
Strukture podataka i algoritmi 1

Test 2024-25 – max 26 poena

07.09.2025.

1. [2 poena] Napisati rezultate sledećih kodova.

a) int a = 5, b = 2;

int *p = &a;

*p = *p + b;

b = *p * 2;

printf("%d %d %d\n", a, b,

*p); 7 14 7

b) #define KVADRAT(x) (x * x)

int main() {

 int a = 3;

 int b = KVADRAT(a + 1);

 printf("%d\n", b);

return 0;

} 7

c) char c = 'A';

putchar(c);

putchar(c + 3);

putchar('\n');

AD

d) int a = 5, b = 10;

int *p = &a, *q = &b;

*p = *q;

*q = *p + 5;

printf("%d %d\n", a, b);

10 15

2. a) [1 poen] Objasniti razliku između cp i mv.

cp pravi kopiju fajla/direktorijuma, dok mv premesti fajl/direktorijum ili ga preimenuje.

b) [1 poen] Koja je razlika između komandi:

gcc file.c -o program

gcc file.c –c

gcc file.c -o program pravi direktno izvršni fajl program.

gcc file.c -c pravi samo objektni fajl file.o.

3. [1 poen] Šta je rezultat sledećeg koda?

#include <stdio.h>

int main() {

 int a = 6, b = 3;

 int r = (a & b) ^ 4;

 printf("r = %d\n", r);

 return 0;

} r = 6

4. [1.5 poen] Koji će biti izlaz programa?

#include <stdio.h>

void fun(int arr[], int start, int end) {

 if (start >= end) return;

 arr[start] = arr[start] + arr[end];

 arr[end] = arr[start] - arr[end];

 arr[start] = arr[start] - arr[end];

 fun(arr, start+1, end-1);

}

int main() {

 int arr[] = {5, 8, 6, 9};

 int n = sizeof(arr)/sizeof(arr[0]);

 fun(arr, 0, n-1);

 for (int i=0; i<n; i++) {

 printf("%d ", arr[i]);

 }

 return 0;

} 9 6 8 5

5. [1.5 poen] Šta je rezultat sledećeg

koda?

#include <stdio.h>

int fun(int x) {

 static int s = 5;

 if (x % 2 == 0)

 s += x;

 else

 s -= x;

 return s;

}

int main() {

 printf("%d\n", fun(3)); 2

 printf("%d\n", fun(4)); 6

 printf("%d\n", fun(5)); 1

 return 0;

}

6. [1.5 poen] Napiši funkciju koja proverava da li je k-ti bit broja x postavljen na 1.

Ulaz: ceo broj x, pozicija k.

Izlaz: ispis "BIT JE POSTAVLJEN" ili "BIT NIJE POSTAVLJEN".

void proveri_bit(int x, int k) {

 if (x & (1 << k))

 printf("BIT JE POSTAVLJEN\n");

 else

 printf("BIT NIJE POSTAVLJEN\n");

}

7. [2 poena] Napiši program koji:

Dinamički alocira niz od n celih brojeva (korisnik unosi n).

Popunjava niz unosom sa tastature.

Za svaki element niza:

 Ako je paran → postavi poslednji bit na 1.

 Ako je neparan → obriši poslednji bit (postavi na 0).

Ispiši novi niz.

#include <stdio.h>

#include <stdlib.h>

int main() {

 int n, i;

 printf("Unesi n: ");

 scanf("%d", &n);

 int *a = (int *)malloc(n * sizeof(int));

 if (!a) {

 printf("Nema dovoljno memorije!\n");

 return 1;

 }

 printf("Unesi elemente niza:\n");

 for (i = 0; i < n; i++) {

 scanf("%d", &a[i]);

 }

 for (i = 0; i < n; i++) {

 if (a[i] % 2 == 0)

 a[i] |= 1; // postavi poslednji bit

 else

 a[i] &= ~1; // obriši poslednji bit

 }

 printf("Izmenjen niz: ");

 for (i = 0; i < n; i++) {

 printf("%d ", a[i]);

 }

 printf("\n");

 free(a);

 return 0;

}

8. [1.5 poen] Napiši rekurzivnu funkciju koja računa zbir svih cifara datog broja.

Primer: n = 12345 → rezultat 15.

int zbir_cifara(int n) {

 if (n == 0) return 0;

 return (n % 10) + zbir_cifara(n / 10);

}

9. [1 poen] Imamo sledeći kod:

#include <stdio.h>

struct Tacka {

 int x;

 int y;

};

int main() {

 struct Tacka niz[4] = {{1,2}, {3,4}, {5,6}, {7,8}};

 struct Tacka *p = niz;

 // pitanje: kako možemo pristupiti elementu 3 i njegovom x članu?

 return 0;

}

Pitanje: Koji od sledećih izraza ispravno pristupa x članu trećeg elementa (broju 5)?

