OBJEKTNO-ORIJENTISANO PROGRAMIRANJE

2016/17

PRIRODNO-MATEMATICKI FAKULTET, UNIVERZITET U KRAGUJEVCU

OOP 2016/17

Predavanja

= ponedeljkom 14.15-17.00

Vezbe

= Ponedeljkom 17.15-20.00 | grupa
= Utorkom 17.15-20.00 Il grupa

OOP 2016/17

Poeni
50 + 50 (30+10+10) | kolokvijum sredina aprila
N . . , , , | kolokvijum POPRAVNI kraj aprila/pocetak maja
2 kolokvijuma + zavrsni (usmeni + seminarski) . . :
Il kolokvijum druga polovina maja

Il kolokvijum POPRAVNI kraj maja/pocetak juna
Literatura
D. Poo, D. King, S. Ashok, Object-oriented programming in Java, Springer-verlag, 2008.
|. Horton, JavaZ - IDK 1.5, CET, Beograd, 2006.

UVOD

APSTRAKCIJA PODATAKA

MOTIVACIJA

= Problemi u razvoju softvera:
= Zahtevi korisnika su slozeni i stalno se povecavaju. Softverski sistemi su slozeni

= Uvek je potrebno povecati produktivnost proizvodnje softvera. Kako? Poveéanjem broja programera u timu?
Problemi — interakcija izmedu delova softveral

= Nacin povecéanja produktivnosti — ponovna upotreba softvera (software reuse). Kako obezbediti?

= Problemi odrzavanja softvera: ispravljanje gresaka, promena zahteva i dodavanje zahteva. Kako postici?

= Kako odgovoriti na izazove? Unapredenjem koncepata!

SAGA OOP

Sta je to tip podataka, a sta struktura?

Tip podataka je odredjen (konacnim) skupom vrednosti i nekim paketom operacija i relacija nad elementima tog
skupa.
Pr. ({-32768, ...,-1,0, 1, ..., 32767}, +, -, * div, mod, =, <)

Struktura podataka je konglomerat podataka. Ona se formira od drugih (jednostavnijih) struktura i od tipova.
Jedine operacije koje se nad strukturama mogu obavljati su operacije selekcije.
Pr. var a: array [1 .. 100] of real;

(\j\/\,

struktura metod struktuiranja
Metod struktuiranja ima sopstvene operacije selekcije.
Pr. array indeksiranje (al[i]), a record projektovanje (odabir polja
sloga, a.ime) - PASCAL

Pascal:
eksplicitni metodi struktuiranja (array, record, record-case)
implicitni (preko pokazivaca).

SAGA OOP

Zasto je vazno praviti nove tipove?

Za uspesan rad u velikim timovima i na velikim projektima bitno pisati apstraktan kood.
NPR. Za projekat u kome je potrebno raditi nesto sa matricama: napraviti tip MATRIX (struktura MATRIX snabdevena

operacijama za rad sa matricama), pa kada dodje do reSavanja konkretnog problema, samo pozivati gotove (i testirane)
procedure.

Dakle, dizajnirati odgovarajuce strukture podataka, napisati procedure za manipulaciju tim strukturama podataka.

Tako dolazimo do jednog viseg nivoa apstrakcije u programima. U trenutku kada je potrebno primeniti neke operacije na nekim
strukturama, ne interesuje nas *kako* procedure rade, vec *sta* rade.

Upotreba tipa Implementacija

- var a, b: MATRIX; " type MATRIX = array [1..X, 1.. Y] of real; :
beg|n
. NewMatrix(a); NewMatrix(b); - type MATRIX = AMatrixEntry;
ReadMatrix(a); MatrixEntry = record
Transpose(a, b); i, j: integer;
WriteMatrix(b); entry: real;
DisposeMatrix(a); right, down:
DisposeMatrix(b) - MATRIX
: : end;

NIJE BITNA IMPLEMENTACIJA, VEC MANIFESTACIJE (TJ. OSOBINE) OPERACIJA DATOG TIPA PODATAKA.

