| ZUZECI

2016/17

PRIRODNO-MATEMATICKI FAKULTET, UNIVERZITET U KRAGUJEVCU

GRESKE

= Tokom izvrsavanja aplikacije javljaju se greske razlicitih nivoa ozbiljnosti.
= Pri pozivu nekog metoda, moguce je da dode do razlicith vrsta neregularnih stanja. Na primer:
= prosledeni argumenti nisu odgovarajuci

= problem internog stanja objekta kome je poruka poslata
(nekonzistentne vrednosti polja)

= greske na resursima ili podacima kojima metod manipulise
(npr. u fajlu ili mreznoj adresi)

= Takve situacije mogu manje ili viSe uticati na tok izvrsavanja programa, u svakom slucaju tok programa se
razlikuje od regularnog, tj. predstavlja izuzetak od pravilnog.

OBRADA GRESAKA

= Jedan nacin rukovanja takvim (izuzetnim) situacijama jeste proveravanje svih kriticnih uslova pre
navodjenja dela koda koji moze biti ‘ugrozen’ neproverenim greskama.

GET A FILENAME
OPEN THE FILE
IF THERE IS NO ERROR OPENING THE FILE
READ SOME DATA
IF THERE IS NO ERROR READING THE DATA
PROCESS THE DATA
WRITE THE DATA
IF THERE IS NO ERROR WRITING THE DATA
CLOSE THE FILE
IF THERE IS NO ERROR CLOSING FILE
RETURN

= Mana ovakvog rada jeste necitak kod u kome se mesaju
= provera uslova za regularan tok programa i obrada u slucaju neispunjenosti uslova

= kod koji se izvrsava pri regularnom radu

RAZDVAJANJE REGULARNOG KODA

OD OBRADE IZUZETNIH SITUACIJA

Da bi obezbedili razdvajanje koda koji se izvrsava kada program tece glatko od obrade ‘neregularne’ situacije
objektni jezici uvode:

|. posebnu vrstu upravljackog bloka — try/catch/finally i

2. poseban mehanizam obavestavanja da se i Sta desilo — instanciranjem objekata specijalnog tipa i
njegovim prosledivanjem onom delu koda koji je u stanju da ga “obradi”. /\/

TRY TO DO THESE THINGS: try {
GET A FILENAME
OPEN THE FILE }
READ SOME DATA catch izgégptionTypel exceptionObject) {
PROCESS THE DATA // obrada 1zuzetka tipa 1
WRITE THE DATA }
CLOSE THE FILE catch (ExceptionType2 exceptionObject) {
RETURN // obrada izuzetka tipa 2
IF THERE WAS AN ERROR OPENING THE FILE THEN DO ... }
IF THERE WAS AN ERROR READING THE DATA THEN DO ... finally {
IF THERE WAS AN ERROR WRITING THE DATA THEN DO
IF THERE WAS AN ERROR CLOSING THE FILE THEN DO ... }

PRIMER | - BEZ OBRADE GRESAKA

class Ssluzba { .
void ispraviOcenu(Prijava p,int nova){ <«

main() {

p.ocenalspravka(nova);

Ssluzba s; Prijava p;

—

s.ispraviOcenu(p,5);

edno resenje — uvesti povratnu
za metod, pa je onda

class Prijava{
int ocena; Student s; Predmet p;

ispitivati pri pozivu f-je.
U tom slucaju se regularan od

neregularnog koda razdvaja po if/else
granama.

— void ocenalspravka (int nova) {
if !(p.ocena()>5 && nova>5 && nova<=10) {
// nije moguce iyvrsiti ispravku

POJEDNOSTAVLJEN MODEL OBRADE GRESAKA
UPOTREBOM KONCEPTA IZUZETAKA — PRIMER |

main() {

Ssluzba s; Prijava p;

s.ispraviOcenu(p,5);

POJEDNOSTAVLJEN MODEL OBRADE GRESAKA

UPOTREBOM KONCEPTA IZUZETAKA — PRIMER |

class Ssluzba { . . . main() %

void ispraviOcenu(Prijava p,int nova){ ssluzba s; Prijava p;
try { // NADGLEDANI REGION ’ ’

. s.ispraviOcenu(p,5);
p.ocenalspravka(nova);

}
catch(Greska g) {

// obrada greske
}
//DEO KODA KOJI SE IZVRSAVA BEZ OBZIRA NA TRY/CATCH
}
}

POJEDNOSTAVLJEN MODEL OBRADE GRESAKA

UPOTREBOM KONCEPTA IZUZETAKA — PRIMER |

class Ssluzba { . . .
void ispraviOcenu(Prijava p,int nova){
try { // NADGLEDANI REGION

p.ocenalspravka(nova);

catch(Greska g) { <«

]

main() {
<*"“‘-———-‘§\\\\\\~§-~_‘ Ssluzba s; Prijava p;
s.ispraviOcenu(p,5);

