PAKETI | STANDARDNE JAVINE BIBLIOTEKE

2016/17

PRIRODNO-MATEMATICKI FAKULTET, UNIVERZITET U KRAGUJEVCU

PAKETI

= Paket je kolekcija srodnih tiopova (klasa i interfejsa)

srodnost je funkcionalnog karaktera (npr.java.sql sadrzi APl za pristup i procesiranje podataka smestenih u nekom
izvoru, tipa relacione baze, upotrebom Java programskog jezika)

» Razlozi za koriscenje paketa:
* naznacavanje srodnosti odredenih tipova
= olaksavanje pronalazenja Zeljenog tipa (fokusiranjem na samo jedan paket)
= otklanjanje potencijalnih duplikata u nazivima (jedinstveni prostor imena)
= kontrolisanje pristupa (klase u okviru istog paketa mogu da imaju neogranicen pristup jedna drugoj, a spoljne ne)

= Svaka klasa pisana u Javi je deo nekog paketa.

U primerima koje smo do sada radili nismo navodili kom paketu pripadaju klase, jer su pripadale podrazumevano
uklju¢enom paketu java.lang, npr.String i Math imaju puna imena java.lang.String i java.lang.Math.

DEKLARACIJA PRIPADNOSTI PAKETU

Navodenje imena paketa kome klasa pripada
package geometry;
public class Sphere {
// Details of the class definition

}
package mora biti prva naredba u fajlu (ne racunajuci prazne linije i komentare).

U fajlu moze postojati samo jedna deklaracija paketa.

Jedan tip moze pripadati samo jednom paketu.

Unutar jednog paketa ime tipa je jedinstveno, npr. u paketu geometry pomenutog u primeru, moze postojati samo
jedna klasa sa imenom Sphere.

Ime paketa moze biti slozeno, npr.
geometry.shapes3D
sadrzaj ovog paketa ne mora da ima veze sa sadrzajem paketa
geometry
koji se nezavisno definiSe i njegovo postojanje ne uslovljava postojanje paketa geometry.shapes3D.

UPOTREBA PAKETA

= Dva nacina upotreba tipova definisanih u nekom paketu:
= Navodenjem punog imena tipa: <ime paketa>.<ime tipa>
public class Ball {
geometry.Sphere b = new geometry.Sphere();

}
= lzvrsiti uvoz tipa ili svih tipova paketa
import geometry.Sphere; // ili import geometry.*;
public class Ball {
Sphere b = new Sphere();

}
= Paket java.lang se implicitno uvozi.Navodenje imena paketa kome klasa pripada

KONFLIKTI IMENA TIPOVA

= Mehanizam paketa i uvozenja daje kontrolu nad potencijalnim konfliktima imena tipova. Do konflikta imena tipova
dolazi u slucaju da je u nekom trenutnku u istoj klasi potrebno koristiti dva tipa koji imaju ista imena i pripadaju
razlicitim paketima.
= Ako su u dva tipa pod istim imenom deklarisana u razlicitim paketima,
npr.
package geometry.shapes3D;
public class Sphere { // class definition }

package seometry.shapes2D;
public class Sphere { // class definition }

pri njihovoj upotrebi u istom tipu potrebno je naglasiti razliku, ali svakako konflikt imena je prebacen na nivo imena
paketa.

STRUKTURA DIREKTORIJUMA

Struktura direktorijuma u koju su ‘Clanovi’ paketa smesteni mora da isprati strukturu direktorijuma.

package Geometry.Shapes3D;
public class Sphere {...}

Package Geometry.Shapes2D package Geometry.Shapes2D;

Packages Geometry.Shapes3D public class Sphere {...}

——
rﬁ'"‘.l:"l .I-H -

File Edit View |Favorites Tools Help »r

Qs - © |3 ﬁm|@;mm”v
addess |2 Ci\GeometrylshageD v B e torton aativies B -

Folders X MName - ' Size | Type
EDe I Eﬁq:hu!.jaﬂ 1KE JavaLanguage Source file

= Kompajleriinterpreter intenzivno koriste informacije o razmestaju datoteka (preuzeto sa slajdova prof. dr V.
DevedZica)
= kompajler mora da zna gde da nade import-ovane klase
= interpreter mora da zna gde da nade neku klasu i njene metode

