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Abstract

This paper presents the design of a read-optimized
relational DBMS that contrasts sharply with most
current systems, which are write-optimized.
Among the many differences in its design are:
storage of data by column rather than by row,
careful coding and packing of objects into storage
including main memory during query processing,
storing an overlapping collection of column-
oriented projections, rather than the current fare of
tables and indexes, a non-traditional
implementation of transactions which includes high
availability and snapshot isolation for read-only
transactions, and the extensive use of bitmap
indexes to complement B-tree structures.
We present preliminary performance data on a

subset of TPC-H and show that the system we are
building, C-Store, is substantially faster than
popular commercial products.  Hence, the
architecture looks very encouraging.

1. Introduction

Most major DBMS vendors implement record-oriented
storage systems, where the attributes of a record (or tuple)
are placed contiguously in storage.  With this row store
architecture, a single disk write suffices to push all of the
fields of a single record out to disk.  Hence, high
performance writes are achieved, and we call a DBMS
with a row store architecture a write-optimized system.
These are especially effective on OLTP-style applications.

In contrast, systems oriented toward ad-hoc querying
of large amounts of data should be read-optimized.  Data
warehouses represent one class of read-optimized system,

in which periodically a bulk load of new data is
performed, followed by a relatively long period of ad-hoc
queries. Other read-mostly applications include customer
relationship management (CRM) systems, electronic
library card catalogs, and other ad-hoc inquiry systems.  In
such environments, a column store architecture, in which
the values for each single column (or attribute) are stored
contiguously, should be more efficient.  This efficiency
has been demonstrated in the warehouse marketplace by
products like Sybase IQ [FREN95, SYBA04], Addamark
[ADDA04], and KDB [KDB04]. In this paper, we discuss
the design of a column store called C-Store that includes a
number of novel features relative to existing systems.

With a column store architecture, a DBMS need only
read the values of columns required for processing a given
query, and can avoid bringing into memory irrelevant
attributes.  In warehouse environments where typical
queries involve aggregates performed over large numbers
of data items, a column store has a sizeable performance
advantage.  However, there are several other major
distinctions that can be drawn between an architecture that
is read-optimized and one that is write-optimized.

Current relational DBMSs were designed to pad
attributes to byte or word boundaries and to store values in
their native data format.  It was thought that it was too
expensive to shift data values onto byte or word
boundaries in main memory for processing.  However,
CPUs are getting faster at a much greater rate than disk
bandwidth is increasing.  Hence, it makes sense to trade
CPU cycles, which are abundant, for disk bandwidth,
which is not.  This tradeoff appears especially profitable in
a read-mostly environment.

There are two ways a column store can use CPU cycles
to save disk bandwidth.  First, it can code data elements
into a more compact form.  For example, if one is storing
an attribute that is a customer’s state of residence, then US
states can be coded into six bits, whereas the two-
character abbreviation requires 16 bits and a variable
length character string for the name of the state requires
many more.  Second, one should densepack values in
storage.  For example, in a column store it is
straightforward to pack N values, each K bits long, into N
* K bits.  The coding and compressibility advantages of a
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column store over a row store have been previously
pointed out in [FREN95].  Of course, it is also desirable to
have the DBMS query executor operate on the compressed
representation whenever possible to avoid the cost of
decompression, at least until values need to be presented
to an application.

Commercial relational DBMSs store complete tuples
of tabular data along with auxiliary B-tree indexes on
attributes in the table.  Such indexes can be primary,
whereby the rows of the table are stored in as close to
sorted order on the specified attribute as possible, or
secondary, in which case no attempt is made to keep the
underlying records in order on the indexed attribute.  Such
indexes are effective in an OLTP write-optimized
environment but do not perform well in a read-optimized
world.  In the latter case, other data structures are
advantageous, including bit map indexes [ONEI97], cross
table indexes [ORAC04], and materialized views
[CERI91].  In a read-optimized DBMS one can explore
storing data using only these read-optimized structures,
and not support write-optimized ones at all.

Hence, C-Store physically stores a collection of
columns, each sorted on some attribute(s).  Groups of
columns sorted on the same attribute are referred to as
“projections”; the same column may exist in multiple
projections, possibly sorted on a different attribute in each.
We expect that our aggressive compression techniques
will allow us to support many column sort-orders without
an explosion in space.  The existence of multiple sort-
orders opens opportunities for optimization.

