
PAKETI I STANDARDNE JAVINE BIBLIOTEKE

2016/17

PRIRODNO-MATEMATIČKI FAKULTET, UNIVERZITET U KRAGUJEVCU

PAKETI

▪ Paket je kolekcija srodnih tiopova (klasa i interfejsa)

srodnost je funkcionalnog karaktera (npr. java.sql sadrži API za pristup i procesiranje podataka smeštenih u nekom

izvoru, tipa relacione baze, upotrebom Java programskog jezika)

▪ Razlozi za korišćenje paketa:

▪ naznačavanje srodnosti određenih tipova

▪ olakšavanje pronalaženja željenog tipa (fokusiranjem na samo jedan paket)

▪ otklanjanje potencijalnih duplikata u nazivima (jedinstveni prostor imena)

▪ kontrolisanje pristupa (klase u okviru istog paketa mogu da imaju neograničen pristup jedna drugoj, a spoljne ne)

▪ Svaka klasa pisana u Javi je deo nekog paketa.

U primerima koje smo do sada radili nismo navodili kom paketu pripadaju klase, jer su pripadale podrazumevano

uključenom paketu java.lang, npr. String i Math imaju puna imena java.lang.String i java.lang.Math.

DEKLARACIJA PRIPADNOSTI PAKETU

▪ Navođenje imena paketa kome klasa pripada
package geometry;
public class Sphere {
// Details of the class definition
}

▪ package mora biti prva naredba u fajlu (ne računajući prazne linije i komentare).
▪ U fajlu može postojati samo jedna deklaracija paketa.

▪ Jedan tip može pripadati samo jednom paketu.

▪ Unutar jednog paketa ime tipa je jedinstveno, npr. u paketu geometry pomenutog u primeru, može postojati samo

jedna klasa sa imenom Sphere.

▪ Ime paketa može biti složeno, npr.
geometry.shapes3D

sadržaj ovog paketa ne mora da ima veze sa sadržajem paketa
geometry

koji se nezavisno definiše i njegovo postojanje ne uslovljava postojanje paketa geometry.shapes3D.

UPOTREBA PAKETA

▪ Dva načina upotreba tipova definisanih u nekom paketu:
▪ Navođenjem punog imena tipa: <ime paketa>.<ime tipa>

public class Ball {
geometry.Sphere b = new geometry.Sphere();
...

}
▪ Izvršiti uvoz tipa ili svih tipova paketa

import geometry.Sphere; // ili import geometry.*;
public class Ball {
Sphere b = new Sphere();
...

}

▪ Paket java.lang se implicitno uvozi.Navođenje imena paketa kome klasa pripada

KONFLIKTI IMENA TIPOVA

▪ Mehanizam paketa i uvoženja daje kontrolu nad potencijalnim konfliktima imena tipova. Do konflikta imena tipova

dolazi u slučaju da je u nekom trenutnku u istoj klasi potrebno koristiti dva tipa koji imaju ista imena i pripadaju

različitim paketima.

▪ Ako su u dva tipa pod istim imenom deklarisana u različitim paketima,

npr.
package geometry.shapes3D;

public class Sphere { // class definition }

package seometry.shapes2D;
public class Sphere { // class definition }

pri njihovoj upotrebi u istom tipu potrebno je naglasiti razliku, ali svakako konflikt imena je prebačen na nivo imena

paketa.

STRUKTURA DIREKTORIJUMA

Struktura direktorijuma u koju su ‘članovi’ paketa smešteni mora da isprati strukturu direktorijuma.

package Geometry.Shapes2D;
public class Sphere {...}

package Geometry.Shapes3D;
public class Sphere {...}

POTRAGA ZA DEFINICIJOM TIPA

▪ Kompajler i interpreter intenzivno koriste informacije o razmeštaju datoteka (preuzeto sa slajdova prof. dr V.
Devedžića)
▪ kompajler mora da zna gde da nađe import-ovane klase
▪ interpreter mora da zna gde da nađe neku klasu i njene metode

▪ Kompajleru su potrebne informacije o svakom tipu koji se koristi.
Ovde se podrazumevaju i tipovi koji se ne pominju eksplicitno, ali se nalaze u hijerarhiji tipa koji se koristi (npr.
Predstavljaju indirektnu nadklasu klase koju deinišemo).