}

// obrada greske
}

//DEO KODA KOJI SE IZVRSAVA BEZ OBZIRA NA TRY/CATCH

)
N

class Prijava{
int ocena; Student s; Predmet p;

\

— void ocenalspravka throws Greska (int nova) {
if !(p.ocena()>5 && nova>5 && nova<=10) {
Greska g = new Greska();
throw g;

} —

else p.setOcena(nova);

POJEDNOSTAVLJEN MODEL OBRADE GRESAKA

UPOTREBOM KONCEPTA IZUZETAKA — PRIMER |

class Ssluzba { . . . main() %

void ispraviOcenu(Prijava p,int nova){ Ssluzba s; Prijava p;
try { // NADGLEDANI REGION ’ ’
T s.ispraviOcenu(p,5);

p.ocenalspravka(nova);

}
catch(Greska g) { <«
// obrada greske

}
//DEO KODA KOJI SE IZVRSAVA BEZ OBZIRA NA TRY/CATCH
} . . T
} class Prijava{
\\ int ocena; Student s; Predmet p;

\

— void ocenalspravka throws Greska (int nova) {
if !(p.ocena()>5 && nova>5 && nova<=10) {

Greska g = new Greska();
throw g;

sepssocmeoms
}

POJEDNOSTAVLJEN MODEL OBRADE GRESAKA

UPOTREBOM KONCEPTA IZUZETAKA — PRIMER |

Ko obavestava?

Metod tokom Ccijeg izvrsavanja se desila izuzetna situacija, koja zahteva drugacije ponasanje pozivaoca metoda koji
izuzetak baca.

Kako obavestava?

Generise objekat specijalnog tipa (tipa IZUZETKA) i baca ga, tj. prosleduje ga komandi throw.

Ko preuzima obavestenje?
throw JVM izvrsava tako Sto preusmerava izvrsavanje programa na deo koda koji je naveden u bloku za obradu
odgovarajuceg tipa izuzetka, tj. za prihvatanje objekata odgovarajuceg tipa (catch blok).

Koji je to specijalni tip objekta?

Objekat kojim se opisuje greska ne moze pripadati proizvoljnoj klasi. Klasa kojoj objekat pripada mora da se nade u
lancu nasledivanja klase Throwable, jer sam Javin kompajler vrsi proveru tipa objekta pri prevodenju throw komande.

Sta je sa nenadgledanim delom koda (van try bloka)?

Ako dodje do bilo kakve greske van nadgledanog regiona, sigurno je da metod u kom se greska desila nece istu
zbrinuti, ve¢ ce greska biti delegirana njegovom pozivaocu.

POJEDNOSTAVLJEN MODEL OBRADE GRESAKA

UPOTREBOM KONCEPTA IZUZETAKA — PRIMER |

Zasto se neobraden izuzetak po automatizmu prosleduje pozivaocu?

Zato sto izuzetak, ako je vec generisan, mora da bude obraden. Njegovo bacanje izaziva neregularan zavrsetak
metoda u kome se javio, pa aplikacija mora da ima predvidenu reakciju na takvu situaciju.

Ako izuzetak ne obradi prvi metod kome je izuzetak prosleden, onda se izuzetak delegira dalje, tj. njegovom
pozivaocu (sve do main() metoda).

PRIMER |. komentar

Klasa Prijava ima predviden metod prepravke ocene, ali samo u slucaju da u prijavi piSe da je student polozio i ako je nova ocena izmedu 6 i 10, tj. Ako
se ne menja status ‘polozenosti’ ispita. U suprotnom se metod u kom se poziva prepravka ocene obavestava o tome da ispravka ocene nije obavljena
tako sto se baca izuzetak.

Dakle, neuspesna ispravka je logicki svrstana u izuzetak i to u funkcionisanju pozivaoca. Sama prijava ne zavisi od toga, tj. Ona se brine o konzistentnosti
svoga stanja, a onoga koji je pokusao da je u nekonzistentno stanje dovede, obavestava o neuspehu njegove akcije. Da li ¢e i kako pozivac reagovati nije
briga prijave, ve¢ onoga ko izuzetak treba da uhvati.

Pretpostavimo da se u main() metodu u nekom trenutku poziva metod a() u kome se poziva metod b(),a u njemu

metod c().

O citavom lancu pozivanja i o tome koji je metod dokle
stigao sa izvrsavanjem vodi racuna JVM. Struktura u
kojoj belezi lanac pozivanja se naziva call stack.

