
2024/25

Praktikum iz programiranja 3

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ NumPy predstavlja jednu od mnogobrojnih biblioteka u programskom jeziku Pajton.

▪ NumPy, skraceno od "Numerical Python" se sastoji od mnoštva numeričkih funkcija, koje
služe za obradu višedimenzionih nizovnih objekata.

▪ Prvi put se matrice pojavljuju u okviru Pajtona 1994. godine, kada ih je uveo Jim Fulton
stvorivši biblioteku „Matrix Object in Python“.

▪ Jim Hugunin 1995. godine proširio, stvorivši biblioteku pod nazivom „Numeric“.

▪ Posle šest godina Perry Greenfield, Rick White i Todd Miller su stvorili biblioteku
„Numarray“. Sa bibliotekom NumPy se prvi put susrećemo 2005. godine, kada je stvorio
Travis Oliphant.

NumPy

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ Koristeći NumPy, programer može da izvede sledeće operacije:

▪ Matematičke i logičke operacije nad nizovima

▪ Furierove transformacije i rutine za manipulaciju oblicima

▪ Operacije povezane sa linearnom algebrom, poput operacija nad vektorima,
matricama, resavanje sistema jednacina i tome slično

▪ NumPy ima ugrađene funkcije za linearnu algebru i nasumičnu generaciju
brojeva.

▪ NumPy se često koristi zajedno sa paketima kao sto su SciPy ("Scientific Python") i
Mat-plotlib (biblioteka za grafike), u kombinaciji sa kojima nam omogućava
moderniju i kompletniju zamenu za MatLab.

NumPy

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ Standardna Pajton instalacija ne dolazi u paketu sa NumPy modulom.

▪ Laka alternativa je da instalirate NumPy koristeći popularni program za instalaciju
Pajton paketa, pip.

pip install numpy

▪ Preuzeti Pajton instalaciju sa python.org , prilikom instalacije odabrati da ista
uključi pip paket menadžer

▪ Nakon instalacije u komandnoj liniji (cmd) izvršiti „pip install numpy“ da bi
dodatno instalirali NumPy.

NumPy okruženje

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ U NumPy paketu, najvažniji objekat, ndarray, predstavlja n-dimezionalni niz
elemenata gde svaki element zauzima neki fiksirani broj bajtova. Obično taj broj
bajtova reprezentuje neki broj, celi, kompleksni, realni itd.

▪ Taj broj bajtova može da predstavlja zapis sačinjen od bilo kog drugog tipa
podatka (karakter, logički tip – boolean, string itd.).

▪ Svaki NumPy niz ima svoj dtype objekat koji opisuje tip podataka u tom nizu.

▪ Ndarray predstavlja kolekciju podataka istoga tipa. Pristupa im se koristeći
indekse počevši od 0 do n-1 (gde je n ukupan broj podataka). Ndarray objekat se
koristi i za matrice i za vektore.

Tipovi podataka u NumPy-u

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ Veza između tri osnovna objekta korišćena da opišu podatak u nizu:

▪ ndarray

▪ dtype - tip podataka objekta koji opisuje plan jednog elementa niza fiksirane
veličine

▪ array scalar – objekat (niz) koji se vraća kada se pristupi nekom elementu niza

Tipovi podataka u NumPy-u

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

import numpy as np

a = np.array([1, 2, 3])

print(a)

print(type(a))

print(a.shape) #oblik niza

print(a[0], a[1], a[2]) #pristupanje elementima

a[0] = 5 #promena vrednosti

print(a)

NumPy

ndarray

[1 2 3]

<class 'numpy.ndarray'>

(3,)

1 2 3

[5 2 3]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

tip niza može eksplicitno da se definiše pri kreiranju niza.

import numpy as np

kreiranje niza od liste sa realnim tipom:

a = np.array([[1, 2, 3], [4, 5, 6]], dtype = 'float')

print ("Niz kreiran iz nekadasnje liste:\n", a)

kreiranje niza od torke:

b = np.array((9, 8, 7))

print ("\nNiz kreiran iz nekadasnje torke:\n", b)

kreiranje 3X4 niza sa svim nulama:

c = np.zeros((3, 4))

print ("\nNiz inicijalizovan sa nulama:\n", c)

NumPy

ndarray

Niz kreiran iz nekadasnje
liste:
[[1. 2. 3.]
[4. 5. 6.]]