SAGA OOP

Osnovna ideja OOP-a - Abstract data type - ADT

Struktura podataka — Tip podatka data abstraction
ADT — Apstakcija + Skrivanje podataka information hiding

Apstraktni tip podataka je tip podataka Ciju implementaciju ne znamo (primer: ne znamo da li su matrice
predstavljene sa array ili preko pokazivaca), ali znamo kako se ponasaju operacije nad vrednostima tog tipa,
tako da piSemo program koristeci samo osobine operacija.

Dakle, apstrahovana je jedna dimenzija problema: implementacija tipa (apstrahovati znaci izbaciti iz
posmatranja ono sto u tom trenutku nije bitno).

Za pojam ADT neraskidivo vezan pojam sakrivanja informacije (information hiding). Programeru se da ime tipa i
paket procedura. Implementacija tipa se SAKRIJE da je on ne vidi.

OBJEKT!

UvOD

SLOZENITIPOVI | PRIMERCI

-varm: MATRIX; | x MATRIX — sloeni tip

.r;;.init(9,10); % m - objekat /primerak tipa

podaci = stanje objekta
opisuju stanje
' -

-

= pripadaju objektu
" menjaju stanje objekta
" njima se opisuje tzv. ponasanje objekta

PRIMER — OBJEKTI U REALNOM SVETU

-,
- - -

result oy 7 yesho
Sean as an Object available?
Attributes: \.) takeOrder
send
name = Sean ,f
Sean ok

Methods: Benjamin

takeOrder() { Benjamin as an Object

check with warehouse on stock availability Attributes:

check with warehouse on delivery schedule

if ok

name = Benjamin

address = 1, Robinson Road

then {instruct warehouse to deliver stock(address, date) budget = 2000

return ok} Methods:

else return not ok purchase() {send a purchase request to a salesperson}

¥ getBudget() {return budget}

PRIMER — OBJEKTI U REALNOM SVETU

-,
- - -

result o 7 yesho
Sean as an Object available?
Attributes: \.) takeOrder
send
name = Sean ,f
. . Sean ok
Methods: Benjamin
takeOrder() { Benjamin as an Object
check with warehouse on stock availability Attributes:
check with warehouse on delivery schedule name = Benjamin
if ok address = 1, Robinson Road

then {instruct warehouse to deliver stock(address, date) budget = 2000

return ok} Methods:

else return not ok purchase() {Sean.takeOrder("Benjamin", "sofa", "1,
Robinson Road","12 November")}

getBudget() {return budget}

PRIMER — OBJEKTI U REALNOM SVETU

TN fo T o

takeOrder (sofa tvpe, who,
address, delivery date)

-

Benjamin result Sean

-

™ Onject Object —V"
Figure 1-2: Object interactions in object-oriented programming terms.

Benjamin message Sean

sender - client receiver - server

PRIMER — OBJEKTI U REALNOM SVETU

message =

object + method + arguments

Benjamin as an Object

e method arguments
purchase() { ///’—_——_- _ \<:§\\\““~\=___=:\’

. .\
@n.takeOr'der("Benjamln", "sofa", "1, Robinson Road","12 Nove

v

<« e

}\

C

object message

OBJEKTNO V.S. STRUKTURNO/PROCEDURALNO

UvOD

OO0 VS STRUKTURNO MODELOVANJE

x Strukturno modelovanje

» Modelovanje se vrsi analizom problema i razbija na manje celine;

» Podaci se smestaju u strukture koje Cesto nisu slika realnog sveta.

x Objektno-orijentisano modelovanje

= Modelovanje se vrsi tako sto se razmatra kompletan sistem u kome obavlja posao;
= Uocavaju se ucesnici i aktivnosti koje oni znaju da obavljaju sa dostupnim podacima (sakrivanje podataka);

= Program se formira odredivanjem redosleda kojim se poziva izvrsavanje aktivnosti.

