
IZUZECI

2016/17

PRIRODNO-MATEMATIČKI FAKULTET, UNIVERZITET U KRAGUJEVCU

GREŠKE

▪ Tokom izvršavanja aplikacije javljaju se greške različitih nivoa ozbiljnosti.

▪ Pri pozivu nekog metoda, moguće je da dođe do različith vrsta neregularnih stanja. Na primer:

▪ prosleđeni argumenti nisu odgovarajući

▪ problem internog stanja objekta kome je poruka poslata

(nekonzistentne vrednosti polja)

▪ greške na resursima ili podacima kojima metod manipuliše

(npr. u fajlu ili mrežnoj adresi)

▪ Takve situacije mogu manje ili više uticati na tok izvršavanja programa, u svakom slučaju tok programa se

razlikuje od regularnog, tj. predstavlja izuzetak od pravilnog.

OBRADA GREŠAKA

▪ Jedan način rukovanja takvim (izuzetnim) situacijama jeste proveravanje svih kritičnih uslova pre

navodjenja dela koda koji može biti ‘ugrožen’ neproverenim greškama.

▪ Mana ovakvog rada jeste nečitak kod u kome se mešaju

▪ provera uslova za regularan tok programa i obrada u slučaju neispunjenosti uslova

▪ kod koji se izvršava pri regularnom radu

GET A FILENAME
OPEN THE FILE
IF THERE IS NO ERROR OPENING THE FILE

READ SOME DATA
IF THERE IS NO ERROR READING THE DATA

PROCESS THE DATA
WRITE THE DATA
IF THERE IS NO ERROR WRITING THE DATA

CLOSE THE FILE
IF THERE IS NO ERROR CLOSING FILE

RETURN

RAZDVAJANJE REGULARNOG KODA

OD OBRADE IZUZETNIH SITUACIJA

Da bi obezbedili razdvajanje koda koji se izvršava kada program teče glatko od obrade ‘neregularne’ situacije

objektni jezici uvode:

1. posebnu vrstu upravljačkog bloka – try/catch/finally i

2. poseban mehanizam obaveštavanja da se i šta desilo – instanciranjem objekata specijalnog tipa i
njegovim prosleđivanjem onom delu koda koji je u stanju da ga “obradi”.

try {
. . .

}
catch (ExceptionType1 exceptionObject) {

// obrada izuzetka tipa 1
}
catch (ExceptionType2 exceptionObject) {

// obrada izuzetka tipa 2
}
finally {

. . .
}

TRY TO DO THESE THINGS:
GET A FILENAME
OPEN THE FILE
READ SOME DATA
PROCESS THE DATA
WRITE THE DATA
CLOSE THE FILE
RETURN

IF THERE WAS AN ERROR OPENING THE FILE THEN DO ...
IF THERE WAS AN ERROR READING THE DATA THEN DO ...
IF THERE WAS AN ERROR WRITING THE DATA THEN DO ...
IF THERE WAS AN ERROR CLOSING THE FILE THEN DO ...

PRIMER 1 - BEZ OBRADE GREŠAKA

class Ssluzba { . . .
void ispraviOcenu(Prijava p,int nova){

p.ocenaIspravka(nova);

}
}

class Prijava{
int ocena; Student s; Predmet p;
. . .

void ocenaIspravka (int nova) {
if !(p.ocena()>5 && nova>5 && nova<=10) {

// nije moguce iyvrsiti ispravku
}
else p.setOcena(nova);

}
}

main() {
Ssluzba s; Prijava p;
. . .
s.ispraviOcenu(p,5);
. . .

}

Jedno rešenje – uvesti povratnu

vrednost za metod, pa je onda

ispitivati pri pozivu f-je.

U tom slučaju se regularan od

neregularnog koda razdvaja po if/else

granama.