Clearly, collections of off-the-shelf “blade” or “grid”
computers will be the cheapest hardware architecture for
computing and storage intensive applications such as
DBMSs [DEWI92]. Hence, any new DBMS architecture
should assume a grid environment in which there are G
nodes (computers), each with private disk and private
memory. We propose to horizontally partition data across
the disks of the various nodes in a “shared nothing”
architecture [STON86]. Grid computers in the near future
may have tens to hundreds of nodes, and any new system
should be architected for grids of this size.  Of course, the
nodes of a grid computer may be physically co-located or
divided into clusters of co-located nodes.  Since database
administrators are hard pressed to optimize a grid
environment, it is essential to allocate data structures to
grid nodes automatically.  In addition, intra-query
parallelism is facilitated by horizontal partitioning of
stored data structures, and we follow the lead of Gamma
[DEWI90] in implementing this construct.

Many warehouse systems (e.g. Walmart [WEST00])
maintain two copies of their data because the cost of
recovery via DBMS log processing on a very large
(terabyte) data set is prohibitive.  This option is rendered
increasingly attractive by the declining cost per byte of
disks.  A grid environment allows one to store such
replicas on different processing nodes, thereby supporting
a Tandem-style highly-available system [TAND89].

However, there is no requirement that one store multiple
copies in the exact same way.  C-Store allows redundant
objects to be stored in different sort orders providing
higher retrieval performance in addition to high
availability.  In general, storing overlapping projections
further improves performance, as long as redundancy is
crafted so that all data can be accessed even if one of the
G sites fails.  We call a system that tolerates K failures K-
safe.  C-Store will be configurable to support a range of
values of K.

It is clearly essential to perform transactional updates,
even in a read-mostly environment.  Warehouses have a
need to perform on-line updates to correct errors.  As well,
there is an increasing push toward real-time warehouses,
where the delay to data visibility shrinks toward zero.  The
ultimate desire is on-line update to data warehouses.
Obviously, in read-mostly worlds like CRM, one needs to
perform general on-line updates.

There is a tension between providing updates and
optimizing data structures for reading.  For example, in
KDB and Addamark, columns of data are maintained in
entry sequence order. This allows efficient insertion of
new data items, either in batch or transactionally, at the
end of the column.  However, the cost is a less-than-
optimal retrieval structure, because most query workloads
will run faster with the data in some other order.
However, storing columns in non-entry sequence will
make insertions very difficult and expensive.

C-Store approaches this dilemma from a fresh
perspective. Specifically, we combine in a single piece of
system software, both a read-optimized column store and
an update/insert-oriented writeable store, connected by a
tuple mover, as noted in Figure 1.   At the top level, there
is a small Writeable Store (WS) component, which is
architected to support high performance inserts and
updates.  There is also a much larger component called the
Read-optimized Store (RS), which is capable of
supporting very large amounts of information.  RS, as the
name implies, is optimized for read and supports only a
very restricted form of insert, namely the batch movement
of records from WS to RS, a task that is performed by the
tuple mover of Figure 1.

Figure 1. Architecture of C-Store

Of course, queries must access data in both storage
systems.  Inserts are sent to WS, while deletes must be
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marked in RS for later purging by the tuple mover.
Updates are implemented as an insert and a delete.  In
order to support a high-speed tuple mover, we use a
variant of the LSM-tree concept [ONEI96], which
supports a merge out process that moves tuples from WS
to RS in bulk by an efficient method of merging ordered
WS data objects with large RS blocks, resulting in a new
copy of RS that is installed when the operation completes.

The architecture of Figure 1 must support transactions
in an environment of many large ad-hoc queries, smaller
update transactions, and perhaps continuous inserts.
Obviously, blindly supporting dynamic locking will result
in substantial read-write conflict and performance
degradation due to blocking and deadlocks.

Instead, we expect read-only queries to be run in
historical mode.  In this mode, the query selects a
timestamp, T, less than the one of the most recently
committed transactions, and the query is semantically
guaranteed to produce the correct answer as of that point
in history.  Providing such snapshot isolation [BERE95]
requires C-Store to timestamp data elements as they are
inserted and to have careful programming of the runtime
system to ignore elements with timestamps later than T.

Lastly, most commercial optimizers and executors are
row-oriented, obviously built for the prevalent row stores
in the marketplace.  Since both RS and WS are column-
oriented, it makes sense to build a column-oriented
optimizer and executor.  As will be seen, this software
looks nothing like the traditional designs prevalent today.

In this paper, we sketch the design of our updatable
column store, C-Store, that can simultaneously achieve
very high performance on warehouse-style queries and
achieve reasonable speed on OLTP-style transactions.  C-
Store is a column-oriented DBMS that is architected to
reduce the number of disk accesses per query.  The
innovative features of C-Store include:

1. A hybrid architecture with a WS component optimized
for frequent insert and update and an RS component
optimized for query performance.

2. Redundant storage of elements of a table in several
overlapping projections in different orders, so that a
query can be solved using the most advantageous
projection.