Niz kreiran iz nekadasnje
torke:
[9 8 7]

Niz inicijalizovan sa nulama:
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

kreiranje konstantne vrednosti niza kompleksnog tipa:

d = np.full((3, 3), 6, dtype = 'complex')

print ("\nNiz inicijalizovan sa svim 6s. Tip niza je kompleksan:\n", d)

kreiranje niza sa random vrednostima:

e = np.random.random((2, 2))

print ("\nRandom niz:\n", e)

kreiranje niza celih brojeva od 0 do 30 sa korakom 5:

f = np.arange(0, 30, 5)

print ("\nNiz celih brojeva sa korakom 5:\n", f)

NumPy

ndarray

Niz inicijalizovan sa
svim 6s. Tip niza je
kompleksan:
[[6.+0.j 6.+0.j 6.+0.j]
[6.+0.j 6.+0.j 6.+0.j]
[6.+0.j 6.+0.j 6.+0.j]]

Random niz:
[[0.90989476 0.84011767]
[0.72367953 0.24145321]]

Niz celih brojeva sa
korakom 5:
[0 5 10 15 20 25]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

kreiranje niza od 10 vrednosti u rangu od 0 do 5:

g = np.linspace(0, 5, 10)

print ("\nNiz od 10 vrednosti izmedju 0 i 5:\n", g)

Promena oblika 3X4 niza u 2X2X3 niz:

h = np.array([[1, 2, 3, 4], [5, 2, 4, 2], [1, 2, 0, 1]])

h1 = h.reshape(2, 2, 3)

print ("\nOriginalni niz:\n", h)

print ("Niz posle promenjenog oblika:\n", h1)

spljosten niz:

i = np.array([[1, 2, 3], [4, 5, 6]])

i1 = i.flatten()

print ("\nOriginalni niz:\n", i)

print ("Spljosten niz:\n", i1)

NumPy

ndarray

iz od 10 vrednosti izmedju 0
I 5:
[0. 0.55555556
1.11111111 1.66666667
2.22222222 2.77777778
3.33333333 3.88888889
4.44444444 5.]

Originalni niz:
[[1 2 3 4]
[5 2 4 2]
[1 2 0 1]]

Niz posle promenjenog
oblika:
[[[1 2 3]
[4 5 2]]
[[4 2 1]
[2 0 1]]]

Originalni niz:
[[1 2 3]
[4 5 6]]

Spljosteni niz:
[1 2 3 4 5 6]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

b = a[:2, 1:3]

print(b)

c=np.copy(a[:2,1:3])

print(c)

print(a[0, 1])

b[0, 0] = 77

print(a[0, 1])

c[0, 0] = 100

print(a[0, 1])

NumPy

Indeksiranje nizova

[[2 3]

[6 7]]

[[2 3]

[6 7]]

2

77

77

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)

b = np.array([0, 2, 0, 1])

print(a[np.arange(4), b])

a[np.arange(4), b] += 10

print(a)

NumPy

Indeksiranje nizova

[[1 2 3]

 [4 5 6]

[7 8 9]

[10 11 12]]

[1 6 7 11]

[[11 2 3]

[4 5 16]

[17 8 9]

[10 21 12]]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)

print(bool_idx)

print(a[bool_idx])

Ili

print(a[a > 2])

NumPy

Indeksi sa ispunjenim uslovom

[[False False]

[True True]

[True True]]

[3 4 5 6]

[3 4 5 6]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

Postoje dva načina za pristupanje vrstama/kolonama

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

row_r1 = a[1, :]

row_r2 = a[1:2, :]

print(row_r1, row_r1.shape)

print(row_r2, row_r2.shape)

col_r1 = a[:, 1]

col_r2 = a[:, 1:2]

print(col_r1, col_r1.shape)

print(col_r2, col_r2.shape)

NumPy

Vrste i kolone

[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)

[2 6 10] (3,)

[[2]

 [6]

[10]] (3, 1)

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

x = np.array([1, 2])

print(x.dtype)

x = np.array([1.0, 2.0])

print(x.dtype)

x = np.array([1, 2], dtype=np.float64)

print(x.dtype)

print(x)

NumPy

Tipovi elemenata

int64

float64

float64

[1. 2.]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

import numpy as np

a = np.array([[0,2],[3,8],[1,6]])

b = np.array([[1,0],[0,1],[1,1]])

print("a<b\n",a<b)

print("a+1\n",a+1)

print("a+b\n",a-b)

print("a*10\n",a*10)

print("а**2\n",a**2)

NumPy

Operacije nad nizovima
a<b
[[True False]
[False False]
[False False]]
a+1
[[1 3]
[4 9]
[2 7]]
a+b
[[-1 2]
[3 7]
[0 5]]
a*10
[[0 20]
[30 80]
[10 60]]
а**2
[[0 4]
[9 64]
[1 36]]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

x = np.array([[1,2],[3,4]], dtype=np.float64)

y = np.array([[5,6],[7,8]], dtype=np.float64)

print(x + y) ili print(np.add(x, y))

[[6.0 8.0]

 [10.0 12.0]]

print(x - y) ili print(np.subtract(x, y))

[[-4.0 -4.0]