= Kompaijleru su potrebne informacije o svakom tipu koji se koristi.
Ovde se podrazumevaju i tipovi koji se ne pominju eksplicitno, ali se nalaze u hijerarhiji tipa koji se koristi (npr.
Predstavljaju indirektnu nadklasu klase koju deiniSemo).
= U trenutku kada naide na naziv tipa Ciju definiciju nema u tekué¢em fajlu, kompajler trazi izvorni ili bajt kod (dovoljno
mu je da jednbo pronade) u kome je definisan tip i to prvo trzi u:
= Tekuéem direktorijumu, pa u
= |ib direktorijumu Java Runtime Enviroment-a, a zatim u
= u tzv. user class path-u, tj. korisnicki definisanim putanjama do korisnickih klasa; korisnicki class path moze biti
procitan na dva nacina:
= u CLASSPATH envoronment varijabli
= direktno iz opcija pri kompajliranju
javac -classpath “C:\moji paketi” Line.java

U POTRAZI ZA TIPOVIMA

= Pri potrazi za definicijom tipa javac moze pronadi:
= class fajl, ali ne i izvorni (java) fajl: tada kompajler direktno koristi bajkod koji je pronasao
= jzvorni, ali ne i class fajl: tada kompajler kompajlira pronadeni izvorni fajl i koristi tako dobijeni bajt kod

= nalaziiizvornii class fajl: tada kompajler prvo utvrduje da li je class fajl out of date (zastareo). Ako je class fajl stariji
od izvornog koda, tada izvorni kod biva kompaijliran i class fajl zamenjen novim. U suprotnom, kompajler koristi
postojedi bajt kod.

U POTRAZI ZA TIPOVIMA

= Pokretanje pri upotrebi korisnicki defnisanih paketa je takode drugacije:
java -classpath “.;C:\mojipaketi” TryPackage
= Cesta greska:
java -classpath “C:\mojipaketi” TryPackage
Exception in thread "main" java.lang.NoClassDefFoundError: TryPackage

Caused by: java.lang.ClassNotFoundException: TryPackage

FAJLOVI

= .jar —java archive
= Jar arhive sadrze kompresovane class fajlove sa kompletno sacuvanom direktorijumskom strukturom i obezbeduju
jednostavnost u prenosu i upotrebi veceg broja korisnicki definisanih paketa

= Kreiranje jedne .jar arhive:
C:\Beg Java Stuff>jar cvf Geometry.jar Geometry*.class

o jar [options] [manifest] destination input-file [input-files]

options
o c - Creates a new or empty archive on the standard output.
ot - Lists the table of contents from standard output.
o x file - Extracts all files, or just the named files, from standard input.
n f - The second argument specifies a jar file to process.
o Vv - Generates verbose output on stderr.
o u - update an existing JAR file by adding files. For example,
jar uf foo.jar foo.class

FAJLOVI

= Ekstenzije su jar fajlovi smesteni u ext direktorijum kreiran pri instalaciji JRE-a.
= Qvaj direktorijum je standardno uvrsten u listu direktorijuma za pretragu pri pronalazenju class fajlova od strane

javinih komajlera i interpretera.
Contains rt.jar archive containing
B

Contains executables
& DLLs for use by
tools & libraries.

Contains compiler,
interpreter, tools,
etc.

ext

The ext directory is for storing .jar files containing
extensions to the standard packages.
You can put your own .jar archives in here and

SDK Directory Structure they will be found automatically.

MODIFIKATORIVIDLJIVOSTI

2016/17

PRIRODNO-MATEMATICKI FAKULTET, UNIVERZITET U KRAGUJEVCU

UCAURIVANJE ENKAPSULACIJA

Ucaurivanje predstavlja mehanizam sakrivanja informacija.
Zasto?
Class creators vs. client programmer

zaStita podataka i metoda

Ucaurivanje se izvodi upotrebom modifikatora vidljivosti/pristupa

Modifikatorima pristupa (vidljivosti) se odreduje opseg dostupnosti elemenata koda (polja, metoda, tipova). Svaki
element ima definisanu vidljivost, implicitno ili eksplicitno definisanu.

Modifikatori pristupa se mogu primeniti na:
= Tipove
= Elemente tipova — polja i metodi

ne mogu na varijble definisane unutar metoda.