Zaokruži sve tačne.

a) niz[2].x

b) p[2].x

c) (p+2)->x

d) *(p+2).x

e) (*(p+2)).x

10. [1.5 poen] Napiši funkciju koja vraća broj čvorova u listi.

int countNodes(Node *head) {

 int count = 0;

 while (head != NULL) {

 count++;

 head = head->next;

 }

 return count;

}

11. [2 poena] Kalkulator preko argumenata

Program prima tri argumenta: prvi broj, operator (+, -, *, /), drugi broj.

Izračunati i ispisati rezultat.

Primer:

./a.out 5 + 7

Rezultat: 12

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

 if (argc != 4) {

 printf("Upotreba: %s broj1 operator broj2\n", argv[0]);

 return 1;

 }

 double a = atof(argv[1]);

 double b = atof(argv[3]);

 char op = argv[2][0];

 double rez;

 switch (op) {

 case '+': rez = a + b; break;

 case '-': rez = a - b; break;

 case '*': rez = a * b; break;

 case '/':

 if (b == 0) {

 printf("Greska: deljenje nulom!\n");

 return 1;

 }

 rez = a / b;

 break;

 default:

 printf("Nepoznat operator!\n");

 return 1;

 }

 printf("Rezultat: %.2f\n", rez);

 return 0;

}

12. [2 poena] Napiši funkciju koja obrće listu po blokovima od k čvorova.

Primer: lista 1→2→3→4→5→6, k=2 daje izlaz 2→1→4→3→6→5

Node* reverseK(Node* head, int k) {

 Node* prev = NULL;

 Node* curr = head;

 Node* next = NULL;

 int count = 0;

 // obrni prvih k čvorova

 while (curr != NULL && count < k) {

 next = curr->next;

 curr->next = prev;

 prev = curr;

 curr = next;

 count++;

 }

 // curr sada pokazuje na (k+1)-ti čvor

 if (next != NULL) {

 head->next = reverseK(next, k);

 }

 // prev je nova glava bloka

 return prev;

}

13. [2 poena] Napiši funkciju koja vraća novu listu koja predstavlja presek dve liste.

Node* intersection(Node *list1, Node *list2) {

 Node *result = NULL;

 Node *p1 = list1;

 while (p1 != NULL) {

 Node *p2 = list2;

 while (p2 != NULL) {

 if (p1->data == p2->data) {

 // da izbegnemo duplikate u rezultatu

 Node *check = result;

 int exists = 0;

 while (check != NULL) {

 if (check->data == p1->data) {

 exists = 1;

 break;

 }

 check = check->next;

 }

 if (!exists) {

 append(&result, p1->data);

 }

 break; // nema potrebe dalje po drugoj listi

 }

 p2 = p2->next;

 }

 p1 = p1->next;

 }

 return result;

}

14. [2 poena] Sortiraj niz brojeva 55 12 63 27 25 14 79 36 88 44 koristeći Stack sort algoritam i

ispisati svaki korak prilikom sortiranja brojeva.

M 55

V

M 12

V 55

M 12 55 63

V

M 12 27

V 63 55

M 12 25

V 63 55 27

M 12 14

V 63 55 27 25

M 12 14 25 27 55 63 79

V

M 12 14 25 27 36

V 79 63 55

M 12 14 25 27 36 55 63 79 88

V

M 12 14 25 27 36 44

V 88 79 63 55

15. [2.5 poena] Napiši program koji:

 Traži od korisnika broj redova n.

 Dinamički alocira donju trougaonu matricu tako da red i ima i+1 elemenata (redovi

rastu).

 Popunjava matricu brojevima 1, 2, 3, ... po redu (sledeći broj ide u sledeći element,

red po red).

 Ispisuje matricu tako da svaki red bude u jednoj liniji.

 Oslobađa svu memoriju.

Ulaz: 4

Izlaz:

1

2 3

4 5 6

7 8 9 10

#include <stdio.h>

#include <stdlib.h>

int main() {

 int n, i, j, broj = 1;

 int **mat;

 printf("Unesite dimenziju matrice: ");

 scanf("%d", &n);

 // alokacija pokazivača na redove

 mat = (int **)malloc(n * sizeof(int *));

 if (!mat) {

 printf("Neuspesna alokacija memorije.\n");

 return 1;

 }

 // za svaki red alociramo samo onoliko kolona koliko treba (trougaona)

 for (i = 0; i < n; i++) {

 mat[i] = (int *)malloc((i + 1) * sizeof(int));

 if (!mat[i]) {

 printf("Neuspesna alokacija memorije.\n");

 return 1;

 }

 }

 // popunjavanje trougaone matrice redom brojevima

 for (i = 0; i < n; i++) {

 for (j = 0; j <= i; j++) {

 mat[i][j] = broj++;

 }

 }

 // ispis

 printf("Trougaona matrica:\n");

 for (i = 0; i < n; i++) {

 for (j = 0; j <= i; j++) {

 printf("%4d", mat[i][j]);

 }

 printf("\n");

 }

 return 0;

}

