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Preface

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

- Antoine de Saint Exupery

DEVS# is an open source library that is an implementation of discrete event
system specification (DEVS) formalism in C# language. More than 30 years
ago, Dr. Zeigler introduced DEVS to the public through his first book [Zei76],
and its second edition [ZPK00] became available in 2000 due to the help of other
two authors, Dr. Praehofer and Dr. Kim.

In 2005 when I tried to make DEVS# which is an another open source
library of DEVS formalism in C++, I had a chance to use C# language in a
project. During the project, I realized that C# has some advantages over C++
such as garbage collection, type checking functionality, Web functionality, etc.
Then, I compared the execution speeds of these two languages. Surprisingly,
C# is not slower than C++ (frankly speaking, C# was little bit faster than
C++ in my test case). After the speed testing, I got started to implement a
DEVS open library in C# through the sourceforge.net in 2006. Finally, I could
open DEVS# library at http://xsy-csharp.sourceforge.net/DEVSsharp.

Although the main objective of developing DEVS# is to provide not only
a modeling and simulation environment but also a modeling and verification
software based-on DEVS theory, this document would focus on the first func-
tionality: modeling and simulation. However, since this document is not a C#
programming book, this book doesn’t cover the syntax of C# and how to use
Visual Studio developing environment in depth. Thus, I would recommend you
to read introductory book of C# first if the reader is not familiar with C#
language.

This document consists as follows.
Chapter 1 provides a belief review of DEVS formalism including a verbal

description of DEVS behavior. Chapter 1 also gives sample codes for a ping-
pong game using DEVS# so we can see what the DEVS# codes look like.

http://xsy-csharp.sourceforge.net/DEVSsharp�
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Chapter 2 explains the DEVS# library in terms of the object oriented pro-
gramming paradigm of C#. We will see the class hierarchy and some of the
virtual or the abstract functions the user is supposed to override to make a con-
crete class. In addition, this section introduces a menu that DEVS# provides
when we run DEVS# from a console.

Chapter 3 demonstrates several simple examples from atomic DEVS models
to a coupled DEVS network. In these examples, we can check the knowledge
learned from the previous chapters.

Chapter 4 deals with one of major goals of simulation study, that is, how
to measure some performance indices. To do this, the mathematical definitions
of throughput, cycle time, utilization and average queue length are addressed
first, then their implementations in DEVS# are introduced using a practical
example.

As an appendix, Chapter 5 briefly covers the structure of DEVS# library,
how to compile examples which are provided in DEVS#, and how to add our
own project or solution using Visual Studio 2005. If you want to compile, build,
and run the examples first, you’d better read this chapter first.
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Chapter 1

DEVS Formalism and

DEVS# code

This chapter introduces DEVS formalism in terms of the atomic DEVS to define
the dynamic behavior, and the coupled DEVS to build the hierarchical network
structure.

1.1 Atomic DEVS

An atomic DEVS model is defined by a 7-tuple structure

A =< X,Y, S, s0, τ, δx, δy >

where

• X is a set of input events.

• Y is a set of output events.

• S is a set of states.

• s0 ∈ S is the initial state.

• τ : S → T ∪ {∞} is the time advance function where T = [0,∞) is the
set of non-negative real numbers. This function is used to determine the
lifespan of a state.

• δx : P ×X → S × {0, 1} is the input transition function where

P = {(s, ts, te)|s ∈ S, ts ∈ T ∪ {∞}, te ∈ T}
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Figure 1.1: Symmetric Structure of Atomic DEVS

is the set of states with times such that ts and te are the lifespan of the
state, s, and the elapsed time since the last reset of te, respectively. δx

defines how an input event, x, changes a state as well as the lifespan that
the system can be in that state and the elapsed time that the system has
been in that state.

• δy : S → Y φ × S 1 is the output transition function that defines how a
state generates an output event and, at the same time, how it changes
the state internally. This function can be invoked when the elapsed time
reaches the lifespan. 2 ¥

Figure 1.1, also used as the cover illustration, shows the symmetric structure
of DEVS in the sense that the input event set (X) and the input transition
function (δx) are on the input side; the output event set (Y ) and the output
transition function (δy) are on the output side; and a set of states (S) and its
time advance function (τ) are in the middle.

Verbal Description of Dynamics

Suppose that A is an atomic DEVS such that A =< X,Y, S, s0, τ, δx, δy >, s is
the current state of A, and p = (s, ts, te) ∈ P . Then the possible discrete state
transitions are:

1. If an external input x comes in, A executes δx(p, x) = (s′, b) where
b ∈ {0, 1} and the lifespan and the elapsed time with s′ can change or be
preserved as follows.

(a) update ts = τ(s′) and te = 0 if b = 1;

1where Y φ = Y ∪ {φ}, φ 6∈ Y is the silent event
2In [ZPK00], δy is split into two functions: the output function λ : S → Y and the internal

transition function δint : S → S.
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Figure 1.2: State Transition Diagram of Ping-Pong Player

(b) keep ts and te preserved if b = 0.

2. If no external input comes in, then when the elapsed time reaches the
lifetime, A executes δy(s) = (y, s′) and update ts = τ(s′) and te = 0.

Notice that the elapsed time te increases linearly over time so it is a continu-
ous variable whose time derivative is constant 1. However, the lifetime ts is not
changing continuously but it is determined discretely at the time of executing
either δx or δy.

In other word, suppose that there is p = (s, ts, te) ∈ P at time tl ∈ T , there
is another p′ = (s′, t′s, t

′
e) ∈ P at time tu ∈ T and tl ≤ tu. If there is no event

between tl and tu, it implies that the only difference between p and p′ is that
their elapsed time such that (s′ = s) ∧ (t′s = ts) ∧ (t′e = te + tu − tl).

Example 1.1 (Ping-Pong Player) Figure 1.2 shows an atomic DEVS model
for a ping-pong player. This model has an input event “?receive” and an output
event “!send”. And it has two states: “Send” and “Wait”. Once the player gets
into “Send”, it will generates “!send” and backs to “Wait” after the sending
time which is an random variant in the uniform probability distribution function
(pdf) of [0.1, 1.2]. When staying at “Wait” and if it gets “?receive”, it changes
into “Send” again.

Formally we can rewrite this player as MPlayer =< X,Y, S, s0, τ, δx, δy >

where X={?receive}; Y ={!send};S={Send, Wait}; s0=Send; τ(Send)∈ [0.1,
1.2], τ(Wait)=∞; δx(s, ts, te, x) = δx(Send,∞,[0,ts],?receive) =(Send,1),
δx(s, ts, te, x) = δx(Send,[0.1, 1.2],[0,ts],?receive)=(Send,0);
δy(s) = δy(Send)=(!send,Wait); ¤
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1.2 Coupled DEVS

The coupled DEVS provides the hierarchical and modular structure necessary
to describe system networks. Formally, a coupled DEVS is defined by

N =< X, Y,D, {Mi}, EIC, ITC, EOC >

where

• X is a set of input events.

• Y is a set of output events.

• D is a set of names of sub-components

• {Mi} is a set of DEVS models where i ∈ D. Mi can be either an atomic
DEVS model or a coupled DEVS model.

• EIC ⊆ X × ⋃
i∈D

Xi is a set of external input couplings where Xi is the set

of input events of Mi.

• ITC ⊆ ⋃
i∈D

Yi ×
⋃

i∈D

Xi is a set of internal couplings where Yi is the set of

output events of Mi.

• EOC ⊆ ⋃
i∈D

Yi × Y is a set of external output couplings. ¥

Verbal Description of Coupled DEVS Behavior

The coupled DEVS’s behavior is described verbally as follows.

1. When N receives an input event, the coupled DEVS transmits the input
event to the sub-components through the set of external input couplings.

2. When a sub-component produces its output event, the coupled DEVS
transmits the output event to the other sub-components through the set
of internal couplings. The coupled DEVS also produces an output event
of N through the set of external output couplings.

Example 1.2 (Ping-Pong Game) Consider a ping-pong game with two play-
ers that each represented by the Player model introduced in Example 1.1 except
the initial state.

This block diagram can be modeled by a coupled DEVS such as NPPGame =<

X,Y, D, {Mi}, EIC, ITC, EOC > where X = {};Y = {}; D={A,B}; {Mi} ={Playeri}
where Playeri is the atomic DEVS introduced in Example 1.1 with initial
states Send for i=A, Wait for i=B, respectively; EIC={ }, ITC={ (A.!send,
B.?receive), (B.!send, A.?receive)}, EOC = { }. ¤
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Figure 1.3: DEVS Model of Ping-Pong Game

1.3 Building Ping-Pong Game using DEVS#

This section shows what DEVS# code looks like using the ping-pong game in-
troduced in Example 1.2. When you open DEVSsharp\DEVSsharp.sln, you
can find Ex_PingPong project in which there are two source files: Player.cs

and Program_PingPong.cs. Let’s take a look at Player.cs first.

using DEVSsharp; //--- (1)

namespace Ex_PingPong

{

public class Player : Atomic //-- (2)

{

public InputPort receive; //-- (3)

public OutputPort send; //-- (3)

enum PHASE { Wait, Send}

PHASE m_phase; //-- (4)

bool m_width_ball; //-- (4)

RVofGeneralPDF rv; //-- (4)

public Player(string name, bool with_ball): base(name, TimeUnit.Sec)

{

receive = AddIP("receive"); //--(5)

send = AddOP("send"); //--(5)

m_width_ball = with_ball;

rv = new RVofGeneralPDF(); //-- (6)

init();

}
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public override void init() { //-- (7)

if (m_width_ball)

m_phase = PHASE.Send;

else

m_phase = PHASE.Wait;

}

public override double tau() //-- (8.a)

{

if (m_phase == PHASE.Send)

return rv.Uniform(0.1, 1.2);

else

return double.MaxValue;

}

public override bool delta_x(PortValue x) //-- (8.b)

{

if (m_phase == PHASE.Wait && x.port == receive)

{

m_phase = PHASE.Send;

return true;

}

else

{

Console.WriteLine("Do we have more than one ball?");

}

return false;

}

public override void delta_y(ref PortValue y) //-- (8.c)

{

if (m_phase == PHASE.Send)

{

y.Set(send);

m_phase = PHASE.Wait;

}

}

public override string Get_s() //-- (9)

{

return m_phase.ToString();

}

}

}
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Figure 1.4: References of Ex PingPong

1. using DEVSsharp: First of all, we can find Ex_PingPong project uses
a reference of DEVSsharp project which is indicated in Solution Explorer
windows of Visual Studio 2005 as shown in Figure 1.4. 3 By using DEVSsharp,
we can load information of name space, classes interfaces defined in DEVSsharp

that is the kernel project name of DEVS#.

2. Deriving from Atomic: In this example, Player is a concrete class
derived from Atomic which is an abstract class. We will see the class
Atomic in Section 2.2.2.

3. Interfacing Ports: The port pointers are useful to identify the added
ports. Without these pointers, we would have to search for each pointer
by its name, and that can be a burden. For more information of the class
Port, the reader can refer to Section 2.1.2

4. State Variables: The derived and concrete class of atomic DEVS will
have its state variables to describe its dynamic situations. In DEVS#, we
use member data of C# for the state variables.