3. Heavily compressed columns using one of several
coding schemes.

4. A column-oriented optimizer and executor, with
different primitives than in a row-oriented system.

5. High availability and improved performance through
K-safety using a sufficient number of overlapping
projections.

6. The use of snapshot isolation to avoid 2PC and locking
for queries.

It should be emphasized that while many of these topics
have parallels with things that have been studied in
isolation in the past, it is their combination in a real
system that make C-Store interesting and unique.

 The rest of this paper is organized as follows.  In
Section 2 we present the data model implemented by C-
Store.  We explore in Section 3 the design of the RS
portion of C-Store, followed in Section 4 by the WS
component.  In Section 5 we consider the allocation of C-
Store data structures to nodes in a grid, followed by a
presentation of C-Store updates and transactions in
Section 6. Section 7 treats the tuple mover component of
C-Store, and Section 8 presents the query optimizer and
executor.  In Section 9 we present a comparison of C-
Store performance to that achieved by both a popular
commercial row store and a popular commercial column
store.  On TPC-H style queries, C-Store is significantly
faster than either alternate system. However, it must be
noted that the performance comparison is not fully
completed; we have not fully integrated the WS and tuple
mover, whose overhead may be significant.  Finally,
Sections 10 and 11 discuss related previous work and our
conclusions.

2. Data Model

C-Store supports the standard relational logical data
model, where a database consists of a collection of named
tables, each with a named collection of attributes
(columns). As in most relational systems, attributes (or
collections of attributes) in C-Store tables can form a
unique primary key or be a foreign key that references a
primary key in another table.  The C-Store query language
is assumed to be SQL, with standard SQL semantics. Data
in C-Store is not physically stored using this logical data
model.  Whereas most row stores implement physical
tables directly and then add various indexes to speed
access, C-Store implements only projections.
Specifically, a C-Store projection is anchored on a given
logical table, T, and contains one or more attributes from
this table.  In addition, a projection can contain any
number of other attributes from other tables, as long as
there is a sequence of n:1 (i.e., foreign key) relationships
from the anchor table to the table containing an attribute.

To form a projection, we project the attributes of
interest from T, retaining any duplicate rows, and perform
the appropriate sequence of value-based foreign-key joins
to obtain the attributes from the non-anchor table(s).
Hence, a projection has the same number of rows as its
anchor table.  Of course, much more elaborate projections
could be allowed, but we believe this simple scheme will
meet our needs while ensuring high performance.  We
note that we use the term projection slightly differently
than is common practice, as we do not store the base
table(s) from which the projection is derived.

Table 1: Sample EMP data

Name Age Dept Salary

Bob 25 Math 10K
Bill 27 EECS 50K
Jill 24 Biology 80K
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We denote the ith projection over table t as ti, followed
by the names of the fields in the projection.  Attributes
from other tables are prepended with the name of the
logical table they come from.  In this section, we consider
an example for the standard EMP(name, age, salary, dept)
and DEPT(dname, floor) relations. Sample EMP data is
shown in Table 1. One possible set of projections for these
tables could be as shown in Example 1.

EMP1 (name, age)
EMP2 (dept, age, DEPT.floor)
EMP3 (name, salary)
DEPT1(dname, floor)

Example 1: Possible projections for EMP and DEPT

Tuples in a projection are stored column-wise. Hence,
if there are K attributes in a projection, there will be K
data structures, each storing a single column, each of
which is sorted on the same sort key.  The sort key can be
any column or columns in the projection. Tuples in a
projection are sorted on the key(s) in left to right order.

We indicate the sort order of a projection by appending
the sort key to the projection separated by a vertical bar. A
possible ordering for the above projections would be:

EMP1(name, age| age)
EMP2(dept, age, DEPT.floor| DEPT.floor)
EMP3(name, salary| salary)
DEPT1(dname, floor| floor)

Example 2:  Projections in Example 1 with sort orders

Lastly, every projection is horizontally partitioned into
1 or more segments, which are given a segment identifier,
Sid, where Sid  > 0.  C-Store supports only value-based
partitioning on the sort key of a projection.  Hence, each
segment of a given projection is associated with a key
range of the sort key for the projection.  Moreover, the set
of all key ranges partitions the key space.

Clearly, to answer any SQL query in C-Store, there
must be a covering set of projections for every table in the
database such that every column in every table is stored in
at least one projection.  However, C-Store must also be
able to reconstruct complete rows of tables from the
collection of stored segments.  To do this, it will need to
join segments from different projections, which we
accomplish using storage keys and join indexes.

Storage Keys. Each segment associates every data
value of every column with a storage key, SK.  Values
from different columns in the same segment with
matching storage keys belong to the same logical row.
We refer to a row of a segment using the term record or
tuple.  Storage keys are numbered 1, 2, 3, … in RS and are
not physically stored, but are inferred from a tuple’s
physical position in the column (see Section 3 below.)
Storage keys are physically present in WS and are
represented as integers, larger than the largest integer
storage key for any segment in RS.