PRIMER: OO VS STRUKTURNO MODELOVANJE

x U jednoj stambenoj zgradi na svakom od m spratova (m<10) ima po n stanova (n<10). Napisati program za pomoc¢ u
radu Kuénog saveta na slededi nacin:

X

Za svaki stan je poznat broj i povrsina stana, ime vlasnika, starost vlasnika i njegov radni status (nezaposlen,
zaposlen, penzioner);

Napisati potprogram koji ucitava podatke o stanovima i njihovim visnicima, od prvog ka poslednjem spratu, i
numerise stanove tako da prva cifra predstavlja sprat na kome se stan nalazi, a druga redni broj stana na
spratu;

Napisati potprogram koji vrac¢a ime predsednika Kuénog saveta, ako se zna da se za predsednika bira najmladi
penzioner u zgradi;

Na sednici Kuénog saveta odluceno je da pet najmladih nezaposlenih stanara obavi krecenje zgrade. Napisati
potprogram koji odreduje stanare koji ¢e ucestvovati u krecenju;

Koris¢enjem napisanih potprograma iz glavnhog programa ucitati podatke o stanovima i njihovim vIasni;ii ~
numerisati stanove, odStampatti ime predsednika Ku¢nog saveta i imena stanara koji u€estvuju u aksiji
krecenja. >

STRUKTURNO MODELOVANIJE

= Uocavaju se aktivnosti koje treba da se izvrse,a potom se na osnovu uocenih aktivnosti formiraju
procedure za izvrsavanje

= Unos, Predsednik, Krecenje stan=record
. L L broj:string;
= Podaci se Cuvaju u strukturi koja cuva potrebne podatke povrsina:integer;

ime:string[6];

godiste:integer;

posao:status;
end;

= U glavhom delu programa treba odrediti redosled pozivanja napisanih procedura

begin
unos(a,m,n);
sortg(a,b,k,m,n);
predsednik(b,k);
krecenje(b,k);
end.

OBJEKTNO-ORIJENTISANO MODELOVANJE

= Uocavaju se objekti koji ucestvuju u resavanju problema u realnom svetu i aktivnosti koje
izvrsava svaki od tih objekata

Kucni savet
sadrzi podatke o stanovima,
od aktivnosti ima ucitavanje podataka,
izbor predsednika odredivanje ucesnika krecenja

Stan
sadrzi podatke o jednom stanu
pruza uvid u te podatke

Stan

-brojStana: String
-povrsina: Double
-imeVlasnika: String
-starostVlasnika: Integer
-radniOdnos: RadniOdnos

+getBrojStana(): String

KucniSavet

-stanovi: Stan[*]

+UcitajPodatkelzFajla(nazivFajla: String)
-SortirajPoGodistuVlasnika(): Stan
+OdrediPredsednika(): String
+OdrediMolere(): String

ZASTO OOP?

public class OOP_primer {

public static void main(String[] args) {

KucniSavet kucniSavet = new KucniSavet();

KucniSavet.UcitajPodatkelzFajla("UlazniPodaci.txt");
System.out.printIn("Predsednik saveta je:" + kucniSavet.OdrediPredsednika());
System.out.printIn("Moleri su:");

String[] moleri = kucniSavet.OdrediMolere();

for (inti = 0;i < moleri.length; i++) {

System.out.println(moleri[i]);

OOPVS. PROCEDURALNO PROGRAMIRANJE

= Standardno, proceduralno programiranje (npr. C):

Program zapocinje izvrSavanjem funkcije main koja izvrSava postavljeni zadatak pozivanjem
drugih funkcija. Program zavrsava kad se izvrSe sve instrukcije funkcije main. Osnovni gradivni
blok programa je, dakle, funkcija. Postavljeni zadatak se resava tako da sto se razbije na
niz manjih zadataka od kojih se svaka moze implementirati u jednoj funkciji, tako da je program
niz funkcijskih poziva.

= U objektno-orijentisanom programiranju

Osnovnu ulogu imaju objekti koji sadrze i podatke i funkcije (metode). Program se
konstruise kao skup objekata koji medusobno komuniciraju. Podaci koje objekat sadrzi

predstavljaju njegovo stanje, dok pomoc¢u metoda on to stanje da moze menja i komunicira sa
drugim objektima.

OOPVS. PROCEDURALNO PROGRAMIRANJE

Centralni koncepti

o code reuse
x Nasledivanje

x U¢aurivanje (information hiding) % lakse uvezivanje postojecih x vade gredke su samo vase
reSenja
% |epa posledica - vase dvoriste ¢e
* laksa nadogradnja biti vidljivo samo u meri u kojoj vi
to budete dopustili, sa komSijom

% |akse lociranje greSaka R
vam je zajednicka samo ograda

jeftinije i jednostavnije

modelovanje je odvojeno od
implementacije

JAVA

ZDRAVO, SVETE!