5. Adding Interfaces: The interfacing port pointers mentioned in (5) are
assigned by calling either the AddIP or the AddOP function in which mem-
ory allocations and parent assignments are performed. A set of port re-
lated functions defined at Atomic can be referred to Section 2.2.2.

6. Random Variable: The lifespan of Send is a random variable with uni-
form probability density function (PDF) of [0.1,1.2]. To generate the ran-

3For more information of adding a reference, you can refer to Chapter 5.
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dom number, Player defines a random variable rv as a general PDF
random variable in (4), and pick the uniform PDF in the range[0.1, 1.2]
in tau() function in (8.a). The PDFs available in DEVS# are addressed
in Section 2.4.

7. The initial State s0: To make the initial state s0, all concrete classes
derived from Atomic are supposed to override the function init() in which
the associated atomic model is reset to the initial state s0. In this case of
Player, the initial phase can be determined as Send or Wait depending on
another variable, m_width_ball which is indicating to have a ball initially
or not.

8. Characteristic Functions τ, δx and δy: all concrete classes derived
from Atomic should override the characteristic functions: τ, δx, and δy.

(a) τ of Player returns the random number from [0.1, 1.2] when the state
is Send, otherwise it returns∞ that is represented by double.MaxValue.

(b) δx of Player changes the state Wait to Send when receiving the input
event receive.

(c) δy of Player generates the output event send, at the same time, it
changes the state Send to Wait.

9. Displaying Status: To show the current state, we will override the
Get_s() function which is supposed to return a string representing the
current state. Player returns the string value of m_phase variable.

A ping-pong match we are considering here needs two players that are in-
stances of the previous class Player. We use the coupled DEVS in Program_PingPong.cs

to model the match as shown in the following codes.

using DEVSsharp;

namespace Ex_PingPong

{

class Program_VM

{

static Devs MakePingPong(string name)

{

Coupled game = new Coupled(name); //-- (1)

Player A = new Player("A", true); //-- (2)

Player B = new Player("B", false);//-- (2)

game.AddModel(A); //-- (3)
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game.AddModel(B); //-- (3)

game.AddCP(A.send, B.receive); //-- (4)

game.AddCP(B.send, A.receive); //-- (4)

game.PrintCouplings(); //-- (5)

return game;

}

static void Main(string[] args)

{

Devs md = MakePingPong("PingPong");

SRTEngine Engine = new SRTEngine(md, 10000, null);//--(6)

Engine.RunConsoleMenu();//--(7)

}

}

}

1. Making the Ping-Pong Game as coupled DEVS: We make an in-
stance of Coupled in DEVS# for the ping-pong game.

2. Instancing Two Players The ping-pong game has two sub-components
that are instances of Player having different initial states.

3. Adding Components We add two players A and B by calling the function
AddModel of the class Coupled.

4. Adding Couplings We add couplings between players A and B calling
the function AddCP of the class Coupled .

5. Print Couplings Even though it is not necessary, we can call the func-
tion PrintCouplings() of Coupled to check the coupling status. The
couplings of the ping-pong game are displayed as follows.

Inside of PingPong

-- External Input Coupling (EIC) --

------ # of EICs: 0-----

-- Internal Coupling (ITC) --

A.send --> B.receive

B.send --> A.receive

------ # of ITCs: 2-----

-- External Output Coupling (EOC) --

------ # of EOCs: 0-----
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6. Making a simulation engine Instancing a scalable simulation engine
SRTEngine can be done by calling its constructor that needs the model
supposed to be simulated. In this example the model is the coupled model
of the ping-pong game, pp. For more detailed information of SRTEngine,
the reader can refer to Section 2.3.

7. Running the console menu We can use the console menu of SRTEngine
by calling RunConsoleMenu(). After that, we will see the following screen
on the selected console.

DEVS#: C# Open Source of DEVS Formalism, (C) 2005~2007,

http://xsy-csharp.sourceforge.net/DEVSsharp/

The current date is 5/6/2007.

The current time is 1:05:52 PM.

scale, step, run, mrun, [p]ause, pause_at, [c]ontinue, reset,

rerun, [i]nject, dtmode, animode, print, cls, log, [e]xit

>

The first part shows the header of DEVS# and current date and time.
The second part shows the available command set. Even we don’t have
clear idea of each command, let’s try“ run” and then “exit”.

The detailed information of each command will be provided in Section 2.3.



Chapter 2

Structure of DEVS#

DEVS# is an C# open source of DEVS formalism. Thus, there are two features:
one comes from C# language, the other from the formalism. Figure 2.1 shows
the hierarchy relation among classes used in DEVS#.

As we reviewed in Chapter 1, two DEVS models called atomic DEVS and
coupled DEVS have common features such as input and output event inter-
faces as well as time features such as current time, elapsed time, schedule time
and so on. In DEVS#, these common features have been captured by a base
class, called Devs from which the class Atomic (for atomic DEVS) and the class
Coupled (for coupled DEVS) are derived.

In DEVS#, an event is a PortValue that is a pair of (port, value) where port

can be an instance of either InputPort class or OutputPort class, while value

is an instance of any derived class of the basic class object of C#. SRTEngine
is a scalable real-time engine which runs a DEVS instance inside.

In Figure 2.1, a gray box indicates a concrete class which can be created as

Figure 2.1: Classes in DEVS#
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an instance, while a white box is an abstract class which can not be created as
an instance.

We will first go through PortValue related classes in Section 2.1. Next,
Devs class and its derived two classes: Atomic and Coupled will be investi-
gated in Section 2.2. Section 2.3 will introduce a simulation engine class, called
SRTEngine. And finally, we will see the random number generator classes in
Section 2.4.

2.1 Event=PortValue

An event will be modeled by an instance of PortValue class which is a pair
of Port and Value. We will first see the top-most base class, called “Named”.
Then we will look at Port-related classes, and finally, the PortValue class will
be seen in the last part of this section.

2.1.1 Named

Named is defined in Named.cs file as a concrete class. The class provides its
constructor whose argument is a string, and has a public Name field as a string.
The function ToString() is the function overrided from object::ToString().

public class Named

{

public String Name;

public Named(string name)

{

m_Name = name;

}

public override string ToString()

{

return m_name;

}

}

2.1.2 Port, InputPort, and OutputPort

The Port.cs file defines three classes Port, InputPort and OutputPort as
follows.

class Port: public Named

{
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public Devs Parent;

protected List<Port> m_FromP, // From Ports

m_ToP; // To Ports

public List<Port> FromP { get { return m_FromP; } }

public List<Port> ToP { get { return m_ToP; } }

};

class InputPort: public Port {

...

};

class OutputPort: public Port {

...

};

Port is an abstract class derived from Named. It has Parent field whose type
is Devs, and which is automatically assigned when we call the AddIP() and
AddOP() functions of Devs (see Section 2.2). Port has “List<Port> ToP” as a
set of successors as well as “List<Port> FromP” as a set of predecessors which
are changed when we call AddCP() and RemoveCP() of Coupled (see Section
2.2.3).

InputPort and OutputPort are concrete and derived classes from Port.

2.1.3 PortValue

As mentioned before, an event in DEVS# is modeled by PortValue class that
have a pair of a deriving class of Port and a deriving class of object. The
following codes are parts of PortValue.cs.

class PortValue {

public:

public Port port; //-- either an output or an input port

public object value; // deriving class from the Object class

public PortValue(Port prt){...}

public PortValue(Port prt, object v) {...}

public void Set(Port prt){...}

public void Set(Port prt, object v){...}

public override string ToString(){...}

};

Two constructors and two Set functions are available whose arguments can
be Port p which means value v=null, or a pair of (Port p and object v). The
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function ToString() returns the string concatenating of port and value (if
value is not null) by using a delimiter ‘:’ character.

2.2 DEVS

As introduced in Chapter 1, DEVS has two basic structures: atomic DEVS and
coupled DEVS. In DEVS#, these two structures are implemented as the classes
Atomic and Coupled, respectively, and are derived from the base class Devs.
Thus Devs has the common member data and functions of both Atomic and
Coupled.

2.2.1 Base DEVS: Devs

Devs defined in the source file Devs.cs is an abstract class derived from Named.
Devs points its parent through its Parent field which is assigned by Coupled::AddModel()

(see Section 2.2.3).

public class Devs: Named {

public Coupled Parent; // parent pointer

...

There are adding, getting, removing, and printing functions for the input
ports denoted as AddIP, GetIP, RemoveIP, and PrintAllIPs. Similarly, AddOP,
GetOP, RemoveOP, and PrintAllOPs are available functions for the output ports.

In addition, IP and OP get the set of input ports as SortedList<string, InputPort>

and the set of output ports as SortedList<string, OutputPort>, respectively.

//-- X port Methods --

InputPort AddIP(string ipn);

InputPort GetIP(string ipn) const;

InputPort RemoveIP(string ipn);

void PrintAllIPs() ;

public SortedList<string, InputPort> IP {get ; }

//-- Y port Methods --

OutputPort AddOP(string opn);

OutputPort GetOP(string opn) const;

OutputPort RemoveOP(string opn);

void PrintAllOPs() ;

public SortedList<string, OutputPort> OP {get ; }

Devs has time-related properties such as TimeLast for getting (or setting) the
last schedule update time; TimeNext for the next schedule time; TimeElapsed
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Figure 2.2: Relations of Times

for the elapsed time between the last schedule time and the current time;
TimeRemaining for the remaining time from the current time to the next sched-
ule time; TimeAdvance for the time difference between TimeNext and TimeLast.

TimeCurrent is a static and public data field for the current time;

public double TimeLast { get; set; }

public double TimeNext { get; set; }

public double TimeElapsed { get; }

public double TimeRemaining { get; }

public double TimeAdvance { get; }

public static double TimeCurrent ; // data field

Figure 2.2 illustrates the relationships among different times. The user
doesn’t have to set the values of these time variables because such calculation
will be performed by the simulation engine class, called SRTEngine in DEVS#,
according to the user-defined τ(s) for each state of each model. For more de-
tailed information this algorithm, the user can refer to [Zei87, ZPK00]

2.2.2 Atomic DEVS: Atomic

The atomic DEVS is implemented as Atomic in Atomic.cs file. Atomic is an
abstract class that is derived from Devs.

public abstract class Atomic: Devs

{

public TimeUnit TimeUnit { get; }
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public Atomic(string name, TimeUnit ): base(name) {...}

...

An instance of Atomic class has its own time unit. TimeUnit is defined in
TimeUnit.cs file as an enumerate type:

public enum TimeUnit { MilliSec, Sec, Min, Hour, Day }.

Therefore, the lifetime of a state s, τ(s) is interpreted in τ(s)∗ TimeUnit in-
side DEVS#. However, to handle all different schedules in different time units of
all atomic models used in a simulation run, time conversions are internally done
in DEVS#. As a result, TimeLast, TimeNext, TimeElapsed, TimeRemaining,
and TimeAdvance will be interpreted in second internally.

Characteristic Functions

There are four public characteristic functions that are defined as abstract in
Atomic class. Thus the user must override them to define a concrete class from
Atomic.