Join Indices. To reconstruct all of the records in a
table T from its various projections, C-Store uses join

indexes.  If T1 and T2 are two projections that cover a
table T, a join index from the M segments in T1 to the N
segments in T2 is logically a collection of M tables, one
per segment, S, of T1  consisting of rows of the form:

(s: SID in T2, k: Storage Key in Segment s)

Here, an entry in the join index for a given tuple in a
segment of T1 contains the segment ID and storage key of
the corresponding (joining) tuple in T2. Since all join
indexes are between projections anchored at the same
table, this is always a one-to-one mapping.   An alternative
view of a join index is that it takes T1, sorted in some
order O, and logically resorts it into the order, O' of T2.

In order to reconstruct T from the segments of T1, …,
Tk it must be possible to find a path through a set of join
indices that maps each attribute of T into some sort order
O*.  A path is a collection of join indexes originating with
a sort order specified by some projection, Ti , that passes
through zero or more intermediate join indices and ends
with a projection sorted in order O*.  For example, to be
able to reconstruct the EMP table from projections in
Example 2, we need at least two join indices.  If we
choose age as a common sort order, we could build two
indices that map EMP2 and EMP3 to the ordering of
EMP1. Alternatively, we could create a join index that
maps EMP2 to EMP3 and one that maps EMP3 to EMP1.
Figure 2 shows a simple example of a join index that maps
EMP3 to EMP1, assuming a single segment (SID = 1) for
each projection.  For example, the first entry of EMP3,
(Bob, 10K), corresponds to the second entry of EMP1, and
thus the first entry of the join index has storage key 2.

Figure 2: A join index from EMP3 to EMP1.
In practice, we expect to store each column in several
projections, thereby allowing us to maintain relatively few
join indices.  This is because join indexes are very
expensive to store and maintain in the presence of updates,
since each modification to a projection requires every join
index that points into or out of it to be updated as well.

The segments of the projections in a database and their
connecting join indexes must be allocated to the various
nodes in a C-Store system. The C-Store administrator can
optionally specify that the tables in a database must be K-
safe.  In this case, the loss of K nodes in the grid will still
allow all tables in a database to be reconstructed (i.e.,
despite the K failed sites, there must exist a covering set of
projections and a set of join indices that map to some
common sort order.)  When a failure occurs, C-Store
simply continues with K-1 safety until the failure is



-5-

repaired and the node is brought back up to speed.  We are
currently working on fast algorithms to accomplish this.

Thus, the C-Store physical DBMS design problem is to
determine the collection of projections, segments, sort
keys, and join indices to create for the collection of logical
tables in a database. This physical schema must give K-
safety as well as the best overall performance for a given
training workload, provided by the C-Store administrator,
subject to requiring no more than a given space budget, B.
Additionally, C-Store can be instructed to keep a log of all
queries to be used periodically as the training workload.
Because there are not enough skilled DBAs to go around,
we are writing an automatic schema design tool.  Similar
issues are addressed in [PAPA04]

We now turn to the representation of projections,
segments, storage keys, and join indexes in C-Store.

3. RS

RS is a read-optimized column store.  Hence any
segment of any projection is broken into its constituent
columns, and each column is stored in order of the sort
key for the projection.  The storage key for each tuple in
RS is the ordinal number of the record in the segment.
This storage key is not stored but calculated as needed.

3.1 Encoding Schemes

Columns in the RS are compressed using one of 4
encodings.  The encoding chosen for a column depends on
its ordering (i.e., is the column ordered by values in that
column (self-order) or by corresponding values of some
other column in the same projection (foreign-order), and
the proportion of distinct values it contains.  We describe
these encodings below.

Type 1:  Self-order, few distinct values:  A column
encoded using Type 1 encoding is represented by a
sequence of triples, (v, f, n) such that v is a value stored in
the column, f is the position in the column where v first
appears, and n is the number of times v appears in the
column.  For example, if a group of 4’s appears in
positions 12-18, this is captured by the entry, (4, 12, 7).
For columns that are self-ordered, this requires one triple
for each distinct value in the column.  To support search
queries over values in such columns, Type 1-encoded
columns have clustered B-tree indexes over their value
fields.  Since there are no online updates to RS, we can
densepack the index leaving no empty space.  Further,
with large disk blocks (e.g., 64-128K), the height of this
index can be kept small (e.g., 2 or less).
Type 2: Foreign-order, few distinct values:  A column
encoded using Type 2 encoding is represented by a
sequence of tuples, (v, b) such that v is a value stored in
the column and b is a bitmap indicating the positions in
which the value is stored.  For example, given a column of
integers 0,0,1,1,2,1,0,2,1, we can Type 2-encode this as
three pairs: (0, 110000100), (1, 001101001), and

