
Kvalitet i testiranje softvera 2022.

1 | P a g e

Automation testing with SELENIUM (Web GUI testing)

Selenium is:

1. Selenium is an open-source automation testing tool, so that means you can just download
selenium
2. It is exclusively for Web Based Applications
3. Selenium supports multiple browsers
4. Multiple platforms: Windows, Apple OS X, Linux
5. Can be coded in multiple languages Java, C#, Python, PHP, Ruby

Selenium is a robust set of different software tools each with a different approach to supporting
test automation for web-based applications. It can be run in three variations:

• Selenium WebDriver

• Selenium Grid

• Selenium IDE

Official website: seleniumhq.org

Selenium WebDriver Framework Architecture Diagram:

Download selenium jar files for the project + Browsers Web Driver

https://www.selenium.dev/downloads/

Primer:

import org.openqa.selenium.By;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

public class Third {

 public static void main(String[] args) {

 // System Property for Chrome Driver
 System.setProperty("webdriver.chrome.driver", "D:\\ChromeDriver\\chromedriver.exe");

 // Instantiate a ChromeDriver class.

https://www.selenium.dev/downloads/

Kvalitet i testiranje softvera 2022.

2 | P a g e

 WebDriver driver=new ChromeDriver();

 // Launch Website
 driver.navigate().to("http://www.javatpoint.com/");

 //Maximize the browser
 driver.manage().window().maximize();

 //Scroll down the webpage by 5000 pixels
 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript("scrollBy(0, 5000)");

 // Click on the Search button
 driver.findElement(By.linkText("Core Java")).click();
 }
}

Locators supported by WebDriver:

• Id

• ClassName

• Name

• CSS

• XPath

• LinkText

7.2.3 Page object model (POM)

Page object model design pattern has nowadays become a very popular way of organizing the
test framework because of its easy test maintenance and reducing the duplication of code.

Public class HomePage extends BasePage{

@FindBy(id=“xx_container”)
private WebElement makePostDialogLocator;

@FindBy(css=“._fjdk”)
private WebElement nextButtonLocator;

@FindBy(css=“a[data-testid=’left_nav_item’]”)
private webElement welcomePageButtonLocator;

}

Figure 53: Example of POM

As presented in Figure 53, we have first identified the locators and defined it on the top after the
class. In this way, we can achieve the readability of test scripts and we can easily identify locators
and change them if needed at only one place.

Page Object Model approach is writing all the functionalities / reusable components of a page
that we want to automate in a separate class. Say now if we consider three pages as Home page,
Login page, Welcome page, etc.

Kvalitet i testiranje softvera 2022.

3 | P a g e

For the above pages, we will create classes as HomePage.class, LoginPage.class and
WelcomePage.class. In each class, we will identify and write reusable locators and methods,
which are specific to a page.

com.matf.pages

BasePage.java
HomePage.java
LoginPage.java
WelcomePage.java

Figure 54: Class organization

Besides given pages, there is a BasePage.class — this is the parent class of all pages’ classes. It
contains the locators and methods that are mutual for all inheriting pages. In general,
BasePage.class is not required to exist, and there can be more than one parent class.

On the first page - a Login page, after a user successfully logs in, it navigates to a respective page
— Welcome page. Whenever we are navigating to another page, we need to return that page
object.

The Page Object model provides the following advantages.

• There is a clean separation between test code and page specific code such as locators
and layout.

• There is a single repository for the services or operations offered by the page rather than
having these services scattered throughout the tests.

In both cases, this allows any modifications required due to UI changes to ail be made in one
place. Useful information on this technique can be found on numerous blogs as this design
pattern is widely used. Many have written on this design pattern and can provide useful tips
beyond the scope of this script.

This way, the test is operating with the methods of page classes, making the test easily readable:

Public void testLoginToFb{
 # Open FB login page

LoginPage loginPage = new LoginPage(driver).open();

Login
WelcomePage welcomePage = loginPage.login(email, password);

Verify home page
Assert welcomePage.isWelcomeMessageExpected();

Logout
loginPage = welcomePage.logout();

Verify FB login page
Assert loginPage.isLoginPageDisplayed();

}

Figure 55. Example of test

Kvalitet i testiranje softvera 2022.

4 | P a g e

7.2.4 Selenium WebDriver commands

In the following section, we will give a few examples of basic WebDriver and WebElement
methods, as well as how they are used.