The function init() is used when the model needs to be reset to its initial
state s0, such as at the beginning of a simulation run.

public abstract void init();

The function tau() returns the lifespan of the current state when the sched-
ule of the next internal event is reset by the time of an interrupting input event
or an generating output event.

public abstract double tau();

The function delta_x(PortValue x) defines the input state transition caused
by an input event x. The return value true indicates that the next schedule
needs to be updated by calling tau(). Contrarily, the return value false indi-
cates that the time for the next schedule needs to be preserved.

public abstract bool delta_x(PortValue x) ;

The function delta_y(ref PortValue y) defines the output transition by
generating an output event y. Recall that the schedule will be updated right
after this occurs, based upon the value of tau().

public abstract void delta_y(ref PortValue y);

Displaying State as a string

There is an other public virtual(but not abstract) function Get_s(), that is
supposed to return the current status in a string for display purpose.

public virtual string Get_s() { return ""; }
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Collecting Performance Functions

If we want to trace the performance of an atomic DEVS model, we need to set the
flag on by using CollectStatistics(true). We can also get the flag’s status by
calling CollectStatisticsFlag(). The virtual function Get_Statistics_s()

is supposed to return a string which represents the status in terms of collecting
statistics. Also, the user can override the GetPerformance() function to collect
the performance index.

public void CollectStatistics(bool flag) { m_cs = flag; }

public bool CollectStatisticsFlag() const { return m_cs; }

public virtual string Get_Statistics_s() const { return Get_s(); }

public virtual Dictionary<string, double> GetPerformance() const;

We will see the theoretical background of performance indices and how we collect
them using DEVS# in Chapter 4.

2.2.3 Coupled DEVS: Coupled

The coupled DEVS is implemented as the class Coupled derived from the class
Devs. Coupled class is concrete.

public class Coupled: Devs

{

public Coupled(string name): base(name) {...}

Sub-components Related

There are four functions and one property associated with modeling of sub-
components as follows.

public void AddModel(Devs md);

public Devs GetModel(string name);

public void RemoveModel(string name);

public void RemoveAllModels();

public List<Devs> Models { get; }

Couplings Related

Related to couplings, there are three coupling related functions for adding, re-
moving, and printing as follows.

public void AddCP(Port spt, Port dpt);

public void RemoveCP(Port spt, Port dpt);

public void PrintCouplings() ;
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2.3 Scalable Real-Time Engine: SRTEngine

DEVS# provides a simulation engine class, called SRTEngine. When we make
an instance of SRTEngine, its constructor creates an independent simulation
thread from the main thread. The reader can find the source codes of SRTEngine
in SRTEngine.cs file.

2.3.1 Constructor

SRTEngine(Devs model, double ending_t, Callback call_back);

The constructor needs three arguments: the first argument is the Devs model
to be simulated, the second is the simulation terminating time in second, the
last is a callback function that is used to inject a user-input into the simulation
model.

The third argument Callback is defined as delegate which can be seen as
a function pointer in C#.

public delegate PortValue Callback(Devs model);

Callback is supposed to return a PortValue which represents the user input
to the model. Thus, PortValue’s port should be an input port of Devs model.
The following example shows that InjectMsg returns a PortValue whose port
is vm’s ip input port.

PortValue InjectMsg(Devs md)

{

VM vm = (VM) md;

return PortValue(vm.ip);

}

Then, we can pass the above function pointer of InjectMsg to an instance of
SRTEngine as follows.

SRTEngine simEngine(vm, 10000, InjectMsg);

We will see another example to use Callback in the example Ex_VendingMachin
in Section 3.1.2.

2.3.2 Run console menu

If we call the function RunConsoleMenu() of SRTEngine, it provides a console
menu as follows.

scale, step, run, mrun, [p]ause, pause_at, [c]ontinue, reset,

rerun, [i]nject, dtmode, animode, print, cls, log, [e]xit

>
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scale f

scale controls the speed of time flow by the scale factor f

• 0.1 for 10 times slower than real time

• 1 as fast as real time;

• 10 for 10 times faster than real time;

• 0 or greater than 1000,000 for as fast as possible;

The corresponding application programming interfaces (APIs) are:

public double SRTEngine::GetTimeScale();

public void SRTEngine::SetTimeScale(double ts).

step

step executes a simulation run until one internal transition is fired. After that
it pauses the run automatically unless the user inputs commands such as step,
continue, run, mrun. This command can be useful when we try a step-by-step
run to see the model behavior. The corresponding API is

public void SRTEngine::Step().

run

run executes a simulation run which continues until it reaches the simulation
ending time, which is set by the second argument of the SRTEngine constructor
or by the command pause_at et. The corresponding API is

public void SRTEngine::MultiRun(unsigned n)

where n=1.

mrun n

mrun executes n simulation runs. Each simulation run stops when it reaches the
simulation ending time. When trying mrun n, where 2≤ n ≤ 20, SRTEingine
calculates the 95% confidence interval of the average values of each statistical
items. The corresponding API is

public void SRTEngine::MultiRun(unsigned n).

[p]ause

pause or p pauses a simulation run immediately. The corresponding API is

public void SRTEngine::void Pause().
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pause at et

pause_at sets the simulation ending time as et. The corresponding APIs are

public double SRTEngine::GetEndingTime() const;

public void SRTEngine::SetEndingTime(double et).

[c]ontinue

continue or c resumes a simulation run which has been paused. It continues
the previous simulation mode that had been determined by step, run, or mrun.
The corresponding API is

public void SRTEngine::Continue().

reset

reset initializes the associated simulation model. The corresponding API is

public void SRTEngine::Reset().

rerun

rerun combines reset and run. The corresponding API is

public void SRTEngine::Rerun().

[i]nject

inject or i injects an user-input event into the simulation model. This com-
mand invokes the callback function whose type is PortValue Callback(Devs md)

that is the third argument of the SRTEngine constructor. The corresponding
API is

public void SRTEngine::Inject(PortValue x).

dtmode

dtmode sets the print mode of discrete transition, both for in the console and in
the log file (whose file name is DEVS#_log.txt). The choice can be one of the
following options:

• none displays no discrete state transition.

• te displays the elapsed time TimeElapsed.

• tea displays the elapsed time if associated model’s current state s is active,
which means the remaining time TimeRemaining < ∞.
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• tr displays the remaining time.

• tra displays only an active remaining time.

• nc no change.

The corresponding APIs are

public void SRTEngine::Set_dtmode(PrintStateMode flag, bool ao);

public void SRTEngine::Get_dtmode(ref PrintStateMode flag, ref bool ao).

where

public enum PrintStateMode {P_NONE, P_remaining, P_elapsed}.

animode

animode sets the animation interval. The choice can be either one of the fol-
lowing options.

• none displays no animation state transition.

• avi is the number of animation interval > 1.0E-2.

• nc no change.

The related APIs are

public void SRTEngine::SetAnimationFlag(bool flag),

public bool SRTEngine::GetAnimationFlag(),

public void SRTEngine::SetAnimationInterval(double ai),

public double SRTEngine::GetAnimationInterval() const.

print

print displays information according to the following option.

• q prints the total state of the model.

• cpl prints the couplings information if the model is a coupled DEVS.

• s prints all settings. The following screen shot is made by print s.

scale factor: 1

run-through mode

current time: 0

simulation ending time: 1.79769e+308

current dt_mode: te [(state, t_s, t_e), active only: off]

current animation mode: on and interval= 0.25

current log setting: on, p00
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• p prints the performance indices at the current time.

The corresponding APIs are

public void SRTEngine::PrintTotalState() const,

public void SRTEngine::PrintCouplings() const,

public void SRTEngine::PrintSettings() const,

public void SRTEngine::PrintPerformanceOfaRun() const.

cls

cls clears the screen.

log

log sets the logging option which generates the log file DEVS#_log.txt. After
the log command, DEVS# shows the current log settings and waits for the user
input as follows.

current log setting: on, p00

options: {on,off}, {+,-}{pqt} nc >

The user options are on or off or {+,-}{pqt} or nc. Their meanings are:

• {on, off} is the main log options. Use on for turning log on or off for
turning log off. If the mode is on, three independent options are selectable.

– p is for logging performance indices at the end of a simulation run.

– q is for logging the total state of the model at the end of a simulation
run.

– t is for logging every single discrete event transition.

If all of three are on, it is shown as pqt. If p is on, q and t are off, the
display is shown as p00, etc.

• {+,-}{pqt} can be interpreted that + stands for setting the following
options on, while - stands for turning the following options off. For
example +qt means to set q and t on, while -p means to set p off.

• nc no change.

SRTEngine has a public data field of logger which is an instance of Logger
class. The corresponding APIS of Logger class are

public bool Logger::OnFlag {get; set; },

public bool Logger::TransitionFlag {get; set; },

public bool Logger::PerformanceFlag {get; set; },

public bool Logger::TotalStateFlag {get; set; }.
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[e]xit

exit or e exits the console menu.

2.4 Random Variables

2.4.1 Probability Density Functions

Several random variables are provided in DEVS#. All random variable classes
are defined in Util\RV.cs. RVofGeneralPDF class generates a random number
of the uniform probability density function (PDF), the triangular PDF, the
exponential PDF, and the normal PDF as follows.

public class RVofGeneralPDF: Random

{

public RVofGeneralPDF() : base() { }

public double Uniform(double min, double max);

public double Triangular(double min, double max, double mode);

public double Exponential(double mean);

public double Normal(double mean, double sd);

}

We took a look at the use of RVofGeneralPDF in the ping-pong example in
Section 1.3.

If we want to make an instance of a specific PDF’s random variable, we can
use RV_Uniform, RV_Triangular, RV_Exponential, and RV_Normal which are
derived classes from an abstract class, RVofPDF. The abstract function RN() of
RVofPDF is overrided in each derived class as follows.

public abstract class RVofPDF : Random

{

protected RVofPDF() : base() { }

public abstract double RN();

}

public class RV_Uniform : RVofPDF

{

protected double min, max;

public RV_Uniform(double _min, double _max): base(){...}

public override double RN(){...} // return Uniform[min,max]

}

public class RV_Triangular : RVofPDF

{

protected double min, max, mode;
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public RV_Triangular(double _min, double _max, double _mode): base(){...}

public override double RN(){...} // return Triangular(min,max,mode)

}

public class RV_Exponential : RVofPDF

{

protected double mean;

public RV_Exponential(double _mean): base(){...}

public override double RN(){...} // return Exponential(mean);

}

public class RV_Normal : RVofPDF

{

protected double mean, sd;

public RV_Normal(double _mean, double sd): base(){...}

public override double RN() {...}// return Normal(mean, sd);

}

We will see the use of these PDFs in example in Section ??

2.4.2 Probability Mass Function

A template class RVofPMF<T> is used for generating a random number of a prob-
ability mass function (PMF). This class has the probability table pmf which is
Dictionary<T, double> whose key is T-typed object and value is the proba-
bility of occurrence for the key. The function SampleV() returns T-typed key
whose cumulative pmf value is firstly greater than a random number r in uni-
form[0, 1].

public class RVofPMF<T> : Random

{

//-- pairs of (T, probability)

public Dictionary<T, double> pmf;

public RVofPMF() : base() {...}

public T SampleV() {...}

}

Figure 2.3 shows how RVofPMF::SampleV() works. Let’s assume that there
are three kinds of jobs, Job1, Job2, and Job3 coming into a system with their
corresponding probabilities 0.5, 0.25, and 0.25, respectively. To pick one of
them, we generate a random number r in the uniform PDF [0, 1]. Let’s say
r = 0.6 at this time. Then, since the inverse function of F (0.6) that is the
cumulative function of f(x) is Job2, Job2 will be picked at this moment.
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Figure 2.3: PMF f(s) and its cumulative function F (x)

For this example, the user should fill out the table pmf as pmf={(Job1,
0.5), (Job2, 0.25), (Job3, 0.25) } before calling SampleV() function. Of course,
summation of values pmf[key] for all keys should be 1 for being a correct PMF
function.