 [-4.0 -4.0]]

NumPy

Operacije nad nizovima

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

x = np.array([[1,2],[3,4]])

y = np.array([[5,6],[7,8]])

v = np.array([9,10])

w = np.array([11, 1])

print(v.dot(w)) ili print(np.dot(v, w))

109
print(x.dot(v)) ili print(np.dot(x, v))

[29 67]
print(x.dot(y)) ili print(np.dot(x, y))

[[19 22]

 [43 50]]

NumPy

Vektorski proizvod

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

x = np.array([[1,2],[3,4]])

print(np.sum(x))

print(np.sum(x, axis=0))

print(np.sum(x, axis=1))

print(x)

print(x.T)

v = np.array([1,2,3])

print(v) print(v.T)

NumPy

Sumiranje, transponovanja

10

[4 6]

[3 7]

[[1 2]

[3 4]]

[[1 3]

[2 4]]

[1 2 3]

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ Napisati funkciju SahovskaTabla(n) koja vraća matricu dimenzija nxn
u kojoj se jedinice nalaze na mestima gde stoje crna polja, a nule na
mestima gde su bela polja.

Primer 1

def SahovskaTabla(n):
v0=np.array([0,1]*(n//2+1))
v1=np.array([1,0]*(n//2+1))
b=np.array([v0,v1]*(n//2+1))
c=b[0:n,0:n]
print(c)

SahovskaTabla(8)
SahovskaTabla(5)

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ U matematici skalarni proizvod predstavlja algebarsku operaciju koja
uzima koordinate dva vektora iste veličine i vraća jedan broj. Definicija
skalarnog proizvoda:

▪ odakle je

▪ Postupak računanja ugla između dv vektora Ԧ𝑥 = (5,2, −3) i Ԧ𝑦 = −1,0,9 :

Primer 2

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

import numpy as np

x = np.array([5, 2, -3])

y = np.array([-1, 0, 9])

na osnovu ova dva vektora se racuna njihov skalarni proizvod:

skal = np.dot(x, y)

računanje modula vektora x i vektora y:

mod_x = np.sqrt((x*x).sum())

mod_y = np.sqrt((y*y).sum())

racunanje cosinusa ugla između x i y vektora:

cos_xy = skal/mod_x/mod_y

racunanje ugla između vektora x i y:

ugao = np.arccos(cos_xy)

print("Ugao izmedju vektora x i y u radijanima: ", ugao)

prebacivanje ugla iz radijana u stepene:

ugao_stepeni = ugao*180/np.pi

print("Ugao izmedju vektora x i y u stepenima: ", ugao_stepeni)

Primer 2

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

▪ Jedan od najčešćih problema u linearnoj algebra je rešavanje sistema
jednačina. Svaki sistem jednačina može da se zapiše u matričnom obliku.

▪ Potrebno je da se odredi vector x, koji ispunjava jednačinu: Ax = b, gde je

𝐴 =
2 1 −2
3 0 1
1 1 −1

, 𝑏 =
−3
5
−2

NumPy

Rešavanje sistema jednačina

Institut za matematiku i informatiku, Prirodno-matematički fakultet, Uiverzitet u Kragujevcu

import numpy as np

#prvo formiramo matrice (nizove) A I b:

A = np.array([[2,1,-2],[3,0,1],[1,1,-1]])

b = np.array([-3,5,-2])

#sistem resavamo na sledeci nacin:

x = np.linalg.solve(A,b.T)

print(x)

#provera da li je resenje ispravno:

print(np.allclose(np.dot(A,x),b))

NumPy

Rešavanje sistema jednačina

[1. -1. 2.]

True

	Slide 1: Praktikum iz programiranja 3
	Slide 2: NumPy
	Slide 3: NumPy
	Slide 4: NumPy okruženje
	Slide 5: Tipovi podataka u NumPy-u
	Slide 6: Tipovi podataka u NumPy-u
	Slide 7: NumPy ndarray
	Slide 8: NumPy ndarray
	Slide 9: NumPy ndarray
	Slide 10: NumPy ndarray
	Slide 11: NumPy Indeksiranje nizova
	Slide 12: NumPy Indeksiranje nizova
	Slide 13: NumPy Indeksi sa ispunjenim uslovom
	Slide 14: NumPy Vrste i kolone
	Slide 15: NumPy Tipovi elemenata
	Slide 16: NumPy Operacije nad nizovima
	Slide 17: NumPy Operacije nad nizovima
	Slide 18: NumPy Vektorski proizvod
	Slide 19: NumPy Sumiranje, transponovanja
	Slide 20: Primer 1
	Slide 21: Primer 2
	Slide 22: Primer 2
	Slide 23: NumPy Rešavanje sistema jednačina
	Slide 24: NumPy Rešavanje sistema jednačina