POJEDNOSTAVLJEN MODEL OBRADE GREŠAKA

UPOTREBOM KONCEPTA IZUZETAKA – PRIMER 1

main() {
Ssluzba s; Prijava p;
. . .
s.ispraviOcenu(p,5);
. . .

}

POJEDNOSTAVLJEN MODEL OBRADE GREŠAKA

UPOTREBOM KONCEPTA IZUZETAKA – PRIMER 1

class Ssluzba { . . .
void ispraviOcenu(Prijava p,int nova){
try { // NADGLEDANI REGION

. . .
p.ocenaIspravka(nova);
. . .

}
catch(Greska g) {

// obrada greske
}

//DEO KODA KOJI SE IZVRSAVA BEZ OBZIRA NA TRY/CATCH
}
}

main() {
Ssluzba s; Prijava p;
. . .
s.ispraviOcenu(p,5);
. . .

}

POJEDNOSTAVLJEN MODEL OBRADE GREŠAKA

UPOTREBOM KONCEPTA IZUZETAKA – PRIMER 1

class Ssluzba { . . .
void ispraviOcenu(Prijava p,int nova){
try { // NADGLEDANI REGION

. . .
p.ocenaIspravka(nova);
. . .

}
catch(Greska g) {

// obrada greske
}

//DEO KODA KOJI SE IZVRSAVA BEZ OBZIRA NA TRY/CATCH
}
}

class Prijava{
int ocena; Student s; Predmet p;
. . .

void ocenaIspravka throws Greska (int nova) {
if !(p.ocena()>5 && nova>5 && nova<=10) {
Greska g = new Greska();
throw g;
}
else p.setOcena(nova);

}
}

main() {
Ssluzba s; Prijava p;
. . .
s.ispraviOcenu(p,5);
. . .

}

POJEDNOSTAVLJEN MODEL OBRADE GREŠAKA

UPOTREBOM KONCEPTA IZUZETAKA – PRIMER 1

class Ssluzba { . . .
void ispraviOcenu(Prijava p,int nova){
try { // NADGLEDANI REGION

. . .
p.ocenaIspravka(nova);
. . .

}
catch(Greska g) {

// obrada greske
}

//DEO KODA KOJI SE IZVRSAVA BEZ OBZIRA NA TRY/CATCH
}
}

class Prijava{
int ocena; Student s; Predmet p;
. . .

void ocenaIspravka throws Greska (int nova) {
if !(p.ocena()>5 && nova>5 && nova<=10) {
Greska g = new Greska();
throw g;
}
else p.setOcena(nova);

}
}

Delovi koda koji neće biti
izvršeni

main() {
Ssluzba s; Prijava p;
. . .
s.ispraviOcenu(p,5);
. . .

}

POJEDNOSTAVLJEN MODEL OBRADE GREŠAKA

UPOTREBOM KONCEPTA IZUZETAKA – PRIMER 1

Ko obaveštava?

Metod tokom čijeg izvršavanja se desila izuzetna situacija, koja zahteva drugačije ponašanje pozivaoca metoda koji

izuzetak baca.

Kako obaveštava?

Generiše objekat specijalnog tipa (tipa IZUZETKA) i baca ga, tj. prosleđuje ga komandi throw.

Ko preuzima obaveštenje?

throw JVM izvršava tako što preusmerava izvršavanje programa na deo koda koji je naveden u bloku za obradu

odgovarajućeg tipa izuzetka, tj. za prihvatanje objekata odgovarajućeg tipa (catch blok).

Koji je to specijalni tip objekta?

Objekat kojim se opisuje greška ne može pripadati proizvoljnoj klasi. Klasa kojoj objekat pripada mora da se nađe u

lancu nasleđivanja klase Throwable, jer sam Javin kompajler vrši proveru tipa objekta pri prevođenju throw komande.

Šta je sa nenadgledanim delom koda (van try bloka)?

Ako dodje do bilo kakve greške van nadgledanog regiona, sigurno je da metod u kom se greška desila neće istu

zbrinuti, već će greška biti delegirana njegovom pozivaocu.