We will see an application of RVofPDF and RVofPMF when we take a look at
Generator class in Section 4.2.1





Chapter 3

Simple Examples

In this chapter, we will see DEVS# examples of atomic DEVS as well as coupled
DEVS.

3.1 Atomic DEVS Examples

3.1.1 Timer

An example, Ex_Timer, shows how to define a concrete atomic class from
Atomic. In Timer.cs file, Timer is defined to generat an output op every 3.3
seconds as illustrated in Figure 3.1.

Thus Timer has one output port op that is op is assigned by calling AddOP

in the constructor. The function init() does nothing because the class has no
internal variable. The function tau() returns 3.3 all the time.

public class Timer : Atomic

{

private OutputPort op;

public Timer(string name): base(name, TimeUnit.Sec)

{ op = AddOP("op"); init(); }

public override void init(){}

public override double tau() { return 3.3; }

Since there is no input transition defined, delta_x has the null body except
returns false 1. However, delta_y returns the output op by making the output
event y set to op.

1Actually, there is no difference between return false or true in this example.
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Figure 3.1: Timer (a) State Transition Diagram (b) Event Segment (c) te Tra-
jectory

public override bool delta_x(PortValue x) { return false; }

public override void delta_y(ref PortValue y) { y.Set(op); }

The display function Get_s() returns the current status, which is constantly
Working.

public override string Get_s() { return "Working"; }

}

The file Program_Timer.cs has the main function for a console application
as follows. As we can see, we make an instance timer from Timer class. And
then we make an instance of SRTEngine. Here, we don’t have to pass the third
Callback function argument because this Timer example doesn’t need the user
input. Finally, this codes run the console menu of SRTEngine class.

class Program

{

static void Main(string[] args)

{

Timer timer = new Timer("STimer");

SRTEngine Engine = new SRTEngine(timer, 10000, null);

Engine.RunConsoleMenu();

}

}

If you try step, you can see the animation is increasing the elapsed time.
The following display shows the state at time 2.188 where the schedule time
t_s=3.3 and the elapsed time t_e=2.188.

(STimer:Working, t_s=3.300, t_e=2.188) at 2.188
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The simulation run will stop at 3.3 because its run mode is step-by-step when
using step. At that time, it will display the discrete state transition as follows.

(STimer:Working, t_s=3.300, t_e=3.300)

--({!STimer.op},t_c=3.3)-->

(STimer:Working, t_s=3.300, t_e=0.000)

The first state is the source of state transition. An arc shows a triggering event
which is the output op of STimer at the current time=3.3. The second state is
the destination of the state transition in which the lifespan is also 3.3 but the
elapsed time has been reset to zero.

Exercise 3.1 Consider the example Ex_Timer.

a. Let’s change the display mode from te to tr by applying the command
dtmode. Then preset the simulation ending time to “5” by pause_at 5.
Now run until the simulation stops. When it stops at t_c=5, print the
total state using pinrt with option q. What are the values of t_s and
t_r, respectively? Guess the value of t_e at this moment.

b. Add one more state variable int n in Timer class. n should be set = zero
in init(), and it should increase by one in delta_y(). Get_s() shows n
in the string format

string.Format("Working, n={0}", n);

3.1.2 Vending Machine

Consider a simple vending machine (VM) from which we can get Pepsi and Coke.
Figure 3.2 illustrates the state transition diagram of VM we are considering.

There are three input events such as ?dollar for “input a dollar”, ?pepsi_btn
for “push the Pepsi button”, ?coke_btn for “push the Coke button”. Similarly,
we can model three output events such as !dollar for “a dollar out (because
of timeout of menu selection)”, !pepsi for “Pepsi out” and !coke for “Coke
out’. 2 The state of VM can be either Idle for “Idle”, Wait for “Wait”(that is
waiting for selection of Pesi or Coke), O_Pepsi for “output Pepsi” and O_Coke

for “output Coke”. And their life times are: 15 time units for Wait, 2 time
unites for both O_Pepsi and O_Coke, ∞ for Idle which is denoted by inf in
Figure 3.2. 3

At the beginning (t=0), VM is at Idle. If we put ?dollar in, it changes the
state into Wait simultaneously updating ts = 15 and te = 0 for the state. While

2We use symbol ? and ! for indicating an input event and an output event, respectively.
3we call a state s passive if τ(s) = ∞ or active otherwise (0 ≤ τ(s) < ∞). In Figure 3.2,

the state Idle is passive, the rest states are active.
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Figure 3.2: State Transition Diagram of Vending Machine

in the state, if VM receives ?pepsi_btn (resp. ?coke_btn), it enters into the
state O_Pepsi (resp. O_Coke) and simultaneously updates ts = 2 and te = 0.
While in the state O_Pepsi or O_Coke, VM ignores any input and preserves the
state. Similarly, while in the state Wait, VM ignores ?dollar input.

After staying at Wait for 15 time unites, VM returns to Idle state and outputs
the dollar if we don’t select Pepi or Coke within the 15 time units. However, if
we had selected one of them, VM changes its state into O_Pepsi (resp. O_Coke).
Then after 2 time unites, VM outputs !pepsi (resp. !coke) and returns to Idle.

The example of Ex_VendingMachine shows an atomic DEVS model of VM
which is defined in VendingMachine.cs file. The class VM has three input port
idollar, pepsi_btn and coke_btn; three output port odollar, pepsi, coke,
all assigned by returning values of the AddIP and AddOP functions in the con-
structor.

public class VM : Atomic

{

public InputPort idollar, pepsi_btn, coke_btn;

public OutputPort odollar, pepsi, coke;

enum PHASE { Idle, Wait, O_Pepsi, O_Coke }

PHASE m_phase;

public VM(string name) : base(name, TimeUnit.Sec)

{

idollar = AddIP("dollar");

pepsi_btn = AddIP("pepsi_btn");

coke_btn = AddIP("coke_btn");

odollar = AddOP("dollar");
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pepsi = AddOP("pepsi");

coke = AddOP("coke");

init();

}

VM’s initial state is set to Idle in init(). The lifespan of each state is defined
in tau() as 15, 2, 2, and ∞ for Wait, O_Pepsi, O_Coke, and Idle, respectively.

public override void init() { m_phase = PHASE.Idle; }

public override double tau()

{

if (m_phase == PHASE.Wait)

return 15;

else if (m_phase == PHASE.O_Pepsi)

return 2;

else if (m_phase == PHASE.O_Coke)

return 2;

else

return double.MaxValue;

}

The input transition function delta_x defines every arc triggered by an
input event in Figure 3.2 and returns true for each such arc. If the input event
idollar arrives while VM is not in state Idle, or if the input events pepsi_btn
or coke_btn arrive while VM is not in state Wait, delta_x returns false, and
the input is ignored.

public override bool delta_x(PortValue x)

{

if (m_phase == PHASE.Idle && x.port == idollar)

{

m_phase = PHASE.Wait;

return true; // Reschedule Me

}

else if (m_phase == PHASE.Wait && x.port == pepsi_btn)

{

m_phase = PHASE.O_Pepsi;

return true; // Reschedule Me

}

else if (m_phase == PHASE.Wait && x.port == coke_btn)

{

m_phase = PHASE.O_Coke;

return true; // Reschedule Me
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}

return false; // Ignore the input

}

The output transition function delta_y defines every arc generating an output
event in Figure 3.2.

public override void delta_y(ref PortValue ys)

{

if (m_phase == PHASE.Wait)

ys.Set(odollar);

else if (m_phase == PHASE.O_Pepsi)

ys.Set(pepsi);

else if (m_phase == PHASE.O_Coke)

ys.Set(coke);

m_phase = PHASE.Idle;

}

The virtual function Get_s() is also overridden and returns an m_phase.ToString().

public override string Get_s()

{

return m_phase.ToString();

}

}

Since this vending machine example needs the user input during a simulation
run, we need to define a callback function for the user input. In Program_VM.cs

file, we can see the following static function.

static PortValue InjectMsg(Devs model)

{

if (model is VM)

{

VM vm = (VM)model;

Console.Write("[d]ollar [p]epsi_botton [c]oca_botton > ");

string input = Console.ReadLine();

if (input == "d")

return new PortValue(vm.idollar);

else if (input == "p")

return new PortValue(vm.pepsi_btn);

else if (input == "c")

return new PortValue(vm.coke_btn);

else
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{

Console.WriteLine("Invalid input! Try again!");

return new PortValue(null,null);

}

}

else

throw new Exception("Invalid Model!");

}

The callback function InjectMsg casts the type of md from Devs to VM. And
the user-input of either d, p, or c is mapped to PortValue(vm.idollar),
PortValue(vm.pepsi_btn), or PortValue(vm.coke_btn), respectively.

The last part the the code in Program_VM.cs runs the simulation engine.
First we make vm as an instance of VM, and plug vm into an instance of SRTEngine
with the simulation ending time=10000 using the above callback function.

static void Main(string[] args)

{

VM vm = new VM("VM");

SRTEngine Engine = new SRTEngine(vm, 10000, InjectMsg);

Engine.RunConsoleMenu();

}

Let’s try the command step. Observe that since the initial state s0 of VM
is Idle and its lifespan tau(Idle)=∞, and the initial schedule is also t_s=∞.
In this case, the elapsed time t_e cannot ever reach t_s. Thus this command
step doesn’t stop until te becomes 1000 which is the simulation ending time
(unless the user interrupts the simulation).

In this case, we can stop the simulation run using pause or p command,
followed by Enter key. The following screen shows the situation if we make it
pause at 8.859.

(VM:Idle, t_s=inf, t_e=8.859) at 8.859

Let’s try inject or i. Then we can see the console output which is produced
by the above InjectMsg(Devs md) as follows.

[d]ollar [p]epsi_botton [c]oca_botton >

If we input d, we can see the input causes the state to transition from Idle to
Wait as follows.

(VM:Idle, t_s=inf, t_e=8.859)

--({?dollar,?VM.dollar}, t_c=8.859)-->

(VM:Wait, t_s=15.000, t_e=0.000)
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Figure 3.3: Monorail System

Now, we use continue or c to resume stepping again. If we want to pause
again and inject a menu selection such as pepsi_btn or coke_btn, we can do
that just like before.

Exercise 3.2 Consider modifying the VM model in EX_VendingMachine in order
to add the behavior of rejecting a second dollar input when VM is the state Wait.
To model this, let’s add a state Reject whose lifespan is 0. We define the output
transition δy at Reject as delta_y(Reject) = (!dollar, Wait). However
there are two ways of rescheduling of t_s and t_e of the the state Wait when
VM comes back to the state. Let’s try each of the following two ways.

1. Reset t_s=15 and t_e=0.

2. Return t_s and t_e to the values they had right before the input of the
additional dollar.

3.2 Coupled DEVS Examples

3.2.1 Monorail System

Figure 3.3 illustrates the configuration of a monorail system which consists of
four stations whose names are ST0, ST1, ST2 and ST3, respectively.