• Fetching a Page

driver.get(http://imi.pmf.kg.ac.rs)

• Getting page url and title

 driver.getCurrentURL();
driver.getTitle();

• Defining web elements

The following elements can be defined in multiple ways:

<input id=“username” type="text” class=“abcd” name=“login” />
IMI
driver.findElement(By.id(“username"));
driver.findElement(By.name("login));
driver.findElement(By.class("abcd"));
driver.findElement(By.xpath("//input[@id=’elementID’]”));
driver.findElement(By.cssSelector("input[id=’elementID’]”));
driver.findElement(By.linkText("some text”));

• Locating UI Elements (WebElements)

Locator is a command that tells Selenium IDE which GUI elements it needs to operate on.
Most of the selenium webdriver commands need an element locator. There are several
ways how GUI elements can be located, and which one is the best varies from element
to element since it depends on multiple conditions (is the element unique, dynamic,
which attributes are defined, etc.).

o ByID
o ByCss
o By XPath
o By Class Name
o By Tag Name
o ByName
o By Link Text

• Getting element - find a webElement on a webpage

WebElement element = driver.findElement(By.id(“elementID”));

• Getting element text values

element.getText();

• Click on GUI element

element.click()

http://imi.pmf.kg.ac.rs/

Kvalitet i testiranje softvera 2022.

5 | P a g e

• Type on GUI element

Method sendKeys() is used for keyboard manipulation whether is just text typing or
pressing Enter, Shift etc.

element.sendKeys(“type something”);

element.sendKeys(Keys.ENTER);

• Navigation: History and Location

driver.navigate().to(“http://example.com”);

driver.navigate().forward();

driver.navigate().backward();

• Closing browser

driver.close();

Method closes the web browser window that the user is currently working on (window
that is being currently accessed by the WebDriver).

driver.quit();

Method closes all opened windows (opened by WebDriver).

• Drag and Drop

(new Actions(driver)).dragAndDrop(element, target).perform();

7.2.5 Selenium Waits

It is not an unusual situation for webdriver to try to manipulate web element before it is visible
on a page, or while it is disabled, not clickable, etc. As a result, some exceptions will be thrown.
To avoid this situation, certain waits can be added.

Selenium webdriver provides two types of waits, implicit wait and explicit wait.

The implicit wait will pause webdriver for a defined amount of time before trying to continue the
execution.

driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

In the case of explicit wait maximum wait time is defined and webdriver will wait until some
defined action occurs (during that period) before continuing with the test.

In this case, webdriver will wait until the given element is visible on the page before continuing
with test execution but for a maximum of 30 seconds.

WebDriverWait wait = new WebDriverWait(driver, 30);

wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath("

//input[@id=‘name’!]")

));

Kvalitet i testiranje softvera 2022.

6 | P a g e

7.2.6 Selenium Exceptions

Exceptions are events due to which the program ends abruptly without giving expected output.

Selenium has its own set of exceptions. All runtime exception classes in Selenium WebDriver
come under the superclass WebDriverException.

Though there are many Exception classes under WebDriverException, the ones below are
commonly seen:

• WebDriverException: Exception comes when a code is unable to initialize WebDriver.

• NoSuchElementException: Accessing an element which is not available in DOM.

• ElementNotVisibleException: Element exists in DOM but is not visible within the page.

• StaleElementReferenceException: Initial reference to the element is lost.

• NoSuchAttributeException: Trying to get attribute value but the attribute is not available
in DOM.

7.2.7 DB testing

Changes on the UI must reflect the state in the application’s DB. Often test requirements if to
check whether the value on the UI is the same as in the database. Since Selenium is a UI
automation tool WebDriver alone is ineligible to perform database testing so an additional tool
must be used. This can be done using Java Database Connectivity API (JDBC).

JDBC is a SQL level API that allows:

• Creating a connection with the database.

• Executing queries and update statements to extract or fetch data.

• Using and manipulating the data extracted from the database in the form of the result
set. (The result set is a collection of data organized in the rows and columns).

• Disconnecting the connection.

JBDC can used to interact with different DB types MySql, Oracle, Postgres...

7.2.8 Selenium grid

When there is a need to execute the same set of tests on a different set of OS/browsers, with an
option to be executed in parallel, the selenium grid is one of the options.

Selenium grid is a network of hub & nodes. Each node registers to the hub with a certain
configuration and hub is aware of the browsers available on the node. When a request comes to
the hub for a specific browser (with desired capabilities object), the hub, if found a match for the
requested browser, redirects the call to that particular grid node and then a session is
established bi-directionally and execution starts.

Kvalitet i testiranje softvera 2022.