POJEDNOSTAVLJEN MODEL OBRADE GREŠAKA

UPOTREBOM KONCEPTA IZUZETAKA – PRIMER 1

Zašto se neobrađen izuzetak po automatizmu prosleđuje pozivaocu?

Zato što izuzetak, ako je već generisan, mora da bude obrađen. Njegovo bacanje izaziva neregularan završetak

metoda u kome se javio, pa aplikacija mora da ima predviđenu reakciju na takvu situaciju.

Ako izuzetak ne obradi prvi metod kome je izuzetak prosleđen, onda se izuzetak delegira dalje, tj. njegovom

pozivaocu (sve do main() metoda).

PRIMER 1. komentar
Klasa Prijava ima predviđen metod prepravke ocene, ali samo u slučaju da u prijavi piše da je student položio i ako je nova ocena između 6 i 10, tj. Ako

se ne menja status ‘položenosti’ ispita. U suprotnom se metod u kom se poziva prepravka ocene obaveštava o tome da ispravka ocene nije obavljena

tako što se baca izuzetak.

Dakle, neuspešna ispravka je logički svrstana u izuzetak i to u funkcionisanju pozivaoca. Sama prijava ne zavisi od toga, tj. Ona se brine o konzistentnosti

svoga stanja, a onoga koji je pokušao da je u nekonzistentno stanje dovede, obaveštava o neuspehu njegove akcije. Da li će i kako pozivač reagovati nije

briga prijave, već onoga ko izuzetak treba da uhvati.

LANAC HVATANJA IZUZETKA I CALL STACK

Pretpostavimo da se u main() metodu u nekom trenutku poziva metod a() u kome se poziva metod b(), a u njemu

metod c().

O čitavom lancu pozivanja i o tome koji je metod dokle

stigao sa izvršavanjem vodi računa JVM. Struktura u

kojoj beleži lanac pozivanja se naziva call stack.

Zahvaljujući call stack-u JVM zna koja je prva naredna komanda

koja treba da bude izvršena nakon regularnog završetka nekog

pozvanog metoda ili kome treba da prosledi generisani izuzetak

u slučaju neregularnog završetka pozvanog metoda.

Ako JVM ne uspe ni u jednom metodu na call stack-u da

pronađe obradu izuzetka program prekida rad.

c

b

a

main

Method

Calls

Travel

Down

Exceptions

Passed

Up

Java Runtime

main() method

method a()

Exception

Thrown Here

method b()

method c()

TIPOVI IZUZETAKA U JAVI

Object

Throwable

Error Exception

RuntimeException

...

...
...

Svi izuzeci su pokrivene dvema
direktnim podklasana klase -
Throwable

IZUZECITIPA ERROR

▪ Predstavljaju izuzetke za koje se ne očekuje da ih hvata korisnik.

▪ Tri direktne podklase klase Error:

▪ ThreadDeath: baca se kada se namerno zaustavi nit u izvršavanju. Kada se ne uhvati završava nit, a ne program.

▪ LinkageError: ozbiljne greške unutar klasa u programu (nekompatibilnosti među klasama, pokušaj kreiranja

objekta nepostojeće klase)

▪ VirtualMachineError – JVM greška

IZUZECI TIPA EXCEPTION I, POSEBNO, RUNTIMEEXCEPTION

▪ Za skoro sve izuzetke koji su obuhvaćeni podklasama klase Exception potrebno je uključiti kod za njihovu
obradu ili program neće proći kompajliranje, tj. prevodilac NE DOZVOLJAVA njihovo ignorisanje.

▪ RunTimeException izuzeci se tretiraju drugačije, jer se u njih najčešće svrstavaju izuzeci koji se pojavljuju kao
posledica ozbiljnijih grešaka u kodu, čija obrada ne bi mogla ništa značajno promenila. Prevodilac
dozvoljava njihovo ignorisanje.