NASLEDIVANJE - REVIDIRANO

= Objekat podklase uvek sadrzi kompletan objekat superklase klase, ali to ne znaci da su svi ¢lanovi superklase dostupni
metodama koje su specificne samo za podbklasu!

= pasledivanje: ukljucivanje ¢lanova bazne klase u izvedenu klasu na nacin da su dostupni (accessible) u izvedenoj klasi

= nasledeni ¢lan bazne klase je onaj koji je dostupan u izvedenoj klasi

VRSTE MODIFIKATORAVIDLJIVOSTI

vidljivost Dostupno (vidljivo)

Tip
klasi | podklasi | paketu | bilo kome

Private X
protected X X X
public X X* X X
Nothig(default)

Package X X

Friendly

VIDLJIVOST CLANOVA

public Class1
Class2 SubClass1
MO int a; No
oK » public int b; = OK
No protected int c; = OK
MO private int e; No

Package3 Packagel Package2

DOSTUPNOST NASLEDENIH CLANOVA

SubClass2 public MyClass SubClass1
N £ int a; — inherited 4+— int a;
public int b; - inherited public int b; — inherited 4— public int b;
protected int c; = inherited protected int ¢; —— Inherited +—— protected int c;
No £ private int e; —— No

Package2 Packagel

PRIVATE

class Alpha {
private int iamprivate;
private void privateMethod() {
System.out.println("privateMethod");

}
}

class Beta {
void accessMethod() {
Alpha a = new Alpha();

a.iamprivate = 10; // 1illegal
a.privateMethod(); // illegal
}
}
Beta.java:9: Variable iamprivate in class Alpha not accessible from class Beta.
a.lamprivate = 10; // illegal
1 error
Beta.java:12: No method matching privateMethod() found in class Alpha.
a.privateMethod(); // illegal

1 error

PRIVATE

class Alpha {
private int iamprivate;
boolean isEqualTo(Alpha anotherAlpha) {
if (this.iamprivate==anotherAlpha.iamprivate) //legal
return true;
else
return false;

PROTECTED

package Greek;

public class Alpha {
protected int iamprotected;
protected void protectedMethod() {

System.out.println("protectedMethod"); ,
} package Latin;

} import Greek.*;
public class Delta extends Alpha {
void accessMethod(Alpha a, Gamma g) {
iamprotected = 10; // legal

package Greek; ')
a.lamprotected = 10; // illegal

public class Gamma {

void accessMethod(Alpha a) { protectedMethod(); // legal
a.iamprotected = 10; // legal a.protectedMethod(); // illegal
a.protectedMethod(); // legal) t

}

PUBLIC

package Greek;
public class Alpha {
public int iampublic;
public void publicMethod() {
System.out.println("publicMethod");

}
}

package Roman;
import Greek.*;
class Beta {
void accessMethod() {
Alpha a = new Alpha();
a.iampublic = 10; // legal
a.publicMethod(); // legal

DEFAULT - PACKAGE

package Greek; package Greek;
public class Alpha { class Gama {
public int iampublic; void accessMethod() {
public void publicMethod() { Alpha a = new Alpha();
System.out.println("publicMethod"); a.lampackage = 10; // legal
} a.packageMethod(); // legal
} }
package Roman; }

import Greek.*;
class Beta {
void accessMethod() {
Alpha a = new Alpha();
a.iampublic = 10; // illegal
a.publicMethod(); // illegal

ODABIRVIDLJIVOSTI ATRIBUTA BAZNE KLASE

Metode koje sacinjavaju alat za komunikaciju sa spoljasnjim svetom/klasama se definisu kao public.
Podaci ¢lanovi ne treba da budu public osim konstanti namenjenih za opstu upotrebu.

Ako ocekujete da ¢e drugi ljudi koristiti vase klase za izvodenje sopstvenih tada podatke ¢lanove definiSite kao
private, ali obezbedite public get-ere i set-ere.

Koristite protected kada zelite neometan pristup od strane klasa u istom paketu, a za klase iz drugih paketa
dozvoljen samo ako su podklase.

Izostavljanje modifikatora pristupa omogudava vidljivost ¢lana klase u svim klasama paketa, dok je za klase van paketa
to isto kao i upotreba private atributa.