Each station, ST0, ST1, ST2 and ST3, is an instance of Station class derived
from Atomic such that it has an input event set X= {?vehicle, ?pull} and
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Figure 3.4: Phase Transition Diagram of Station
(A dashed line indicates δx(s, ts, te, x) = (s′, 0).)

an output event set Y ={!vehicle, !pull} and two state variables: phase ∈
{Empty (E), Loading (L), Sending (S), Waiting (W), Collided (C)}, and nso ∈
{false(f), true(t)} indicating “next station is NOT occupied” for nso=f or “next
station is occupied” for nso=t.

To avoid collisions that can occur when more than one vehicle attempts to
occupy a station (let’s call it A) at the same time, the station prior to A (let’s
call it B) should dispatch the vehicle ONLY when B’s nso = f. The phase
transition diagram of a single station is shown in Figure 3.4 where an arc is
augmented by (pre-condition),(post-condition). For example, when a station
receives ?p at phase=E, it makes nso=f; if phase=L and nso=f, then when it
receives ?p, it changes into phase=S internally without any output indicated by
!φ. The symbols ?v, ?p, and !v in Figure 3.2 stand for ?vehicle, ?pull, and
!vehicle, respectively.

The loading time lt is assigned as lt = 10 for ST0, ST2, ST3; lt = 30 for ST1
(because ST1 is bigger than the rest other three stations). The initial state for
each station is s0 = (E, t) for ST0 and ST2, s0 = (L, f) for ST1 and ST3.

To model and simulate this monorail system, we build Station as follows.

Station

First of all, a macro REMEMBERING in the first line in Station.cs file is defined
for testing the effect of monitoring the next station’s status using nso.

#define REMEMBERING // for testing the effect of using nso
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The class Station has several state variables: m_phase being one of enum
PHASE {Sending, Empty, Loading, Waiting, Collided}; bool init_occupied
indicating the initial occupation state of the station, bool nso indicating if the
next station is occupied or not; and the constant variable double loading_t

indicating the lifespan of a state when its phase is Loading.
Station has two input port ipull and ivehicle, one output port ovehicle.

These variables, including ports, are assigned in the constructor as follows.

public class Station: Atomic

{

enum PHASE {Sending, Empty, Loading, Waiting, Collided}

PHASE m_phase;

readonly bool init_occupied;

bool nso; //next_state_occpied

readonly double loading_t;

public InputPort ipull, ivehicle;

public OutputPort ovehicle;

public Station(string name, bool occupied, double lt):

base(name, TimeUnit.Sec)

{

init_occupied =occupied;

loading_t = lt;

nso =true;

ipull = AddIP("pull"); ivehicle = AddIP("vehicle");

ovehicle = AddOP("vehicle");

init();

}

Station::init() initializes m_phase depending on init_occupied such
that m_phase = Sending if init_occupied is true, otherwise, m_phase =
Empty.

public override void init()

{

if(init_occupied == true)

m_phase = PHASE.Sending;

else

m_phase = PHASE.Empty;

}
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Station::::tau() returns the lifespan of each state; 10 for Sending; loading_t
for Loading; ∞ otherwise.

public override double tau()

{

if (m_phase == PHASE.Sending)

return 10;

else if (m_phase == PHASE.Loading)

return loading_t;

else

return double.MaxValue;

}

Station::delta_x defines the input transition such that if it receives an input
through ipull, it marks nso = false which means that “the next station is not
occupied any more”. At that time, if the station’s phase is Waiting, delta_x
then changes the phase to Sending. To remember the next station be occupied
by this Sending action, Station::delta_x sets nso=tru and returns true.

When a station receives a vehicle through ivehicle port, if phase is Empty,
its phase changes into Loading; otherwise the phase changes into Collided.

public override bool delta_x(PortValue x)

{

if( x.port == ipull) {

nso = false;

if (m_phase == PHASE.Waiting)

{

#if REMEMBERING

nso = true;

#endif

m_phase = PHASE.Sending;

return true;

}

}

else if(x.port == ivehicle) {

if(m_phase == PHASE.Empty)

m_phase = PHASE.Loading;

else // rest cases lead to Colided!

m_phase = PHASE.Collided;

return true;

}

return false;

}
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Station::delta_y defines the output transition behavior such that, at the end
of Loading phase, if nso=true, then delta_y changes the stations’ phase into
Waiting. But if nso=false, delta_y marks nso=true for remembering the next
station’s occupation and changes the station’s phase to Sending. At the end
of Sending phase, it sends out the vehicle through ovehicle port and changes
the station’s phase to Empty.

public override void delta_y(ref PortValue y)

{

if (m_phase == PHASE.Loading)

{

if(nso == true)

m_phase = PHASE.Waiting;

else {

#if REMEMBERING

nso = true;

#endif

m_phase = PHASE.Sending;

}

}

else if (m_phase == PHASE.Sending)

{

y.Set(ovehicle);

m_phase = PHASE.Empty;

}

}

The displaying function Get_s() is overridden to return a string containing
information about m_phase and nso as follows.

public override string Get_s()

{

return string.Format("phase= {0}, nso= {1}", m_phase, nso);

}

Monorail System

To construct the monorail system, we will make four instances from Station

as shown in Program_Monorail.cs file. Stations ST1 and ST3 each have one
vehicle initially, the other two have none, while the loading time of ST1 is 30
time-units, the other three each have a loading time of 10.

Each station will collect its own performance data. All couplings are con-
nected as shown in Figure 3.3. The ending time of simulation is 1000, and there
is no callback function used here.
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static Coupled MakeMonorail(string name)

{

Coupled monorail = new Coupled(name);

Station ST0 = new Station("ST0", false, 10);

ST0.CollectStatistics(true);

monorail.AddModel(ST0);

Station ST1 = new Station("ST1", true, 30);

ST1.CollectStatistics(true);

monorail.AddModel(ST1);

Station ST2 = new Station("ST2", false, 10);

ST2.CollectStatistics(true);

monorail.AddModel(ST2);

Station ST3 = new Station("ST3", true, 10);

ST3.CollectStatistics(true);

monorail.AddModel(ST3);

//-------- Add internal couplings ------------

monorail.AddCP(ST0.ovehicle, ST1.ivehicle);

monorail.AddCP(ST1.ovehicle, ST0.ipull);

monorail.AddCP(ST1.ovehicle, ST2.ivehicle);

monorail.AddCP(ST2.ovehicle, ST1.ipull);

monorail.AddCP(ST2.ovehicle, ST3.ivehicle);

monorail.AddCP(ST3.ovehicle, ST2.ipull);

monorail.AddCP(ST3.ovehicle, ST0.ivehicle);

monorail.AddCP(ST0.ovehicle, ST3.ipull);

//---------------------------------------------

return monorail;

}

static void Main(string[] args)

{

Coupled ms = MakeMonorail("mr");

SRTEngine Engine = new SRTEngine(ms, 1000, null);

Engine.RunConsoleMenu();

}
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If you try the command run, DEVS# will simulate system performance until
it reaches the simulation ending time of 1000 time units. The default simulation
speed of DEVS# is the real time so it will take 1000 seconds in reality. However,
the user don’t have to wait until the simulation ending time. Don’t forget to
use the command pause to stop a simulation run any time you want.

We can change the simulation speed as maximum by scale 0 . If you don’t
care of animation output, you can set animode none. In addition, if you don’t
want to see the status of discrete state transitions, you can set dtmode none

too.
When the simulation stops, DEVS# makes the beep sounds every 1 second.

To stop the beep sounds, input RETURN key (two times it is kind of bugs but
I could not fix it yet). The following screen is the results of the command print

p.

mr.ST0

phase= Empty, nso= True: 0.590

phase= Empty, nso= False: 0.000

phase= Loading, nso= False: 0.010

phase= Sending, nso= True: 0.200

phase= Loading, nso= True: 0.190

phase= Waiting, nso= True: 0.010

mr.ST1

phase= Sending, nso= False: 0.010

phase= Empty, nso= False: 0.020

phase= Loading, nso= False: 0.400

phase= Sending, nso= True: 0.190

phase= Empty, nso= True: 0.190

phase= Loading, nso= True: 0.190

mr.ST2

phase= Empty, nso= True: 0.400

phase= Loading, nso= True: 0.000

phase= Loading, nso= False: 0.200

phase= Sending, nso= True: 0.200

phase= Empty, nso= False: 0.200

mr.ST3

phase= Sending, nso= False: 0.010

phase= Empty, nso= False: 0.210

phase= Loading, nso= False: 0.200

phase= Sending, nso= True: 0.190
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phase= Empty, nso= True: 0.390

The performance index for each station is the ratio of the total time the station
stays in each state divided by the simulation run time of 1000. In the example
above, for mr.ST3, phase= Loading, nso= False: 0.200 indicates that the
total time ST3 spent in the Loading state was about 20% of the length of
simulation run time of 1000. That means that station 3 spent about 200 time-
units in the Loading phase.

It is not hard to find that since ST1::loading_t=30 is three times longer
than other stations’ loading_t, ST1 stays at Loading about 59% (phase=
Loading, nso= False: 0.400 and phase= Loading, nso= True: 0.190). This
causes ST0 to transition into Wait because ST1 stays so long at Loading.

Exercise 3.3 Let’s comment out the line of “#define REMEMBERING” in Station.cs

of Ex_Monorial example. Build it again and try run. When the run stops, try
print q and print p. Is there a station which gets into Collided?





Chapter 4

Performance Evaluation

This section introduces several performance indices in Section 4.1 and shows
how to calculate them in Section 4.2.

4.1 Performance Measures

This section introduces four performance indices: Throughput, Cycle Time,
Utilization, and Average Queue Length.

4.1.1 Throughput

It is not hard to imagine that a system produces products. In this context,
we can think of a performance index for the system that answers the question
“how may products does this system produce?” This performance index can
be measured by counting the number of products produced by the system over
particular time period.

If we have x ∈ N jobs produced by the system over an observational time
span to, then the system throughput thrp is

thrp =
x

to
(4.1)

and its unit of measurement is jobs/time-unit.

Example 4.1 (Throughput) If the number of products produced by a system is
2500 during 100 minutes, then its throughput is thrp = 2500/100 = 25 jobs/min.
¤
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Figure 4.1: A System having a Buffer and a Processor

4.1.2 Cycle Time

A system performs a set of activity cycles so its performance can be measured
by how long it has taken to perform an activity cycle. The unit of this measure
is time-unit/activity.

Suppose that an activity consists of two events such that one begins at tl and
the other ends at tu. Then the activity duration is tu − tl. If we have activity
data as a set of time pairs A = {(tli, tui)|tli ≤ tui} where i is in some index set,
N = {1, 2, . . . , n}, then the (average) cycle time is

tcyc(A) =

∑
i∈N

(tui − tli)

n
. (4.2)

Cycle time can be interpreted in different contexts. For example, in the
system which consists of a buffer and a processor as shown in Figure 4.1, the
system time can be measured over the entire processing activity from arrival to
departure of the BufferProcessor system. Also waiting time can be considered
as the time duration for the waiting activity in Buffer, while processing time
can be the time duration between arrival to and departure from Processor.