▪ Neke podklase klase RunTimeException:

▪ ArithmeticException: neispravan rezultat aritmetičke operacije poput dijeljenja nulom.

▪ IndexOutOfBoundsException: indeks koji je izvan dozvoljenih granica za objekat poput niza, stringa ili vektora.

▪ NegativeArraySizeException: upotreba negativnog indeksa niza.

▪ NullPointerException: poziv metoda ili pristup podatku članu null objekta.

▪ ArrayStoreException: pokušaj dodeljivana reference pogrešnog tipa elementu niza.

▪ ClassCastException: pokušaj kastovanja objekta neodgovarajućeg tipa.

PROVERAVANI I NEPROVERAVANI IZUZECI

Na osnovu toga da li prevodilac insistira njihovom proveravanju ili ne, izuzeci se dele u dve grupe:
▪ proveravani izuzeci (checked)

Oni koji su izvedeni iz klase Exception i svi koji nisu u lancu RunTimeException klase.
Ako metoda baca neki proveravani izuzetak, poziv te metode mora da bude uokviren try-catch blokom koji
hvata taj izuzetak, a metoda mora da bude označena ključnom reči throws i nazivom klase izuzetka koji
baca.

• neproveravani izuzeci (unchecked)
Oni koji su izvedeni iz RunTimeException.Klase koje su navedene u tabeli Javinih predefinisanih izuzetaka, uglavnom,
nasleđuju klasu RuntimeException pa pripadaju grupi neproveravanih izuzetaka.

Ako metoda baca neki neproveravani izuzetak, poziv te metode može, ali ne mora biti uokviren try/catch
blokom koji hvata taj izuzetak.

NEPROVERAVANI IZUZETAK - PRIMER

public class Izuz extends RunTimeException{
...

}
public class KK {

public void gr(int k) {
if (k==0) throw new Izuz();
// regularno ponasanje metoda

}
}
public class TestIzuz {

public static void main(String args[]) {
KK k=new KK();
k.gr(0);
System.out.println(“Regularan kraj programa!”);

}
}

U ovom primeru bačeni izuzetak nije obrađen, pa
će program završti sa radom pre ispisa
Regularan kraj programa!

PROVERAVANI IZUZETAK - PRIMER

public class Izuz extends RunTimeException{
...

}
public class KK {

public void gr(int k) {
if (k==0) throw new Izuz();
// regularno ponasanje metoda

}
}
public class TestIzuz {

public static void main(String args[]) {
KK k=new KK();
k.gr(0);
System.out.println(“Regularan kraj programa!”);

}
}

Dve greške koje
registruje kompajler

PROVERAVANI IZUZETAK - PRIMER

public class Izuz extends RunTimeException{
...

}
public class KK {

public void gr(int k) throws Izuz{
if (k==0) throw new Izuz();
// regularno ponasanje metoda

}
}
public class TestIzuz {

public static void main(String args[]) {
KK k=new KK();
try {
k.gr(0);
}
catch(Izuz o) {

// obrada situacije u kojoj k.gr() nije izvrsen na ocekivan nacin
}
System.out.println(“Regularan kraj programa!”);

}}

Obavezan throws

Obavezan
try/catch

U ovom primeru bačeni izuzetak je
uhvaćen, pa će program nastaviti nakon
catch-a dalje i ispisati
Regularan kraj programa!