▪ U trenutku kada naiđe na naziv tipa čiju definiciju nema u tekućem fajlu, kompajler traži izvorni ili bajt kod (dovoljno
mu je da jednbo pronađe) u kome je definisan tip i to prvo trži u:

▪ Tekućem direktorijumu, pa u
▪ lib direktorijumu Java Runtime Enviroment-a, a zatim u
▪ u tzv. user class path-u, tj. korisnički definisanim putanjama do korisničkih klasa; korisnički class path može biti

pročitan na dva načina:
▪ u CLASSPATH envoronment varijabli
▪ direktno iz opcija pri kompajliranju

javac -classpath “C:\moji paketi” Line.java

javac U POTRAZI ZA TIPOVIMA

▪ Pri potrazi za definicijom tipa javac može pronaći:

▪ class fajl, ali ne i izvorni (java) fajl: tada kompajler direktno koristi bajkod koji je pronašao

▪ izvorni, ali ne i class fajl: tada kompajler kompajlira pronađeni izvorni fajl i koristi tako dobijeni bajt kod

▪ nalazi i izvorni i class fajl: tada kompajler prvo utvrđuje da li je class fajl out of date (zastareo). Ako je class fajl stariji
od izvornog koda, tada izvorni kod biva kompajliran i class fajl zamenjen novim. U suprotnom, kompajler koristi
postojeći bajt kod.

java U POTRAZI ZA TIPOVIMA

▪ Pokretanje pri upotrebi korisnički defnisanih paketa je takođe drugačije:

java –classpath “.;C:\mojipaketi” TryPackage

▪ Česta greška:

java –classpath “C:\mojipaketi” TryPackage

Exception in thread "main" java.lang.NoClassDefFoundError: TryPackage

Caused by: java.lang.ClassNotFoundException: TryPackage

…

jar FAJLOVI

▪ .jar – java archive
▪ Jar arhive sadrže kompresovane class fajlove sa kompletno sačuvanom direktorijumskom strukturom i obezbeđuju

jednostavnost u prenosu i upotrebi većeg broja korisnički definisanih paketa
▪ Kreiranje jedne .jar arhive:

C:\Beg Java Stuff>jar cvf Geometry.jar Geometry*.class

◘ jar [options] [manifest] destination input-file [input-files]

options
◘ c - Creates a new or empty archive on the standard output.

◘ t - Lists the table of contents from standard output.

◘ x file - Extracts all files, or just the named files, from standard input.

◘ f - The second argument specifies a jar file to process.

◘ v - Generates verbose output on stderr.

◘ u - update an existing JAR file by adding files. For example,

jar uf foo.jar foo.class

jar FAJLOVI

▪ Ekstenzije su jar fajlovi smešteni u ext direktorijum kreiran pri instalaciji JRE-a.
▪ Ovaj direktorijum je standardno uvršten u listu direktorijuma za pretragu pri pronalaženju class fajlova od strane

javinih komajlera i interpretera.

MODIFIKATORI VIDLJIVOSTI

2016/17

PRIRODNO-MATEMATIČKI FAKULTET, UNIVERZITET U KRAGUJEVCU

UČAURIVANJE ENKAPSULACIJA

▪ Učaurivanje predstavlja mehanizam sakrivanja informacija.

▪ Zašto?

Class creators vs. client programmer

zaštita podataka i metoda

▪ Učaurivanje se izvodi upotrebom modifikatora vidljivosti/pristupa

▪ Modifikatorima pristupa (vidljivosti) se određuje opseg dostupnosti elemenata koda (polja, metoda, tipova). Svaki
element ima definisanu vidljivost, implicitno ili eksplicitno definisanu.