Example 4.2 (Cycle Time as System Time) Assume we have the set of time
pairs A = {(5, 17), (7, 29), (15, 41), (50, 62)} from arrival to departure of the
BufferProcessor system in Figure 4.1. Then the system time is tcyc(A) =
(12 + 21 + 26 + 12)/4 = 17.75. ¤

4.1.3 Utilization

Conventionally the definition of utilization is the percentage of the working time
of a machine compared to its total running time. Let’s consider a processor P as
shown in Figure 4.2(a) which has two states: Busy, which is defined as working
time, and Idle, which is defined as “running, but not working” time. Once
it receives an input ?x, it processes the input and then generates output !y
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Figure 4.2: State Trajectory of a Processor

Figure 4.3: A State Trajectory of Vending Machine

after 10 time units. Figure 4.2(b) illustrates a state trajectory of the processor
terminating at to = 30. In this trajectory, the total time span of Busy is
(15-5)+(30-23)=17, so utilization of the processor is 56.7%=(17/30)*100, while
idle’s percentage is 100-56.7=43.3%.

We can generalize this concept to more than two states. Let’s consider the
vending machine introduced in Section 3.1.2. Suppose that we have a state
trajectory of the vending machine as shown in Figure 4.3. This state trajectory
can be seen as a sequences of piece-wise constant segments. The time it takes
to transition between states is assumed to be zero.

The time duration of a piece-wise constant segment is defined by td : S×N→
T where N is a set of natural numbers. This function maps from state s and
the order i ∈ N of a segment piece to a time span value if the segment piece
in the state s, otherwise the value is 0. For example, in the state trajectory of
Figure 4.3, td(Idle, 1) = 5 − 0 = 5, while td(Idle, 2) = 0 because the state of
the second segment is Wait.

Let C be the current state. Then the probability that the current state is
s ∈ S over time from 0 to to, denoted by P (C = s), is

P (C = s) =

∑
i∈N

td(s, i)

to
. (4.3)
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It is true that ∑

s∈S

∑

i∈N

td(s, i) = to. (4.4)

So it is also true that

∑

s∈S

P (C = s) =
∑

s∈S




∑
i∈N

td(s, i)

to


 =

to
to

= 1. (4.5)

Example 4.3 Consider the state trajectory of Figure 4.3. Then P (C =Idle)
= (5+3+10)/40 = 0.45, P (C=Wait) = (15+5)/40 =0.5, P (C=O_pepsi)=2/40
=0.05, P (C=O_coke)=0. ¤

Exercise 4.1 Assume that we have a processor as shown in Figure 4.2(a). From
the processor, we have an event segment ω[0,50] = (?x, 10)(!y, 20)(?x, 35)(!y, 45)
where (z, t) means an event z occurs at t ∈ T and the observation was performed
from 0 to 50. Calculate P (C=Idle) and P (C=Busy) over time [0,50]. ¤

To calculate P (C = s), we need to keep track of
∑
i

td(s, i) by accumulating all

time durations of piece-wise constant time segments when the system is in state
s. We will see how to implement this in Section 4.2.2.

4.1.4 Average Queue Length

Once again, let’s consider a system with a buffer and a processor that are
serially connected as shown in Figure 4.1. To avoid collisions of multiple inputs
at the processor, the buffer stores inputs while the processor is busy working on
previous inputs.

Depending on inter-arrival times of between inputs and Processor’s process-
ing time, the length of time an input waits in Buffer can vary widely. Thus
the number of waiting inputs (queue size) can be a random number.

Recall how we developed the probability that the current state C is equal
to a state s in Section 4.1.3. Let the current state C of Buffer be defined as
the number of inputs currently waiting in buffer. Then the probability that the
number of waiting parts C is equal to x ∈ N, where N is a suitably defined
subset of the natural numbers, over an observation time from 0 to to is

P (C = x) =

∑
i∈N

td(x, i)

to
(4.6)

The mean or expected value of C is defined by

E(C) =
∑

x∈N
xP (C = x) (4.7)

The Average Queue Length is defined as Equation (4.7).
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Figure 4.4: Trajectory of Queue

Example 4.4 Suppose that we have a state trajectory of a queue as shown in
Figure 4.4. By Equation (4.6), we can get P (C=0)=(4+7)/60=0.183, P (C=1)=
(3+3+3+5+7)/60=0.35, P (C=2)=(4+5+7+3)/60=0.317, P (C=3)=9/60=0.15.
By Equation (4.7), the Average Queue Length is E(C = x)=0*0.183+1*0.35+
2*0.317+3*0.15=1.434. ¤

Since the natural number x ∈ N is the special case of a general state s ∈ S,
if we can calculate P (C = s) then we can also calculate P (C = x) as well as
E(C). We will see how we implement this process in Section 4.2.3.

4.1.5 Sample Mean, Sample Variance, and Confidence In-

terval

If the internal components of a system behave stochastically or if its input events
can occur at arbitrary times, the performance have randomness.

If we reset the model under study prior to each simulation run, the perfor-
mance indices from each run are independent from those of all the other runs.
Random variables are said to be identically distributed if the associated vari-
ables have identical measurement. For examples, the Utilization of Processor in
BufferProcessor of Figure 4.1 from multiple simulation runs are independent
and identically distributed (IID) random variable.

Suppose that we try to estimate the real mean µ of a random variable from
a sample whose values are X1, X2, . . . Xn from n simulation runs as illustrated
in Figure 4.5. Then the sample mean

µ̂ =

n∑

i=1

Xi

n
(4.8)

is an unbiased (point) estimator of the real mean µ. Similarly, the sample
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Figure 4.5: IID random variants X1 . . . Xn from n simulation runs

variance

σ̂2(n) =

n∑

i=1

[Xi − µ̂]2

n− 1
(4.9)

is an unbiased estimator of the real variance σ2. For n ≥ 2, a 100(1−α) percent
confidence interval for µ is given by

µ̂± tn−1,1−α/2

√
σ̂2(n)

n
(4.10)

where tn−1,1−α/2 is the upper 1− α/2 critical point for the t distribution with
n− 1 degree of freedom. It can be written

P

[
µ̂− tn−1,1−α/2

√
σ̂2(n)

n
≤ µ ≤ µ̂ + tn−1,1−α/2

√
σ̂2(n)

n

]
= 1− α (4.11)

and we say that we are 100(1-a) percent confident that the real µ lies in the
interval given by Equation (4.10).

Example 4.5 Suppose that 10 simulation runs produce system throughput
data of 12.0, 15.0, 16.8, 18.9, 9.5, 14.9, 15.8, 15.5, 5.0, and 10.9. Our ob-
jective is to build the 90 % confidence interval for µ. We have t-distribution
values of t10,0.9=1.372, t10,0.95=1.812, t9,0.9=1.383, t9,0.95=1.833.

Then µ̂=13.4 and σ̂2=1.7 and the 90% confidence interval for µ is µ̂ ±
t9,0.95

√
σ̂2(n)

n = 13.4± 1.83
√

1.7
10 = 13.4± 0.75 ¤

The values of tn−1,1−α/2 of t pdf are available in many statistics books and
simulation books [Zei76, LK91]. DEVS# calculates the 100(1-α) confidence
interval for µ when using mrun n for 2 ≤n≤ 20 in version 1.2.1.



4.2 Practice in DEVS# 49

4.2 Practice in DEVS#

This section addresses how we can calculate the performance indices using
DEVS#. All classes used in this section are available in DEVSsharp/ModelBase/

folder.

4.2.1 Throughput and System Time in DEVS#

Throughput can be collected by counting flow entities coming out of the system
under study, while System Time can be collected by tracing the arrival time and
the departure time of each flow entity. 1 ModelBase library provides a basic
class for flow entities, called the class Job in Job.cs file.

Job

Job class has public data fields: int type, int id and Dictionary<string, double> TimeMap.
TimeMap will be used for stamping a pair of an event string and its occurrence
time (we will see examples in Generator class and Transducer class later).

There are tree constructors, a string conversion function ToString(). The
virtual function, Clone() is supposed to return a clone of this class instance.

public class Job

{

public int type;

public int id;

public Dictionary<string, double> TimeMap;

public Job(int Type) {...}

public Job(int Type, int Id){...}

public Job(Job ob) { ... }

public override string ToString();

public virtual Job Clone() { return new Job(this); }

}

To generate and to collect instances of Job class, we will use two atomic
models: Generator in Generator.cs and Transducer in Transducer.cs, which
are key models in the experimental frame. For collecting System Time, we will
need the cooperation of both Generator and Transducer.

1Flow entities can be clients of a bank, products of a manufacturing system, airplanes of

an airport, and messages of a communicating network.
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Figure 4.6: State Transition Diagrams of Generator: (a) Autonomous Mode (b)
Non-Autonomous Mode

Generator

The class Generator in DEVSsharp/ModelBase/Generator.cs produces jobs
depending on (1) autonomous mode, (2) generating delay pdf, and (3) producing
job spectrum.

If Generator’s bool m_bAutonomous filed is true then Generator keeps
producing at Work phase, while it is false then Generator will be waiting for
an external pull signal through the input port, ips as shown in Figure 4.6(b).

The generating time delay at Work phase of Generator can be determined
by an random variable rv of a given pdf, m_PDFofInterGenerating.

The job spectrum can be determined by a PMF in which the probability of
each job class is described. For more detail information for the class of PVofPMF,
revisit to Section 2.4. The following codes show the interface ports, and internal
data fields. Here int m_no_gen is used for tracking the job id which will be
unique during a simulation run.

public class Generator: Atomic

{

public OutputPort oout;//-- output port for job

public InputPort ips;//-- pull signal port

bool m_bAutonomous; // automatic or manual

RVofPMF<Job> m_JobSpectrum; //-- Job Spectrum

RVofPDF m_PDFofInterGenerating; // pdf of inter-generating time

int m_no_gen; //-- to no of generating: used for job.id

enum PHASE { Wait, Work }

PHASE m_phase;

The constructor of Generator needs five arguments: (1) name as a string, (2)
TimeUnit tu, (3) bool auto indicating autonomous or non-autonomous which
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is assign to the internal variable m_bAutonomous, (4) InterGenerating PDF as
RVofPDF, and (5) Job spectrum as RVofPMF<Job> as follows.

public Generator(string name, TimeUnit tu, bool auto, RVofPDF InterGenerating,

RVofPMF<Job> JobSelection):base(name,tu){...}

Generator::init() resets m_no_gen to zero. m_phase is set to Work if
m_bAutonomous is true, otherwise, it is set to Wait. If m_JobSpectrum is not
null m_statistics is initialized by each type of job available in m_JobSpectrum.
m_statistics of Generator will collect statistics how may jobs have been

produced.

public override void init()

{

m_no_gen = 0; //

if (m_bAutonomous)

m_phase = PHASE.Work;

else

m_phase = PHASE.Wait;

if (m_JobSpectrum != null)

{

foreach (Job job in m_JobSpectrum.pmf.Keys)

m_statistics.Add(job.type.ToString(), 0.0);

}

}

When the phase of Generator is Work, Generator::tau() returns a random
value from the pdf m_PDFofInterGenerating(which is set through the construc-
tor function of Generator). If Generator’s phase is Wait, it returns the infinity
as the lifespan of Wait.

public override double tau()

{

if (m_phase == PHASE.Work)

{

double t = m_PDFofInterGenerating.RN();

return t;

}else // PHASE.Wait

return double.MaxValue;

}

Generator::detla_x() treats the situation that Generator is non-autonomous,
and it receives the pull signal through ips port when it waits for the signal.
Otherwise, Generator ignores any input signal.