(2,000010010). Since each bitmap is sparse, it is run
length encoded to save space.  To efficiently find the i-th
value of a type 2-encoded column,  we include “offset
indexes”:  B-trees that map positions in a column to the
values contained in that column.
Type 3:  Self-order, many distinct values:  The idea for
this scheme is to represent every value in the column as a
delta from the previous value in the column.  Thus, for
example, a column consisting of values 1,4,7,7,8,12 would
be represented by the sequence: 1,3,3,0,1,4, such that the
first entry in the sequence is the first value in the column,
and every subsequent entry is a delta from the previous
value.  Type-3 encoding is a block-oriented form of this
compression scheme, such that the first entry of every
block is a value in the column and its associated storage
key, and every subsequent value is a delta from the
previous value.  This scheme is reminiscent of the way
VSAM codes B-tree index keys [VSAM04]. Again, a
densepack B-tree tree at the block-level can be used to
index these coded objects.
Type 4: Foreign-order, many distinct values:  If there are a
large number of values, then it probably makes sense to
leave the values unencoded.  However, we are still
investigating possible compression techniques for this
situation. A densepack B-tree can still be used for the
indexing.

3.2 Join Indexes

Join indexes must be used to connect the various
projections anchored at the same table.  As noted earlier, a
join index is a collection of (sid, storage_key) pairs.  Each
of these two fields can be stored as normal columns.

There are physical database design implications
concerning where to store join indexes, and we address
these in the next section.  In addition, join indexes must
integrate RS and WS; hence, we revisit their design in the
next section as well.

4. WS

In order to avoid writing two optimizers, WS is also a
column store and implements the identical physical
DBMS design as RS.  Hence, the same projections and
join indexes are present in WS.  However, the storage
representation is drastically different because WS must be
efficiently updatable transactionally.

The storage key, SK, for each record is explicitly
stored in each WS segment.  A unique SK is given to each
insert of a logical tuple in a table T.  The execution engine
must ensure that this SK is recorded in each projection
that stores data for the logical tuple. This SK is an integer,
larger than the number of records in the largest segment in
the database.

For simplicity and scalability, WS is horizontally
partitioned in the same way as RS.  Hence, there is a 1:1
mapping between RS segments and WS segments.  A (sid,
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storage_key) pair identifies a record in either of these
containers.

Since we assume that WS is trivial in size relative to
RS, we make no effort to compress data values; instead we
represent all data directly.  Therefore, each projection uses
B-tree indexing to maintain a logical sort-key order.

Every column in a WS projection is represented as a
collection of pairs, (v, sk), such that v is a value in the
column and sk is its corresponding storage key.  Each pair
is represented in a conventional B-tree on the second field.
The sort key(s) of each projection is additionally
represented by pairs (s, sk) such that s is a sort key value
and sk is the storage key describing where s first appears.
Again, this structure is represented as a conventional B-
tree on the sort key field(s).  To perform searches using
the sort key, one uses the latter B-tree to find the storage
keys of interest, and then uses the former collection of B-
trees to find the other fields in the record.

Join indexes can now be fully described.  Every
projection is represented as a collection of pairs of
segments, one in WS and one in RS.  For each record in
the “sender,” we must store the sid and storage key of a
corresponding record in the “receiver.”  It will be useful to
horizontally partition the join index in the same way as the
“sending” projection and then to co-locate join index
partitions with the sending segment they are associated
with.  In effect, each (sid, storage key) pair is a pointer to
a record which can be in either the RS or WS.

5.  Storage Management

The storage management issue is the allocation of
segments to nodes in a grid system; C-Store will perform
this operation automatically using a storage allocator.    It
seems clear that all columns in a single segment of a
projection should be co-located.  As noted above, join
indexes should be co-located with their “sender”
segments.  Also, each WS segment will be co-located with
the RS segments that contain the same key range.

Using these constraints, we are working on an
allocator.  This system will perform initial allocation, as
well as reallocation when load becomes unbalanced.  The
details of this software are beyond the scope of this paper.

Since everything is a column, storage is simply the
persistence of a collection of columns.  Our analysis
shows that a raw device offers little benefit relative to
today’s file systems.  Hence, big columns (megabytes) are
stored in individual files in the underlying operating
system.

6. Updates and Transactions

An insert is represented as a collection of new objects
in WS, one per column per projection, plus the sort key
data structure.  All inserts corresponding to a single
logical record have the same storage key.    The storage
key is allocated at the site where the update is received.
To prevent C-Store nodes from needing to synchronize

with each other to assign storage keys, each node
maintains a locally unique counter to which it appends its
local site id to generate a globally unique storage key.
Keys in the WS will be consistent with RS storage keys
because we set the initial value of this counter to be one
larger than the largest key in RS.