7 | P a g e

Figure 56: Selenium Grid

7.2.9 TestNG

TestNG is a testing framework designed to simplify a broad range of testing needs. Its main usage
is to represent the entry and exit point of test automation. Using its configuration file, tests can
be triggered, and test results can be generated in a report file. it also represents an integration
point between Ci tools (e.g. Jenkins) and test code. More about TestNG configurations can be
found on http://testng.org/doc/documentation-main.html

Usage

TestNG covers wide variety of testing types:

• unit testing

• integration testing

• functional testing

• end-to-end testing

Configuration

TestNG configuration is stored in file testng.xml, which has a structure like:

<?xml version="1.0" encodings"UTF-8"?>
<!DOCTYPE suite SYSTEM "“http://testng.org/testng-1.@.dtd">
<suite name="Suite 1" verbose="1" parallel="classes" thread-count="3">
 <test name="Nopackage” >

<parameter name="email” value="matf.automation@gmail.com"></parameter>
<parameter name="password"“ value="Matf123/@#"></parameter>
<classes>

 <class name="NoPackageTest"/>
</classes>

 </test>
 <test name="Regression suite 2" preserve-order="true">

<classes>
 <class name="com,first.example.demoOne"/>
 <class name="com.first.example.demoTwo" />

Branko
Note
Primer za settings

http://testng.org/doc/documentation-main.html

Kvalitet i testiranje softvera 2022.

8 | P a g e

 <class name="com.first.example.demoThree" />
</classes>

 </test>
</suite>

Annotations

TestNG looks up for the annotations in the code and based on that defines what is to be
executed and how. Some of the basic ones are:

• @Test

• @BeforeSuite/@AfterSuite

• @BeforeTest/@AfterTest

• @BeforeGroups/@AfterGroups

• @BeforeClass/@AfterClass

• @BeforeMethod/@AfterMethod

• @Parameters

• @DataProvider

@Test annotation defines which class/method is to be executed and counted as a test.
@Before/After annotations define which methods are executed prior to the test (usually as test
preparation) and after the test (usually the test cleanup).
@Parameters annotation defines which parameters are read from the XML file and used as local
variables.
@DataProvider annotation defines a method that supplies data for the test — using data
provider, the same test will be executed multiple times using different sets of data.

Annotation attributes

Every testing annotation has its own attributes that can define it closely. Some of the attributes
are the same for multiple annotations.

Most common attributes are:

• alwaysRun - If set to true, this method will be run even if one or more methods invoked

previously failed or was skipped. Used for @Before/After and @Test annotation

• enabled - Whether this class/method is enabled or not.

• timeOut - The maximum number of milliseconds test should take.

• dependsOnMethods - The list of methods this method depends on.

• priority - The priority for test method execution order.

• parallel - If set to true, tests generated using this data provider are run in parallel.
Default value is false.

Kvalitet i testiranje softvera 2022.

9 | P a g e

Test execution order

Test methods execution can be invoked in a certain order. Tests can be ordered by:

• priority

• depends on other methods

• without any defined order

If tests are about to be executed by priority it means they have priority attribute (priority = 1,
priority= 2...), Lower priorities will be scheduled first.

One test can be dependent on the other test(s). Test annotation attribute dependsOnMethods =
“some_test” will mark that test dependent on test named “some_test”. In that case it will be
executed only after the “some_test” is successfully completed. Otherwise, it will be marked as
skipped.

If not priority or dependency is defined, then tests will be executed in alphabetical order.

Parallelism

TestNG can be instructed to run test methods in separate threads (in parallel). It can be achieved
in several ways:

• From suite.xml file by setting attributed thread-count and parallel for suite tag. Thread-
count is several threads to be used for tests execution and parallel defines what should
be execute in parallel (methods, classes, or tests).

• Adding parallel=True attribute to @DataProvider annotation.

• By defining @Test annotation attributes threadPoolSize and invocationCount.

Assertions

Assertions are used for validating a test case. The assertion is met if the actual test result
matches with that of the expected result. There are two types of assertions.

• Hard - usually throw an Assertion Error whenever an assertion condition has not been
met. The test case will be immediately marked as Failed when a hard assertion condition
fails.

• Soft - continues with the next step of the test execution even if the assertion condition is
not met.

Exceptions are not thrown unless it is asked for.

Some of the assertions:

• assertEquals(object1, object2, “Message on failure”)

• assertNotEquals(objecti, object2, “Message on failure”)

• assertTrue(boolean, “Message on failure”)

• assertFalse(boolean, “Message on failure”)

• fail(“Message on failure”) — purposely fails test case

Kvalitet i testiranje softvera 2022.

10 | P a g e

7.2.10 Test automation framework diagram

Besides Test Suite Driver (in e.g., Java), Selenium and TestNG, typical test automation framework
for testing web applications contains Function Library (helper and utility methods) and Test Data
Files (different sets of values with which tests are called).

Figure 57: Test automation framework diagram