Zahvaljujuci call stack-u JVM zna koja je prva naredna komanda
koja treba da bude izvrsena nakon regularnog zavrsetka nekog

pozvanog metoda ili kome treba da prosledi generisani izuzetak
u slucaju neregularnog zavrsetka pozvanog metoda.

Ako JVM ne uspe ni u jednom metodu na call stack-u da
pronade obradu izuzetka program prekida rad.

Exceptions
Passed
Up

Java Runtime

main() method

method a()

method b()

method c()

Exception
Thrown Here

Method
Calls
Travel

Down

TIPOVI IZUZETAKA U JAVI

Svi izuzeci su pokrivene dvema

'Object ‘ direktnim podklasana klase -
) ’ Throwable
|
Throwable
t

Error

A

]

]
Exception]

t

. ‘ 1 \ |
4{ .] [RuntimeException] [{{ \ 1]

A
—

|IZUZECI TIPA ERROR

= Predstavljaju izuzetke za koje se ne oCekuje da ih hvata korisnik.

= Tri direktne podklase klase Error:
= ThreadDeath: baca se kada se namerno zaustavi nit u izvrSavanju. Kada se ne uhvati zavrSava nit, a ne program.

= LinkageError: ozbiljne greske unutar klasa u programu (nekompatibilnosti medu klasama, pokusaj kreiranja
objekta nepostojele klase)
= VirtualMachineError — JVM greska

= Za skoro sve izuzetke koji su obuhvaceni podklasama klase Exception potrebno je ukljuciti kod za njihovu
obradu ili program nece proCi kompajliranje, tj. prevodilac NE DOZVOLJAVA njihovo ignorisanije.

= RunTimeException izuzeci se tretiraju drugacije, jer se u njih najéeSée svrstavaju izuzeci koji se pojavljuju kao
posledica ozbiljnijih greSaka u kodu, Cija obrada ne bi mogla niSta znacajno promenila. Prevodilac
dozvoljava njihovo ignorisanje.

= Neke podklase klase RunTimeException:

ArithmeticException: neispravan rezultat aritmeticke operacije poput dijeljenja nulom.
IndexOutOfBoundsException: indeks koji je izvan dozvoljenih granica za objekat poput niza, stringa ili vektora.
NegativeArraySizeException: upotreba negativhog indeksa niza.

NullPointerException: poziv metoda ili pristup podatku ¢lanu null objekta.

ArrayStoreException: pokusaj dodeljivana reference pogresnog tipa elementu niza.

ClassCastException: pokuSaj kastovanja objekta neodgovarajuceg tipa.

PROVERAVANI | NEPROVERAVANI [ZUZECI

Na osnovu toga da li prevodilac insistira njihovom proveravanju ili ne, izuzeci se dele u dve grupe:
= proveravani izuzeci (checked)
Oni koji su izvedeni iz klase Exception i svi koji nisu u lancu RunTimeException klase.
Ako metoda baca neki proveravani izuzetak, poziv te metode mora da bude uokviren try-catch blokom koji
hvata taj izuzetak, a metoda mora da bude oznacena klju¢nom reci throws i nazivom klase izuzetka koji
baca.
* neproveravani izuzeci (unchecked)
Oni koji su izvedeni iz RunTimeException.Klase koje su navedene u tabeli Javinih predefinisanih izuzetaka, uglavnom,
nasleduju klasu RuntimeException pa pripadaju grupi neproveravanih izuzetaka.
Ako metoda baca neki neproveravani izuzetak, poziv te metode moze, ali ne mora biti uokviren try/catch
blokom koji hvata taj izuzetak.

NEPROVERAVANI IZUZETAK - PRIMER

public class Izuz |extends RunTimeExceptionk

}
public class KK {

public void gr(int k) {
if (k==0) |throw new Izuz();
// regularno ponasanje metoda

}
}

public class TestIzuz {
public static void main(String args[]) {
KK k=new KK();

k.gr(0);

U ovom primeru baceni izuzetak nije obraden, pa
¢e program zavrsti sa radom pre ispisa
Regularan kraj programal!

System.out.println(“Regularan kraj programa!”);

PROVERAVANI [ZUZETAK - PRIMER

public class Izuz |extends RunTimeExceptionk

}
public class KK {
public void gr(int k) { < Dve greske koje
if (k==0) throw new Izuz(); registruje kompajler
// regularno ponasanje metoda
}
}

public class TestIzuz {
public static void main
KK k=new KK();
k.gr(e);
System.out.println(“Regularan kraj programa!”);

ing args[]) {

PROVERAVANI [ZUZETAK - PRIMER

public class Izuz extends RunTimeException

}
public class KK {

public void gr(int k) throws Izuz{< | OPavezan throws
if (k==0) [throw new Izuz();
// regularno ponasanje metoda

U ovom primeru baceni izuzetak je
uhvacen, pa ¢e program nastaviti nakon
catch-a dalje i ispisati

Regularan kraj programa!