52 Performance Evaluation

public override bool delta_x(PortValue x)

{

if (m_bAutonomous == false && x.port == ips &&

m_phase == PHASE.Wait)

{

m_phase = PHASE.Work;

return true;

}

return false;

}

In Generator::detla_y(), Generator has a non-trivial m_JobSpectrum ,
Generator picks one job by calling m_JobSpectrum.SampleV() and clones the
picked job to clnt. The unique job id for clnt is assigned. At this time,
Generator stamps the current time into clnt’s TimeMap with its key value as
the string “SysIn”. This event time will be used when collecting System Time
Performance Index by Transducer that we will look through later.

To collect of how many different jobs are generated, Generator accumulates
the number of jobs generated with respect to their job types.

After generating a job (or null job) through oout port, if Generator is non-
autonomous, it goes back to the phase Wait, otherwise it keep generating the
next job by staying its phase Work.

public override void delta_y(ref PortValue y)

{

if (m_JobSpectrum != null && m_JobSpectrum.pmf.Count > 0)

{

Job clnt = (m_JobSpectrum.SampleV()).Clone();

clnt.id = ++m_no_gen;

//-- (event, time) stamping

clnt.TimeMap.Add("SysIn", Devs.TimeCurrent);

y.Set(oout, clnt);

m_statistics[clnt.type.ToString()] += 1;

}

else // no job value sent

y.Set(oout);

if (m_bActive == false)

m_phase = PHASE.Wait;

}
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Figure 4.7: State Transition Diagrams of Transducer

Transducer

Transducer’s behavior is pretty much opposite to that of Generator. Figure
4.7 shows its state transition diagram. It has an input port iin and a buffer
Collector as Dictionary<int, List<Job>> to collect jobs coming in with
respect to their types.

public class Transducer: Atomic

{

public InputPort iin;

Dictionary<int, List<Job>> Collector;

public Transducer(string name, TimeUnit tu): base(name, tu)

{

CollectStatistics(true); // default collecting statistics

iin = AddIP("in");

Collector = new Dictionary<int, List<Job>>();

}

Transducer::init() clears all clients in Collector. Transducer::tau()

returns ∞ all the time so it is passive.

public override void init() { Collector.Clear(); }

public override double tau() { return double.MaxValue; }

Transducer::delta_x() castes the input value x.value to pv of Job type.
It stamps pv with (“SysOut”,CurrentTime), and pushes pv into Collector.
Since Transducer is always passive, it has no output, and so delta_y() is not
needed here;

public override bool delta_x(PortValue x)

{

Job pv = (Job) x.value;

if(pv != null)

{
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//-- (event, time) stamping

pv.TimeMap.Add("SysOut", Devs.TimeCurrent);

if (Collector.ContainsKey(pv.type) == false)

Collector.Add(pv.type, new List<Job>());

Collector[pv.type].Add(pv);

}

//else

// throw new Exception("Type casting Failed!");

return false;

}

Recall that Transducer collects incoming Jobs stamped with (“SysIn”,arrival-
time) by Generator, (“SysOut”,departure-time) by Transducer. Using these
data, GetPerformance() of Transducers returns {(“Throughput”, value) and
(“Average System Time”, value) } as follows.

• Average Throughput value defined in Equation (4.1) is the number of
Jobs in Collector divided by the current time that is the observation
time-length to of a simulation run.

• Average System Time defined in Equation (4.2) is the average value of all
time durations (arrival-time, departure-time) for each Job in Collector.

• In addition, even though the number of jobs went through the system can
be recalculated by Average Throughput, it will be displayed by counting
the jobs collected into Transducer in terms of their job types.

The function Transducer::GetPerformance() returns these three indices.
The source code of GetPerformance() is available in Transducer.cs.

4.2.2 Utilization in DEVS#

Recall that to get Utilization, we need to accumulate the time intervals of piece-
wise constant time-segments associated with a state. Accumulating the time
intervals can be done using the criterion of either “as long as possible” or “as
short as possible”. “Longer” is preferred over “shorter” because it requires less
computational burden.

If we accumulate the time interval in cases

(1) when the constant segment might change at discrete event points, or

(2) when the simulation run stops

the “as long as” preference might be achieved. For example, in Figure 4.3, times
at t =5, 20, 23, 28, 30 for case (1) (discrete state transitions) and also at t =40
for case (2) (simulation stop time).
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DEVS# calls the following function when_receive_cs for collecting the time
interval of a state segment in cases of above (1) and (2).

public override void when_receive_cs()

{

double dT = TimeCurrent - TimeLastcs;// dT: accumulating time span

if (CollectStatisticsFlag())

{

string state_str = Get_Statistics_s();

if (m_statistics.ContainsKey(state_str)==false)

m_statistics.Add(state_str, 0.0); // add new entry

m_statistics[state_str] += dT;

}

TimeLastcs = TimeCurrent;

}

The function description of when_receive_cs() shows that it records and ac-
cumulates the time interval dT from the last time we called when_receive_cs()

to the current time if the flag of collecting statistics is true.
We are using m_statistics (defined as Dictionary<string, double>) to

collect statistics. The key value of piece-wise constant segment will be a string
returned from Get_Statistics_s().

If the string of Get_Statistics_s() was not yet registered in m_statistics,
the pair(state_str,0.0) will be newly registered in m_statistics where
state_str=Get_Statistics_s(). The value of m_statistics[state_str] is
increased by dT. Finally, t_Lcs that is the last time when we calls when_receive_cs()
is updated by the current time.

Every time we need to print the current statistics (such as when we use the
command print p), DEVS# shows performance indices by calling each model’s
overriding GetPerformance(). The default implementation of Atomic:: GetPerformance()
is as follows.

public virtual Dictionary<string, double> GetPerformance()

{

Dictionary<string, double> statistics = new Dictionary<string,double>();

if(CollectStatisticsFlag()==true) {

foreach(string str in m_statistics.Keys)

{

double probability = m_statistics[str] / Devs.TimeCurrent;

if(probability < 0.0 || probability > 1.0)

throw new Exception("Invalid Probability!");

else
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statistics[str] = probability;

}

}

return statistics;

}

As we can see, Atomic::GetPerformance() returns a Dictionary<string, double>

such that statistics[key] = m_statistics[key]/TimeCurrent.
Thus statistics[key] contains the P (C=key) of Equation (4.3) over the

interval from 0 to the current time.

4.2.3 Average Queue Length in DEVS#

The class Buffer in DEVSsharp/ModelBase/Buffer.cs shows how to collect the
average queue length. The default implementation of Get_Statistics_s() at
Atomic is to return Get_s(). However, Buffer overrides the Get_Statistics_s()
such that it returns the number of jobs waiting in a buffer m_Jobs as follows.

public override string Get_Statistics_s()

{ // length Only

return string.Format("{0}", m_Jobs.Count);

}

The class Buffer inherits Atomic::when_receive_cs() shown in the pre-
vious section. But it overrides GetPerformance() function as follows.

public override Dictionary<string, double> GetPerformance()

{

Dictionary<string, double> statistics = new Dictionary<string,double>();

if(CollectStatisticsFlag()==true) {

double E_i=0; // expectation of queueing line length

foreach(string key in m_statistics.Keys)

{

double probability = m_statistics[key]/TimeCurrent;// P(i)

if(probability < 0.0 || probability > 1.0) {

throw new Exception("Invalid Probability!");

}

else{

int i = System.Convert.ToInt32(key);

E_i += probability * i;// E(i)=\Sum_{i} i*P(i)

}

}

statistics.Add("Average Q length: ", E_i);
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}

return statistics;

}

It makes P (C=i) using m_statistics[i]. Then it makes E(C) by summing
over i*P (i) for all i as defined in Equation (4.7).

The rest other functions defined in Buffer class will be examined in the next
section.

4.3 Client-Server System

The example Ex_ClientServer shows all features of performance measurement
introduced in this chapter. This example considers a configuration of n servers
where n can vary from 1 to 5. Figure 4.8 illustrates the case of n = 3. How-
ever, all classes used in this example are defined in ModelBase library. Thus
this example show how to use the classes defined in other project too. Ob-
served that References of Ex_ClinetServer displayed in Solution Explore in-
cludes DEVSsharp and ModelBase.

The entire simulation model consists of the client-server system under test,
named CS, and the experimental frame, named EF, as shown in Figure 4.8.
The sub-components of EF, Generator and Transducer were investigated in
the previous section, so we will discuss the sub-models of CS in the following
sections.

4.3.1 Server

Server defined in DEVSsharp/ModelBase/Server.cs is a concrete class derived
from Atomic. The state transition diagram of Server can be drawn as shown in
Figure 4.9(a). The C# codes of Server available in DEVSsharp/ModelBase/Server.cs

and are represented by Figure 4.9(a) there is no need for further explanation
here.

4.3.2 Buffer

Buffer defined in DEVSsharp/ModelBase/Buffer.cs is a concrete class derived
from Atomic. This class has a single input port in, an n-vector of input ports
pull and an n- vector of output ports out (in this example, n=3). As member
data, phase is a string; m_Jobs is a buffer keeping incoming clients whose type
is Job class; m_OAvail is a vector of boolean values tracking the availability of
servers; m_OSzie stores the number of connected servers; and send_index is an
int which tracks the server index to which Buffer will send output.
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Figure 4.8: Configuration of Client Server System n = 3

Figure 4.9: Server and Buffer
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public class Buffer: Atomic

{

public InputPort iin;

public List<InputPort> pull;

public List<OutputPort> oout;

private List<Job> m_Jobs; // FIFO Buffer

protected enum PHASE { Idle, SendTo, Ask };

protected PHASE m_phase;

protected List<bool> m_OAvail;//check availability of next resource

protected int m_Osize; // size of output

protected int m_send_index; // index to which it will send

protected double m_send_time;

The function C1 updates member data as a function of an input event x. If
x comes through the input port in, C1 casts the value of x to Job and pushes
it back to the buffer m_Jobs. Otherwise, x comes through one of pull ports.
So C1 searches the server index i, checking the identity of pull[i] and the
incoming event’s port, and updates m_OAvail[i]=true which marks the i-th
server as being available.

virtual protected void C1(PortValue x)

{

if(x.port == iin){ //receiving a client

if(x.value is Job) {

Job client = (Job)x.value;

if(client != null)

m_Jobs.Add(client);

}

else

throw new Exception("Invalid Input!");

}

else // receiving a pull signal

{

for(int i=0; i<m_Osize; i++) {

if(x.port == pull[i]) {

m_OAvail[i]= true; // server_i is available

break;

}

}

}

}
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The function Matched() first checks to see if there is a waiting job in m_Jobs

and then checks to see if there exists an available server from 0 to m_Osize-1. If
a match is found, the function sets m_OAvail[i]=false, remembers the index
i at send_index, then returns true. Otherwise it returns false which means
no match.

private bool Matched()

{

if(m_Jobs.Count > 0){

for(int i=0; i < m_Osize; i++){// select server

if(m_OAvail[i] == true){// server i is available

m_OAvail[i]=false;//Mark server_i non-available

m_send_index = i; // remember i in m_send_index

return true;

}

}

return false;

}else

return false;

}

The function C2 creates an the output event and removes the first job from
m_Jobs when C2’s phase is SendTo.