We are building WS on top of BerkeleyDB [SLEE04];
we use the B-tree structures in that package to support our
data structures.  Hence, every insert to a projection results
in a collection of physical inserts on different disk pages,
one per column per projection.  To avoid poor
performance, we plan to utilize a very large main memory
buffer pool, made affordable by the plummeting cost per
byte of primary storage.  As such, we expect “hot” WS
data structures to be largely main memory resident.

C-Store’s processing of deletes is influenced by our
locking strategy. Specifically, C-Store expects large
numbers of ad-hoc queries with large read sets
interspersed with a smaller number of OLTP transactions
covering few records. If C-Store used conventional
locking, then substantial lock contention would likely be
observed, leading to very poor performance.

Instead, in C-Store, we isolate read-only transactions
using snapshot isolation.  Snapshot isolation works by
allowing read-only transactions to access the database as
of some time in the recent past, before which we can
guarantee that there are no uncommitted transactions.  For
this reason, when using snapshot isolation, we do not need
to set any locks.  We call the most recent time in the past
at which snapshot isolation can run the high water mark
(HWM) and introduce a low-overhead mechanism for
keeping track of its value in our multi-site environment.  If
we let read-only transactions set their effective time
arbitrarily, then we would have to support general time
travel, an onerously expensive task.  Hence, there is also a
low water mark (LWM) which is the earliest effective
time at which a read-only transaction can run. Update
transactions continue to set read and write locks and obey
strict two-phase locking, as described in Section 6.2.

6.1 Providing Snapshot Isolation

The key problem in snapshot isolation is determining
which of the records in WS and RS should be visible to a
read-only transaction running at effective time ET.  To
provide snapshot isolation, we cannot perform updates in
place.  Instead, an update is turned into an insert and a
delete.  Hence, a record is visible if it was inserted before
ET and deleted after ET. To make this determination
without requiring a large space budget, we use coarse
granularity “epochs,” to be described in Section 6.1.1, as
the unit for timestamps.  Hence, we maintain an insertion
vector (IV) for each projection segment in WS, which
contains for each record the epoch in which the record was
inserted.  We program the tuple mover  (described in
Section 7) to ensure that no records in RS were inserted
after the LWM.  Hence, RS need not maintain an insertion
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vector.  In addition, we maintain a deleted record vector
(DRV) for each projection, which has one entry per
projection record, containing a 0 if the tuple has not been
deleted; otherwise, the entry contains the epoch in which
the tuple was deleted.  Since the DRV is very sparse
(mostly zeros), it can be compactly coded using the type 2
algorithm described earlier.   We store the DRV in the
WS, since it must be updatable.  The runtime system can
now consult IV and DRV to make the visibility calculation
for each query on a record-by-record basis.

6.1.1 Maintaining the High Water Mark

To maintain the HWM, we designate one site the
timestamp authority (TA) with the responsibility of
allocating timestamps to other sites.  The idea is to divide
time into a number of epochs; we define the epoch number
to be the number of epochs that have elapsed since the
beginning of time.   We anticipate epochs being relatively
long – e.g., many seconds each, but the exact duration
may vary from deployment to deployment.  We define the
initial HWM to be epoch 0 and start current epoch at 1.
Periodically, the TA decides to move the system to the
next epoch; it sends a end of epoch message to each site,
each of which increments current epoch from e to e+1,
thus causing new transactions that arrive to be run with a
timestamp e+1.   Each site waits for all the transactions
that began in epoch e (or an earlier epoch) to complete and
then sends an epoch complete message to the TA. Once
the TA has received epoch complete messages from all
sites for epoch e, it sets the HWM to be e, and sends this
value to each site.   Figure 3 illustrates this process.

After the TA has broadcast the new HWM with value
e, read-only transactions can begin reading data from
epoch e or earlier and be assured that this data has been
committed.   To allow users to refer to a particular real-
world time when their query should start, we maintain a
table mapping epoch numbers to times, and start the query
as of the epoch nearest to the user-specified time.

To avoid epoch numbers from growing without bound
and consuming extra space, we plan to “reclaim” epochs
that are no longer needed.  We will do this by “wrapping”
timestamps, allowing us to reuse old epoch numbers as in
other protocols, e.g., TCP.  In most warehouse
applications, records are kept for a specific amount of
time, say 2 years.  Hence, we merely keep track of the

oldest epoch in any DRV, and ensure that wrapping
epochs through zero does not overrun.

To deal with environments for which epochs cannot
effectively wrap, we have little choice but to enlarge the
“wrap length” of epochs or the size of an epoch.