}
}
public class TestIzuz {

public static void main(String args[]) {
KK k=new KK();

try { Obavezan
k.gr(0); try/catch
}

catch(Izuz o) {
// obrada situacije u kojoj k.gr() nije izvrsen na ocekivan nacin
}

System.out.println(“Regularan kraj programa!”);

+}

PROVERAVANI [ZUZECI - DODATAK

Java je striktna u forsiranju proverenih izuzetalka.Ako se pozove metod koji navodi izuzetak u njegovoj throws

klauzuli postoje 3 mogucnosti:

m uhvatiti i obraditi izuzetak

try {
// Code that originates an arithmetic exception
}

catch (ArithmeticException e) {
// Deal with the exception here

}
- uhvaceni izuzetak proslediti dalje (na pozivajuci nivo)
try {
// Code that originates an arithmetic exception
}

catch (ArithmeticException e) {
// Deal with the exception here

}

throw e; // Rethrow the exception to the calling program

uhvatiti izuzetak, generisati sopstveni i
baciti ga pozivaocu

try {
// Code that originates an arithmetic exception
}

catch (ArithmeticException e) {
// Deal with the exception here
throw new SomeNewEcepton();
// Rethrow the exception

NAPOMENA

= Legalno je baciti izuzetke koji su izvedeni iz izuzetaka navedenih u throws klauzuli.

public class NulaArgument extends Izuz{

}
public class KK {

public void gr(int k) throws Izuz{
if (k==0) throw new NulaArgument();
// regularno ponasanje metoda

OBRADA 1ZUZETAKA [VISESTRUKI CATCH BLOKOVI

= U delu try/catch bloka
catch (ExceptionTypel identifier) {

/] .
}

kod koji obraduje izuzetak se poziva za ExceptionTypel ili bilo koju njegovu podklasu.

= Ako je u nekom try/catch bloku navedeno nekoliko catch blokova sa nekoliko tipova izuzetaka u istoj
klasnoj hijearhiji, potrebno je blokove postaviti tako da se prvo hvata izuzetak najnize podklase, pa
redom prema najvisoj superklasi.
// neispravna sekvenca catch blokova
// necCe se prevesti
try {
// try block code

} catch(Exception e){ ... }

catch(ArithmeticException e){ ... }

EXCEPTION OBJEKT!

Klasa Throwable je bazna klasa za sve Java izuzetke i ima:
podatke
= Poruku (message) (koja se inicijalizuje u konstruktoru)
= Zapis o call steku (execution stack) u trenutku kada je izuzetak kreiran (pun naziv svih pozvanih metoda, plus broj linije u kojoj se poziv
dogodio)
dva public konstruktora
= default kontruktor
= kontruktor koji prihvata argument tipa String (tu moze biti smeStena informacija o prirodi greske)
public metode koje omogucéavaju pristup zapisu poruka i steka:
= getMessage() - Vraca sadrzaj poruke (null za veéinu predefinisanih klasa)
= printStackTrace() - Ispis poruka i steka na standardni izlaz
= printStackTrace(PrintStream s)
= fillinStackTrace() - aZurira zapis steka za mesto gdje se poziv iste obavlja; koristi se kada se ponovo baca izuzetak da bi se aZurirao zapis steka
kada je ponovo bacena (korisno kod bacanja sopstvenih izuzetaka)
= e fillinStackTrace();
= throw e

DEFINISANJE NOVIH [ZUZETAKA

= Dva osnhovna razloga:

= Dodavanje informacije kada se dogodi neki standardni izuzetak
= Greska koja se dogada u vasem kodu zasluzna novog tipa izuzetka
= Kako?
// exception class - minimalna definicija
public class DreadfulProblemException extends Exception

{
// Konstruktori

public DreadfulProblemException(){ } // Default constructor
public DreadfulProblemException(String s) {

super(s); // Call the base class constructor
}
3 }
Sta joS dodati?
= druge konstruktore
= varijable instance za Cuvanje dodatnih informacija

= pristupne metode za varijable instance s dodatnim informacijama

FINALLY BLOK

= Koristi se za pospremanje (clean-up)
= Asociran s odredenim try blokom (kao i catch blok)
= Moze se koristiti i s try blokom koji sadrzi kod koji ne baca nikakav izuzetak:
= za kod s visestrukim break ili return elementima,
= vrednosti koje vratimo s return u finally bloku ¢e pregaziti bilo koji return izvrsen u try bloku.

int metod(){

try {
//...

return 1;

}
finally {

return 2;

}

// nedohvatljiv deo koda, kompajler ne bi dozvolio

}

Metod iz primera vraca 2.