virtual protected void C2(ref PortValue y)

{

if(m_phase == PHASE.SendTo){

Job job = m_Jobs[0];

y.Set(oout[m_send_index], job);

m_Jobs.RemoveAt(0);// remove the first client

}

}

The function init() of Buffer resets phase to Idle, assigns m_OAvial[i]=true
for all indices, and clears all jobs in m_Jobs.

public override void init()

{

m_phase = PHASE.Idle;

m_Jobs.Clear();

m_send_index = 0;

m_OAvail.Clear();

for (int i = 0; i < m_Osize; i++)

m_OAvail.Add(true); // add variable

}
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Buffer’s tau() returns ∞ for Idle and returns 2.0 for SendTo.

public override double tau()

{

if (m_phase == PHASE.Idle)

return double.MaxValue;

else

return m_send_time;

}

The input transition function delta_x of Buffer updates member data by call-
ing C1(x) and then, if the phase of the server is Idle, checks the returning value
of Matched(). If the value is true, the phase of the server changes into SendTo.

public override bool delta_x(PortValue x)

{

C1(x);

if (m_phase == PHASE.Idle)

{

if (Matched())

{

m_phase = PHASE.SendTo;//

return true; // reschedule as active

}

}

return false;

}

When the server is ready to exit the state SendTo, it gets y by calling C2(y),
if Matched() returns true, the phase stays at SendTo. Otherwise, the phase
returns to Idle.

public override void delta_y(ref PortValue y)

{

C2(ref y);

if (Matched())

m_phase = PHASE.SendTo;

else

m_phase = PHASE.Idle;

}

Recall that Buffer class contains the overriding Get_Statistics_s() and
GetPerformance(), which were investigated in Section 4.2.3. For the codes of
Buffer::Get_s(), the reader should refer to Buffer.cs.
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4.3.3 Performance Analysis

The procedure for constructing the coupled model EF and CS is omitted here
because it is quite straight forward and its schematics were shown in Figure 4.8.

All atomic models’ time units were set as TimeUnit.Sec. And Generator

used here was autonomous and it’s inter-generating job time was a random
number of the exponential pdf with mean 5; the time period at Busy of Server
was constant 10; Buffer’s sending delay time was 2.

We will analyze change of performance indices by varying the number of
servers. The number of servers used in CS can be varied by passing different num-
bers n with the following static function defined in Ex_ClientServer/Program_CS.cs.

static Coupled MakeTotalClientServerSystem(int n)

The simulation settings we use here are: the simulation ending time=10,000
second; no display of continuously increasing te, the scale factor is maximum,
in which the clock jumps to the next event time; and there is no display of
discrete event transitions. The following code shows the case where the number
of servers is 5.

static void Main(string[] args)

{

Coupled Sys = MakeTotalClientServerSystem(5) ;

Sys.PrintCouplings();

SRTEngine simEngine = new SRTEngine(Sys, 10000, null); //

simEngine.SetAnimationFlag(false);

simEngine.SetTimeScale(double.MaxValue); //

simEngine.Set_dtmode(SRTEngine.PrintStateMode.P_NONE, false);

simEngine.RunConsoleMenu();

}

Let’s change n sequentially from 1 to 5, and build the various system models,
and try mrun 20 for each configuration. After completion of mrun 20, DEVS#
summarizes the performance indices to the console. 2 Table 4.1 shows per-
formance indices for each configuration and Figure 4.10s show the trend of
performance changes as n changes.

Average Queue Length and Average System Time are drastically reduced
until n reaches 3. Average Throughput increase up to 0.2 jobs/sec at n=3 and
then there is no increase at n=4 and 5. The reason why Throughput doesn’t

2The log file “devspp log.txt” collects also the same performance indices. But watch out

that the old devspp log.txt will be over written by the new one every time we execute DEVS#

again.
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Table 4.1: Performance Indices for each n = i of Servers

Performance Indices n=1 n=2 n=3 n=4 n=5

Queue Length 589.00 173.79 1.65 0.71 0.58
System Time (sec.) 2,927.33 873.86 18.30 13.54 12.86

Throughput (jobs/sec.) 0.08 0.17 0.20 0.20 0.20
Utilization 0.83 0.83 0.67 0.50 0.40

The simulation run time was to = 10,000 seconds; Utilization is measured by
the average utilization of all servers for 2 ≤ n. For example, Utilization when
n=3 means

∑
i=1,2,3Utilization(i)/3.

increase after n=3 might be that there is lack of client arrival from outside the
system. We can find a similar phenomenon in Utilization which doesn’t decrease
when n=2 but starts to decrease when n=3.

Another interesting trend is that both utilizations at n=1 and n = 2 are
equal to about 80%, not 100%, even though Average Queue Length is 589 and
173 and Average System Time is 2,927.33 and 873.86 sec, respectively. The
reason seems to be caused by Buffer::tau(SendTo)=2. Server’s P (C =Idle)
is about 0.2, which makes sense when considering Server::tau(Busy)=10. In
other words, except for the client transmission time from Buffer to Server,
Server keeps working all the time.

The following screen shot illustrates the average value and its 95% confidence
interval for each statistical item listed where the number of servers is 5. We can
find uneven utilizations in this screen shot. For example, P (C =Busy)=0.61 for
SV0 server, while P (C =Busy)=0.17 for SV4 server. This phenomenon is caused
by the searching order in the function Buffer::Matched() in which checking
for the availability of servers starts from 0 index all the time. We may need to
modify the searching order if we want to utilize the servers more evenly.

Note that in order to have a confidence interval for mu, you must have run
a large number of simulations [Zei76, LK91]. It would help the analyst to know
how many simulations were run to produce these results.

...

============= Total Performance Indices =========

CSsystem.CS.BF

Average Q length: : 0.567, 95% CI: [0.562, 0.573]

CSsystem.CS.SV0

Idle: 0.385, 95% CI: [0.382, 0.388]

Busy: 0.615, 95% CI: [0.612, 0.618]
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Figure 4.10: Performance Indices
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CSsystem.CS.SV1

Idle: 0.471, 95% CI: [0.468, 0.474]

Busy: 0.529, 95% CI: [0.526, 0.532]

CSsystem.CS.SV2

Idle: 0.584, 95% CI: [0.581, 0.587]

Busy: 0.416, 95% CI: [0.413, 0.419]

CSsystem.CS.SV3

Idle: 0.713, 95% CI: [0.707, 0.718]

Busy: 0.287, 95% CI: [0.282, 0.293]

CSsystem.CS.SV4

Idle: 0.835, 95% CI: [0.830, 0.839]

Busy: 0.165, 95% CI: [0.161, 0.170]

CSsystem.EF.Trans

Average System Time of Job1 (Sec): 12.817, 95% CI: [12.791, 12.843]

# Job1 went through the system during 10000.00 Secs: 2011.500, 95% CI: [2000.585

, 2022.415]

Average Throughput of Job1 per Sec: 0.201, 95% CI: [0.200, 0.202]

========== Simulation Run Completed! ==========





Chapter 5

Appendix: Building

Projects using DEVS#

This appendix covers the directory structure of DEVS#, how to build the ex-
ample projects provided in DEVS# library, and how to add new project.

5.1 Directory Structure of DEVS#

In DEVS# version 1.2.1, the root director of DEVS# is DEVSsharp in which
many classes covered in Chapter 2 such as Named, Port, PortValue, Devs,
Atomic, Coupled. However, the classes of random variables are contained
in the sub-directory DEVSsharp\Util. DEVSsharp\Doc contais this document
in a PDF file and HTML files. DEVSsharp\Examples has example projects
such as Ex_Timer, Ex_PingPong, Ex_VendingMaching, and Ex_ClientServer;
DEVSsharp\ModelBase contains classes which can be used in several other projects

DEVSsharp

+-- Util

+-- Doc

+-- Examples

...

+-- ModelBase

...

+-- Verifiable

...

Figure 5.1: Directory Structure of DEVS#
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such as Generater, Transducer, Buffer, Server, and so on; DEVSsharp\Verifiable
containing all classes which are used for verification that was not covered in this
document at all. For verification research, the author has a plan to write another
document soon.

5.2 Building Simulation Examples in DEVS#

Modeling and simulation examples projects covered in Chapters 2, 3 and 4
will be available DEVSsharp/Examples/Ex Projects. We can open each so-
lution file whose file extension is sln in each project folder. For example,
we can open DEVSsharp/Examples/Ex_ClientServer/Ex_ClientServer.sln.
Each solution file will opens reference project(s) such as DEVSsharp (and ModelBase

for Ex_ClientServer) as well as the example project itself.
In addition, if we open DEVSsharp/DEVSsharp.sln, Visual Studio 2005 will

open all examples of Timer, PingPong, ClientServer and VendingMachine as
well as DEVSsharp and ModelBase as shown in Solution Explorer window in
Figure 5.2.

5.3 Adding Our Own Project

This section shows how to add new project which uses DEVS# library in a
step-by-step procedure.

1. Create a new project. Select File->New->Project... menu. Then we
can see a dialog box as shown in Figure 5.3. We assume to create Console
Application at DEVSsharp\Examples. The location we want to create new
project can be selected by [Browser...] button. The new project is titled
as MyProject.

Then we can see the window screen of Visual Studio 2005 after creating
MyProject as shown in Figure 5.4.

2. Add DEVSshapr project. Since we need to use DEVSsharp library,
we should add it by clicking right mouse button to ‘MyProject’ at So-
lution Explorer and then select context menu through Add->Existing

Project... as shown in Figure 5.5. A file selection dialog will pop up,
so we will select DEVSsharp\DEVSsharp.csproj that is the project file of
DEVSsharp.

3. Add DEVSsharp as a MyProject’s reference. Now we need to add
DEVSshap project to MyProject as a reference. To do this, first left-
button click MyProject at Solution Explorer and then select title menu
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Figure 5.2: Screen Capture of Visual Studio 2005TM when opening DE-
VSsharp.sln

of Project->Add Reference... or right-button click for context menu of
Add Reference....

We can see a dialog box titled as Add Reference as shown in Figure
5.7. We select Projects tab and select DEVSsharp and press OK button.
Then MyPoroject’s References at Solution Explorer becomes to contain
DEVSsharp.

The following codes shows a simple example which are mainly copied from
Ex_Timer project. Don’t forget to add the statement of using DEVSsharp.

using System;

using System.Collections.Generic;

using System.Text;

using DEVSsharp; //<-- Don’t forget add this statement
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Figure 5.3: New Project Dialog

namespace MyProject

{

public class Timer : Atomic

{

private OutputPort op;

public Timer(string name)

: base(name, TimeUnit.Sec)

{ op = AddOP("op"); init(); }

public override void init() { }

public override double tau() { return 3.3; }

public override bool delta_x(PortValue x) { return false; }

public override void delta_y(ref PortValue y) { y.Set(op); }

public override string Get_s() { return "Working"; }

}

class Program

{

static void Main(string[] args)

{

Timer timer = new Timer("STimer");

SRTEngine Engine = new SRTEngine(timer, 10000, null);
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Figure 5.4: My Project

Engine.RunConsoleMenu();

}

}

}
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Figure 5.5: Menu Selection of Add Existing Project...

Figure 5.6: Menu Selection of Add Reference...
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Figure 5.7: Dialog of Add Reference
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