PROVERAVANI IZUZECI - DODATAK

Java je striktna u forsiranju proverenih izuzetaka. Ako se pozove metod koji navodi izuzetak u njegovoj throws

klauzuli postoje 3 mogućnosti:

▪ uhvatiti i obraditi izuzetak
try {

// Code that originates an arithmetic exception
}
catch (ArithmeticException e) {

// Deal with the exception here
}

▪ uhvaćeni izuzetak proslediti dalje (na pozivajući nivo)
try {

// Code that originates an arithmetic exception
}
catch (ArithmeticException e) {

// Deal with the exception here
throw e; // Rethrow the exception to the calling program

}

▪ uhvatiti izuzetak, generisati sopstveni i

baciti ga pozivaocu

try {
// Code that originates an arithmetic exception

}
catch (ArithmeticException e) {

// Deal with the exception here
throw new SomeNewEcepton();

// Rethrow the exception
}

NAPOMENA

▪ Legalno je baciti izuzetke koji su izvedeni iz izuzetaka navedenih u throws klauzuli.

public class NulaArgument extends Izuz{
...
}
public class KK {
public void gr(int k) throws Izuz{

if (k==0) throw new NulaArgument();
// regularno ponasanje metoda

}
}

OBRADA IZUZETAKA I VIŠESTRUKI CATCH BLOKOVI

▪ U delu try/catch bloka

catch (ExceptionType1 identifier) {
// …

}
kod koji obrađuje izuzetak se poziva za ExceptionType1 ili bilo koju njegovu podklasu.

▪ Ako je u nekom try/catch bloku navedeno nekoliko catch blokova sa nekoliko tipova izuzetaka u istoj
klasnoj hijearhiji, potrebno je blokove postaviti tako da se prvo hvata izuzetak najniže podklase, pa
redom prema najvišoj superklasi.
// neispravna sekvenca catch blokova
// neće se prevesti
try {

// try block code
} catch(Exception e){ ... }
catch(ArithmeticException e){ ... }

EXCEPTION OBJEKTI

Klasa Throwable je bazna klasa za sve Java izuzetke i ima:
podatke

▪ Poruku (message) (koja se inicijalizuje u konstruktoru)
▪ Zapis o call steku (execution stack) u trenutku kada je izuzetak kreiran (pun naziv svih pozvanih metoda, plus broj linije u kojoj se poziv

dogodio)

dva public konstruktora
▪ default kontruktor
▪ kontruktor koji prihvata argument tipa String (tu može biti smeštena informacija o prirodi greške)

public metode koje omogućavaju pristup zapisu poruka i steka:
▪ getMessage() - Vraća sadržaj poruke (null za većinu predefinisanih klasa)
▪ printStackTrace() - Ispis poruka i steka na standardni izlaz
▪ printStackTrace(PrintStream s)
▪ fillInStackTrace() - ažurira zapis steka za mesto gdje se poziv iste obavlja; koristi se kada se ponovo baca izuzetak da bi se ažurirao zapis steka

kada je ponovo bačena (korisno kod bacanja sopstvenih izuzetaka)
▪ e.fillInStackTrace();
▪ throw e;

DEFINISANJE NOVIH IZUZETAKA

▪ Dva osnovna razloga:
▪ Dodavanje informacije kada se dogodi neki standardni izuzetak
▪ Greška koja se događa u vašem kodu zaslužna novog tipa izuzetka

▪ Kako?
// exception class – minimalna definicija
public class DreadfulProblemException extends Exception

{
// Konstruktori

public DreadfulProblemException(){ } // Default constructor
public DreadfulProblemException(String s) {

super(s); // Call the base class constructor
}

}

Šta još dodati?
▪ druge konstruktore
▪ varijable instance za čuvanje dodatnih informacija
▪ pristupne metode za varijable instance s dodatnim informacijama

FINALLY BLOK

▪ Koristi se za pospremanje (clean-up)
▪ Asociran s određenim try blokom (kao i catch blok)
▪ Može se koristiti i s try blokom koji sadrži kod koji ne baca nikakav izuzetak:

▪ za kod s višestrukim break ili return elementima,
▪ vrednosti koje vratimo s return u finally bloku će pregaziti bilo koji return izvršen u try bloku.

int metod(){
try {

//...
return 1;

}
finally {

return 2;
}
// nedohvatljiv deo koda, kompajler ne bi dozvolio

}

Metod iz primera vraća 2.

