KLASE | OBJEKTI

2016/17

PRIRODNO-MATEMATICKI FAKULTET, UNIVERZITET U KRAGUJEVCU




Klasa je tip, objekat primerak tipa.

= Klasom se opisuju objekti sa istim

= karakteristikama (podaci clanovi)

= ponasanjem (funkcionalnostima — metode)
= Podaci ¢lanovi (atributi)

= svaki objekat ima sopstvene vrednosti podataka ¢lanova

= trenutne vrednosti podataka objekta cine trenutno stanje objekta
= Funkcije clanice (metodi)

= pjima su definisana ponasanja objekta

= poziv metoda jednog objekta — slanje poruke

= obrada zahteva tj. odgovaranje na poruku



DEFINISANJE KLASE

<modifikator> class <className> {

<modifikator> <tip> <imepromenljivel>;

<modifikator> <tip> <imepromenljive2>; podaci clanovi

<modifikator> <povratni tip> <imemetodal> (<tip> <argl>,...) {

... //implementacija metoda 1
} \

<modifikator> <povratni tip> <imemetoda%>\ydjp> argl>,...) {

... //implementacija metoda 2

funkcije clanice
} // kraj definicije klase - metodi




ZADATAK

Definisati klasu Robot (bez modifikatora) na sledeci nacin

Robot - bez modifikatora

rbr - tipa integer, bez modifikatora

setrbr(int br) - metod koji postavlja vrednost promenljive rbr
sayHello() - metod koji ispisuje poruku
Hello, I am robot no.

Definisati aplikaciju UseRobot (preciznije public klasu UseRobot) koja u svom main metodu:
= kreira objekat klase Robot,
= postavlja vrednost rbr na I,
= Salje poruku kreiranom objektu da se javi (sayHello).



REFERENCE | OBJEKTI

DEFINISANJEVARIJABLE PRIMITIVNOG TIPA KREIRANJE OBJEKTA | REFERENCNE VARIJABLE

int i = 2; Light 1t = new Light();

i 1t
i i i i ad resa i
Primitive variable name Reference variable name

= |t - referenca na objekat. a3
Light

o)

Interface Eﬂ':(]h
1t.on(); - slanje poruke objektu 1t rightent)
. ’ 1P ] dimi)

Light 1t; // kreirana je samo referenca Type Name

Light 1t = new Light(); // kreiran je i objekat




OBJECT VARIABLES - REFERENCE

class Tackaq

double x;
double vy;
public double getX() int x; // X je varijabla primitivnog tipa
{ Tacka A; // A je objektna varijabla (neinicijalizovana)
return Xx;
} Tacka B = new Tacka(); // B je objektna varijabla (inicializovana)

public double getY()
{ return y;
}

} ]

Tacka(0,0)

double z

A.getX(); // greska, objekat ne postoji

double w = B.getX(); // OK



OBJECT VARIABLES - REFERENCE

A = new Tacka(); A.x = 12; A.y = 3;

Tacka(12,3)

Tacka(0,0)

[
»
[
»

A = B; - ne kreira se novi objekat vec
A postaje referenca na vec
postojeci objekat

Tacka(12,3)

Tacka(0,0)



METODI

2016/17

PRIRODNO-MATEMATICKI FAKULTET, UNIVERZITET U KRAGUJEVCU




METODI

= Povratni tip i ime metoda su obavezni, kao i ()
<modifikator> <povratni tip> <ime metoda> (<argumenti>) {
// Telo metoda.

}

= Metodi se definiSu samo kao deo klase. Pozivi pogresnih metoda za neki objekat se registruju pri
kompajliranju.

int x = a.f(); // a je objekat odgovarajuce klase
= Vracanje sa bilo koje tacke, ali sa odgovarajuc¢im tipom.
float naturallLogBase() { return 2.718f; }

void nothing() { return; }
skup metoda - interface
Poseban tretman imaju static metodi.



OVERLOADNIG — PREOPTERECIVANJE METODA

OVERLOADING

= U jednoj klasi (ili pri nasledivanju) se moze definisati vise metoda sa istim imenom, ali razlicitim
potpisom.

= [stoimeni metodi se moraju razlikovati po broju ili bar po tipu argumenata.

= Dozvoljeno je i da vracaju razlicite tipove (ali pod uslovom da se razlikuju po argumentima).



OVERLOADNIG - PRIMER

Class Broj
{
int vrednost = 10;
int uvecaj(int i) { return vrednost +i;} // 1
double uvecaj(double i) { return vrednost +i; } // 2
double uvecaj(float i, float j) { return vrednost +i + j;} // 3

Upotreba

Broj b = new Broj();
b.uvecaj(1); // 1
b.uvecaj(1.0); // 2
b.uvecaj(1,1); // 3
b.uvecaj(1.0, 2.0); // 7?77



KONSTRUKTORI

Konstruktor je specijalan vrsta metoda koji se koristi iskljucivo pri konstrukciji objekata.

Tacka B = new Poziv konstruktora

= Karakteristike
= ima isto ime kao i klasa
= poziva se iskljucivo pri instanciranju objekata (dakle, operatorom new),
= nema povratne vrednosti

= Klasa moze imati vise konstruktora (overloading)

= Konstruktor bez parametara je default konstruktor i on postoji kada klasa nema posebno

implementiran (naveden) ni jedan konstuktor, u suprotnom nece postojati.



KONSTRUKTORI

class Tacka{
private double x;
private double y;
public Tacka() { x=0.0; y=0.0; }
public Tacka(double a, double b) { x=a; y=b; } —
public double getX() { return x; }
public double getY() { return y; }

}
public class Test {

v

public static void main(String[] args){

Tacka a = new Tacka();

Tacka b = new Tacka(1,1);

System.out.println(“A(” + a.getX() + “,” + a.getY() + “)\n”);

System.out.println(“B(” + b.getX() + “,” + b.getY() + “)\n”);
}




AUTOMATSKE PROMENLJIVE INCIJALIZACIJA | OBLAST VAZENJA

= [ncijalizacija automatskih promenljivih je obavezna, tj. forsirana od strane kompajlera.
= Oblast vazenja (scope) podrazumeva vidljivost i Zivotni vek ‘imena’ i Java je definise slicno C-u i C++-u

{ int x = 12;
/* samo je x dostupno*/
{ int g = 96;
/* x 1 q su dostupni */

}

/* samo x je dostupno a q ‘ne postoji’ */
}

= Za razliku od C-a u Javi nije dozvoljeno sledece

{ int x = 12;
{

int x = 96; /* nepravilno */

}



AUTOMATSKE PROMENLJIVE INCIJALIZACIJA | OBLAST VAZENJA

= Zivotni vek objekata nije isti Zivotnom veku primitivnih tipova. Nakon kreiranja objekat postoji i posle
1, jer je iz oblasti vazenja ‘izasla‘ samo referenca

Tacka s = new Tacka();

= Kada objekat vise nije potreban, tj. nije referenciran ni jednom referencom onda biva automatski
osloboden garbage collector-om.