6.2 Locking-based Concurrency Control

Read-write transactions use strict two-phase locking
for concurrency control [GRAY92].  Each site sets locks
on data objects that the runtime system reads or writes,
thereby implementing a distributed lock table as in most
distributed databases.  Standard write-ahead logging is
employed for recovery purposes; we use a NO-FORCE,
STEAL policy [GRAY92] but differ from the traditional
implementation of logging and locking in that we only log
UNDO records, performing REDO as described in Section
6.3, and we do not use strict two-phase commit, avoiding
the PREPARE phase as described in Section 6.2.1 below.

Locking can, of course, result in deadlock.  We resolve
deadlock via timeouts through the standard technique of
aborting one of the deadlocked transactions.

6.2.1 Distributed COMMIT Processing

In C-Store, each transaction has a master that is
responsible for assigning units of work corresponding to a
transaction to the appropriate sites and determining the
ultimate commit state of each transaction.  The protocol
differs from two-phase commit (2PC) in that no
PREPARE messages are sent. When the master receives a
COMMIT statement for the transaction, it waits until all
workers have completed all outstanding actions and then
issues a commit (or abort) message to each site.  Once a
site has received a commit message, it can release all locks
related to the transaction and delete the UNDO log for the
transaction.  This protocol differs from 2PC because the
master does not PREPARE the worker sites.  This means
it is possible for a site the master has told to commit to
crash before writing any updates or log records related to a
transaction to stable storage.  In such cases, the failed site
will recover its state, which will reflect updates from the
committed transaction, from other projections on other
sites in the system during recovery.

6.2.2 Transaction Rollback

When a transaction is aborted by the user or the C-

timeSite 1 Site 2 Site 3

Start
epoch e+1

T1

T2 T3

T4

T6

T5

T7

T8
TA

End of epoch (e)
(e)Epoch complete (site 3, e)
Epoch complete (site 2, e)
Epoch complete (site 1, e)
New HWM(e)

Figure 3. Illustration showing how the HWM selection algorithm works.  Gray arrows indicate messages from the TA
to the sites or vice versa.  We can begin reading tuples with timestamp e when all transactions from epoch e have
committed.  Note that although T4 is still executing when the HWM is incremented, read-only transactions will not
see its updates because it is running in epoch e+1.
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Store system, it is undone by scanning backwards in the
UNDO log, which contains one entry for each logical
update to a segment.  We use logical logging (as in ARIES
[MOHA92]), since physical logging would result in many
log records, due to the nature of the data structures in WS.

6.3 Recovery

As mentioned above, a crashed site recovers by
running a query (copying state) from other projections.
Recall that C-Store maintains K-safety; i.e. sufficient
projections and join indexes are maintained, so that K sites
can fail within t, the time to recover, and the system will
be able to maintain transactional consistency. There are
three cases to consider.  If the failed site suffered no data
loss, then we can bring it up to date by executing updates
that will be queued for it elsewhere in the network.  Since
we anticipate read-mostly environments, this roll forward
operation should not be onerous.  Hence, recovery from
the most common type of crash is straightforward. The
second case to consider is a catastrophic failure which
destroys both the RS and WS.  In this case, we have no
choice but to reconstruct both segments from other
projections and join indexes in the system.  The only
needed functionality is the ability to retrieve auxiliary data
structures (IV, DRV) from remote sites. After restoration,
the queued updates must be run as above.   The third case
occurs if WS is damaged but RS is intact.  Since RS is
written only by the tuple mover, we expect it will typically
escape damage.  Hence, we discuss this common case in
detail below.

6.3.1 Efficiently Recovering the WS

Consider a WS segment, Sr, of a projection with a sort
key K and a key range R on a recovering site r along with
a collection C  of other projections, M1, …, Mb which
contain the sort key of Sr.  The tuple mover guarantees
that each WS segment, S , contains all tuples with an
insertion timestamp later than some time tlastmove(S), which
represents the most recent insertion time of any record in
S’s corresponding RS segment.

To recover, the recovering site first inspects every
projection in C for a collection of columns that covers the
key range K  with each segment having tlastmove(S) ≤
tlastmove(Sr).  If it succeeds, it can run a collection of queries
of the form:

SELECT desired_fields,
       insertion_epoch,
       deletion_epoch
FROM recovery_segment

WHERE insertion_epoch > tlastmove(Sr)
      AND insertion_epoch <= HWM
      AND deletion_epoch = 0
          OR deletion_epoch >= LWM
      AND sort_key in K

As long as the above queries return a storage key, other
fields in the segment can be found by following

appropriate join indexes.  As long as there is a collection
of segments that cover the key range of Sr, this technique
will restore Sr to the current HWM.  Executing queued
updates will then complete the task.