▪ Modifikatori pristupa se mogu primeniti na:

▪ Tipove

▪ Elemente tipova – polja i metodi

ne mogu na varijble definisane unutar metoda.

NASLEĐIVANJE - REVIDIRANO

▪ Objekat podklase uvek sadrži kompletan objekat superklase klase, ali to ne znači da su svi članovi superklase dostupni
metodama koje su specifične samo za podbklasu!

▪ nasleđivanje: uključivanje članova bazne klase u izvedenu klasu na način da su dostupni (accessible) u izvedenoj klasi

▪ nasleđeni član bazne klase je onaj koji je dostupan u izvedenoj klasi

VRSTE MODIFIKATORA VIDLJIVOSTI

vidljivost
Tip

Dostupno (vidljivo)

klasi podklasi paketu bilo kome

Private X

protected X X X

public X X* X X

Nothig(default)
Package
Friendly

X X

VIDLJIVOST ČLANOVA

DOSTUPNOST NASLEĐENIH ČLANOVA

PRIVATE

class Alpha {
private int iamprivate;
private void privateMethod() {

System.out.println("privateMethod");
}

}
class Beta {

void accessMethod() {
Alpha a = new Alpha();
a.iamprivate = 10; // illegal
a.privateMethod(); // illegal

}
}
Beta.java:9: Variable iamprivate in class Alpha not accessible from class Beta.

a.iamprivate = 10; // illegal
^

1 error
Beta.java:12: No method matching privateMethod() found in class Alpha.

a.privateMethod(); // illegal
1 error

PRIVATE

class Alpha {
private int iamprivate;
boolean isEqualTo(Alpha anotherAlpha) {
if (this.iamprivate==anotherAlpha.iamprivate) //legal

return true;
else

return false;
}

}

PROTECTED

package Greek;
public class Alpha {

protected int iamprotected;
protected void protectedMethod() {

System.out.println("protectedMethod");
}

}

package Greek;
public class Gamma {

void accessMethod(Alpha a) {
a.iamprotected = 10; // legal
a.protectedMethod(); // legal

}
}

package Latin;
import Greek.*;
public class Delta extends Alpha {

void accessMethod(Alpha a, Gamma g) {
iamprotected = 10; // legal
a.iamprotected = 10; // illegal
protectedMethod(); // legal
a.protectedMethod(); // illegal

}
}

PUBLIC

package Greek;
public class Alpha {

public int iampublic;
public void publicMethod() {

System.out.println("publicMethod");
}

}
package Roman;
import Greek.*;
class Beta {

void accessMethod() {
Alpha a = new Alpha();
a.iampublic = 10; // legal
a.publicMethod(); // legal

}
}

DEFAULT - PACKAGE

package Greek;
public class Alpha {

public int iampublic;
public void publicMethod() {

System.out.println("publicMethod");
}

}
package Roman;
import Greek.*;
class Beta {

void accessMethod() {
Alpha a = new Alpha();
a.iampublic = 10; // illegal
a.publicMethod(); // illegal

}
}

package Greek;
class Gama {

void accessMethod() {
Alpha a = new Alpha();
a.iampackage = 10; // legal
a.packageMethod(); // legal

}
}

ODABIRVIDLJIVOSTI ATRIBUTA BAZNE KLASE

▪ Metode koje sačinjavaju alat za komunikaciju sa spoljašnjim svetom/klasama se definišu kao public.

▪ Podaci članovi ne treba da budu public osim konstanti namenjenih za opštu upotrebu.

▪ Ako očekujete da će drugi ljudi koristiti vaše klase za izvođenje sopstvenih tada podatke članove definišite kao
private, ali obezbedite public get-ere i set-ere.

▪ Koristite protected kada želite neometan pristup od strane klasa u istom paketu, a za klase iz drugih paketa
dozvoljen samo ako su podklase.

▪ Izostavljanje modifikatora pristupa omogućava vidljivost člana klase u svim klasama paketa, dok je za klase van paketa
to isto kao i upotreba private atributa.