JAVA

Just Another Vague Acronim - JAVA

1991.

1994.
1995.

1996.
1997.
1999.

2000.
2002.
2004.
2006.

tvorac Jave — James Gosling, Sun Microsystems
Stvorio jednostavan, platformski nezavistan jezik
Namenjen pokretanju elektronskih uredaja (Interaktivna TV,
inteligentne rerne, telefoni,..)

Java se ugraduje u web browser WebRunner

Java se lansira na SunWorld-u,

obavljuje se kod i dokumentacija Jave na Internetu

Sun razvija JDK 1.0

Pojavljuje se JDK 1.1

Pojavljuje se JDK 1.2

Java 2 SDK - Software Development Kit

Pojavljuje se JDK 1.3.

Pojavljuje se JDK 1.4.

Pojavljuje se JDK 1.5.

Sun objavljuje veliki deo Jave kao slobodan i otvoren kod pod GPL licencom

= 2010. Java postaje vlasnistvo Oracle-a

OSNOVNE KARAKTERISTIKE JEZIKA

Objektna orijentacija
= podrZava sve koncepte objektno orijentisanog programiranja
= sintaksa slicna C++, OO model jednostavniji

Prenosivost

= Java programi se prevode u byte kod koji nije masinski jezik nijednog konkretnog racunara, vec se izvrSava na
JVM (Java Virtuelna Masina)

Sigurnost

= JVM pruza zastitu od virusa koji bi se prenosili kroz izvrsni kod
Robusnost

= Stroga provera tipova, proveravani izuzeci, sakupljanje dubreta
Efikasnost

= JIT (Just In Time) prevodioci

KOMPAJLERI | INTERPERTERI

= Program pisan u nekom od visih programskih jezika potrebno je prevesti na masinski jezik, ne bi li bio izvrSen. To
prevodenje vrsi kompajler (compiler) odgovarjuéeg programskog jezika. Nakon Sto je program jednom preveden,
program u masinskom jeziku se moze izvrsiti neogranicen broj puta, ali, naravno, samo na odredenoj vrsti racunara.

= Postoji alternativa. Umesto kompajlera, koji odjednom prevodi Citav program, moguce je koristiti interpreter, koji
prevodi naredbu po naredbu prema potrebi. Interpreter je program koji se ponasa kao CPU s nekom vrstom dobavi-i-
izvrsi ciklusa. Da bi izvrSio program, interpreter radi u petlji u kojoj uzastopno cCita naredbe iz programa, odlucuje Sta
je potrebno za izvrSavanje te naredbe, i onda je izvrSava (oni se mogu koristiti za izvrSavanje masinskog programa
pisanog za jednu vrstu racunara na sasvim razli¢itom racunaru).

JAVA KOMPAJLER | INTERPERTER

= Projektanti Jave su se odlucili za upotrebu kombinacije kompajliranja i interpretiranja. Programi pisani u Javi se

prevode u masinski jezik virtuelnog raCunara, tzv. Java Virtual Machine.

= Masinski jezika za Java Virtual Machine se zove Java bytecode.

= Sve Sto je raCunaru potrebno da bi izvrSio Java bajt kod jeste interpreter. Takav interpreter oponasa Java virtual

machine i izvrSava program.

editor

samo jednom

Java
kompajler

2

svaki put

.

JVM za
Macintosh

JVM za
Windows

JVM za
Linux

HELLO,WORLD!

= // HelloWorld.java
= public class HelloWorld {

n public static void main(String[] args) {
n System.out.println("Hello, World");
L } // kraj main metode

= } // kraj klase HelloWorld

= svaka Java aplikacija mora sadrzati barem jednu klasu s metodom
= main(String[] args)
= pocinje svoje izvrSavanje pozivom metoda main
= ovako napisan program se prevodi izvrsavajuci
= javac HelloWorld.java
= Ako nema greSaka prevodilac javac kreira datoteku HelloWorld.class koja sadrzZi bytecode instrukcije za JVM.
= A pokrece se pozivom JVM uz prosledjivanje bajtkoda

= java HelloWorld

