesc¢ih problema u linearnoj algebra je resSavanje sistema
jednacina. Svaki sistem jednacCina moze da se zapise u matricnom obliku.

= Potrebno je da se odredi vector x, koji ispunjava jednacinu: Ax = b, gde je

2 1 -2 —3
A=13 0 1[b=|5
11 -1 2.

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

NumPy
Resavanje sistema jednacind

import numpy as np

#prvo formiramo matrice (nizove) A I b: [1. -1.

A = np.array([[2,1,-2],[3,0,1],[1,1,-1]]) True
b = np.array([-3,5,-2])

#sistem resavamo na sledeci nacin:

X = np.linalg.solve(A,b.T)

print(x)

#provera da li je resenje ispravno:
print(np.allclose(np.dot(A,x),b))

Institut za matematiku i informatiku, Prirodno-matematicki fakultet, Uiverzitet u Kragujevcu

2.1

	Slide 1: Praktikum iz programiranja 3
	Slide 2: NumPy
	Slide 3: NumPy
	Slide 4: NumPy okruženje
	Slide 5: Tipovi podataka u NumPy-u
	Slide 6: Tipovi podataka u NumPy-u
	Slide 7: NumPy ndarray
	Slide 8: NumPy ndarray
	Slide 9: NumPy ndarray
	Slide 10: NumPy ndarray
	Slide 11: NumPy Indeksiranje nizova
	Slide 12: NumPy Indeksiranje nizova
	Slide 13: NumPy Indeksi sa ispunjenim uslovom
	Slide 14: NumPy Vrste i kolone
	Slide 15: NumPy Tipovi elemenata
	Slide 16: NumPy Operacije nad nizovima
	Slide 17: NumPy Operacije nad nizovima
	Slide 18: NumPy Vektorski proizvod
	Slide 19: NumPy Sumiranje, transponovanja
	Slide 20: Primer 1
	Slide 21: Primer 2
	Slide 22: Primer 2
	Slide 23: NumPy Rešavanje sistema jednačina
	Slide 24: NumPy Rešavanje sistema jednačina

