
KLASE I OBJEKTI

2016/17

PRIRODNO-MATEMATIČKI FAKULTET, UNIVERZITET U KRAGUJEVCU

KLASA

Klasa je tip, objekat primerak tipa.

▪ Klasom se opisuju objekti sa istim

▪ karakteristikama (podaci članovi)

▪ ponašanjem (funkcionalnostima – metode)

▪ Podaci članovi (atributi)

▪ svaki objekat ima sopstvene vrednosti podataka članova

▪ trenutne vrednosti podataka objekta čine trenutno stanje objekta

▪ Funkcije članice (metodi)

▪ njima su definisana ponašanja objekta

▪ poziv metoda jednog objekta – slanje poruke

▪ obrada zahteva tj. odgovaranje na poruku

DEFINISANJE KLASE

<modifikator> class <className> {

<modifikator> <tip> <imepromenljive1>;

<modifikator> <tip> <imepromenljive2>;

...

<modifikator> <povratni tip> <imemetoda1> (<tip> <arg1>,...) {

... //implementacija metoda 1

}

<modifikator> <povratni tip> <imemetoda2> (<tip> <arg1>,...) {

... //implementacija metoda 2

}

...

} // kraj definicije klase

podaci članovi

funkcije članice
- metodi

ZADATAK

Definisati klasu Robot (bez modifikatora) na sledeći način

Robot – bez modifikatora

rbr – tipa integer, bez modifikatora

setrbr(int br) – metod koji postavlja vrednost promenljive rbr

sayHello() – metod koji ispisuje poruku
Hello, I am robot no. ___

Definisati aplikaciju UseRobot (preciznije public klasu UseRobot) koja u svom main metodu:

▪ kreira objekat klase Robot,

▪ postavlja vrednost rbr na 1,

▪ šalje poruku kreiranom objektu da se javi (sayHello).

REFERENCE I OBJEKTI

 lt - referenca na objekat.

Light lt; // kreirana je samo referenca

Light lt = new Light(); // kreiran je i objekat

lt.on(); - slanje poruke objektu lt

2

int i = 2;

adresa

Light lt = new Light();

i
Primitive variable name

lt
Reference variable name

DEFINISANJE VARIJABLE PRIMITIVNOG TIPA KREIRANJE OBJEKTA I REFERENCNE VARIJABLE

OBJECT VARIABLES - REFERENCE

int x; // x je varijabla primitivnog tipa

Tacka A; // A je objektna varijabla (neinicijalizovana)

Tacka B = new Tacka(); // B je objektna varijabla (inicializovana)

A

B Tacka(0,0)

double z = A.getX(); // greska, objekat ne postoji

double w = B.getX(); // OK

class Tacka{
double x;
double y;
public double getX()
{
return x;
}
public double getY()
{ return y;
}

}

OBJECT VARIABLES - REFERENCE

A = new Tacka(); A.x = 12; A.y = 3;

A

B Tacka(0,0)

Tacka(12,3)

A

B Tacka(0,0)

Tacka(12,3)

A = B; - ne kreira se novi objekat vec
A postaje referenca na vec
postojeci objekat

METODI

2016/17

PRIRODNO-MATEMATIČKI FAKULTET, UNIVERZITET U KRAGUJEVCU

METODI

 Povratni tip i ime metoda su obavezni, kao i ()

<modifikator> <povratni tip> <ime metoda> (<argumenti>) {

// Telo metoda.

}

 Metodi se definišu samo kao deo klase. Pozivi pogrešnih metoda za neki objekat se registruju pri

kompajliranju.

int x = a.f(); // a je objekat odgovarajuce klase

 Vraćanje sa bilo koje tačke, ali sa odgovarajućim tipom.

float naturalLogBase() { return 2.718f; }

void nothing() { return; }

skup metoda - interface

Poseban tretman imaju static metodi.

OVERLOADNIG – PREOPTEREĆIVANJE METODA

OVERLOADING

 U jednoj klasi (ili pri nasleđivanju) se može definisati više metoda sa istim imenom, ali različitim

potpisom.

 Istoimeni metodi se moraju razlikovati po broju ili bar po tipu argumenata.

 Dozvoljeno je i da vraćaju različite tipove (ali pod uslovom da se razlikuju po argumentima).

OVERLOADNIG – PRIMER

Class Broj

{

int vrednost = 10;

int uvecaj(int i) { return vrednost + i; } // 1

double uvecaj(double i) { return vrednost + i; } // 2

double uvecaj(float i, float j) { return vrednost + i + j;} // 3

}

Upotreba

Broj b = new Broj();

b.uvecaj(1); // 1

b.uvecaj(1.0); // 2

b.uvecaj(1,1); // 3

b.uvecaj(1.0, 2.0); // ???

KONSTRUKTORI

 Konstruktor je specijalan vrsta metoda koji se koristi isključivo pri konstrukciji objekata.

Tacka B = new Tacka();

 Karakteristike

 ima isto ime kao i klasa

 poziva se isključivo pri instanciranju objekata (dakle, operatorom new),

 nema povratne vrednosti

 Klasa može imati više konstruktora (overloading)

 Konstruktor bez parametara je default konstruktor i on postoji kada klasa nema posebno

implementiran (naveden) ni jedan konstuktor, u suprotnom neće postojati.

Poziv konstruktora

KONSTRUKTORI

class Tacka{

private double x;

private double y;

public Tacka() { x=0.0; y=0.0; }

public Tacka(double a, double b) { x=a; y=b; }

public double getX() { return x; }

public double getY() { return y; }

}

public class Test {

public static void main(String[] args){

Tacka a = new Tacka();

Tacka b = new Tacka(1,1);

System.out.println(“A(” + a.getX() + “,” + a.getY() + “)\n”);

System.out.println(“B(” + b.getX() + “,” + b.getY() + “)\n”);

}

}

konstruktori

AUTOMATSKE PROMENLJIVE INCIJALIZACIJA I OBLAST VAŽENJA

 Incijalizacija automatskih promenljivih je obavezna, tj. forsirana od strane kompajlera.

 Oblast važenja (scope) podrazumeva vidljivost i životni vek ‘imena’ i Java je definiše slično C-u i C++-u

{ int x = 12;

/* samo je x dostupno*/

{ int q = 96;

/* x i q su dostupni */

}

/* samo x je dostupno a q ‘ne postoji’ */

}

 Za razliku od C-a u Javi nije dozvoljeno sledeće

{ int x = 12;

{

int x = 96; /* nepravilno */

}

}

AUTOMATSKE PROMENLJIVE INCIJALIZACIJA I OBLAST VAŽENJA

 Životni vek objekata nije isti životnom veku primitivnih tipova. Nakon kreiranja objekat postoji i posle

}, jer je iz oblasti važenja ‘izašla‘ samo referenca

{

Tacka s = new Tacka();

}

 Kada objekat više nije potreban, tj. nije referenciran ni jednom referencom onda biva automatski

oslobođen garbage collector-om.