On the other hand, if there is no cover with the desired
property, then some of the tuples in Sr have already been
moved to RS on the remote site. Although we can still
query the remote site, it is challenging to identify the
desired tuples without retrieving everything in RS and
differencing against the local RS segment, which is
obviously an expensive operation.

To efficiently handle this case, if it becomes common,
we can force the tuple mover to log, for each tuple it
moves, the storage key in RS that corresponds to the
storage key and epoch number of the tuple before it was
moved from WS.  This log can be truncated to the
timestamp of the oldest tuple still in the WS on any site,
since no tuples before that will ever need to be recovered.
In this case, the recovering site can use a remote WS
segment, S, plus the tuple mover log to solve the query
above, even though tlastmove(S) comes after tlastmove(Sr).

At r, we must also reconstruct the WS portion of any
join indexes that are stored locally, i.e. for which Sr is a
“sender.”  This merely entails querying remote
“receivers,” which can then compute the join index as they
generate tuples, transferring the WS partition of the join
index along with the recovered columns.

7. Tuple Mover

The job of the tuple mover is to move blocks of tuples
in a WS segment to the corresponding RS segment,
updating any join indexes in the process.  It operates as a
background task looking for worthy segment pairs. When
it finds one, it performs a merge-out process, MOP on this
(RS, WS) segment pair.

MOP will find all records in the chosen WS segment
with an insertion time at or before the LWM, and then
divides them into two groups:
• Ones deleted at or before LWM.  These are discarded,

because the user cannot run queries as of a time when
they existed.

• Ones that were not deleted, or deleted after LWM.
These are moved to RS.

MOP will create a new RS segment that we name RS'.
Then, it reads in blocks from columns of the RS segment,
deletes any RS items with a value in the DRV less than or
equal to the LWM, and merges in column values from
WS. The merged data is then written out to the new RS'
segment, which grows as the merge progresses. The most
recent insertion time of a record in RS’ becomes the
segment’s new tlastmove and is always less than or equal to
the LWM. This old-master/new-master approach will be
more efficient than an update-in-place strategy, since
essentially all data objects will move. Also, notice that
records receive new storage keys in RS', thereby requiring
join index maintenance.  Since RS items may also be
deleted, maintenance of the DRV is also mandatory. Once
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RS' contains all the WS data and join indexes are modified
on RS', the system cuts over from RS to RS'. The disk
space used by the old RS can now be freed.

Periodically the timestamp authority sends out to each
site a new LWM epoch number.  Hence, LWM “chases”
HWM, and the delta between them is chosen to mediate
between the needs of users who want historical access and
the WS space constraints.

8. C-Store Query Execution

The query optimizer will accept a SQL query and
construct a query plan of execution nodes.  In this section,
we describe the nodes that can appear in a plan and then
the architecture of the optimizer itself.

8.1 Query Operators and Plan Format

There are 10 node types and each accepts operands or
produces results of type projection (Proj), column
(Col), or bitstring (Bits).  A projection is simply a set of
columns with the same cardinality and ordering.  A
bitstring is a list of zeros and ones indicating whether the
associated values are present in the record subset being
described.   In addition, C-Store query operators accept
predicates (Pred), join indexes (JI), attribute names
(Att), and expressions (Exp) as arguments.

Join indexes and bitstrings are simply special types of
columns.  Thus, they also can be included in projections
and used as inputs to operators where appropriate.

We briefly summarize each operator below.
1. Decompress converts a compressed column to an
uncompressed (Type 4) representation.
2. Select is equivalent to the selection operator of
the relational algebra (), but rather than producing a
restriction of its input, instead produces a bitstring
representation of the result.
3.  Mask accepts a bitstring B and projection Cs, and
restricts Cs  by emitting only those values whose
corresponding bits in B are 1.
4. Project equivalent to the projection operator of
the relational algebra ().
5. Sort sorts all columns in a projection by some
subset of those columns (the sort columns).
6. Aggregation Operators  compute SQL-like
aggregates over a named column, and for each group
identified by the values in a projection.
7. Concat combines one or more projections sorted in
the same order into a single projection
8. Permute permutes a projection according to the
ordering defined by a join index.
9. Join joins two projections according to a predicate
that correlates them.
10. Bitstring Operators BAnd produces the
bitwise AND of two bitstrings.  BOr produces a bitwise
OR.  BNot produces the complement of a bitstring.

A C-Store query plan consists of a tree of the operators
listed above, with access methods at the leaves and
iterators serving as the interface between connected nodes.
Each non-leaf plan node consumes the data produced by
its children via a modified version of the standard iterator
interface [GRAE93] via calls of “get_next.”  To reduce
communication overhead (i.e., number of calls of
“get_next”) between plan nodes,  C-Store iterators return
64K blocks from a single column. This approach preserves
the benefit of using iterators (coupling data flow with
control flow), while changing the granularity of data flow
to better match the column-based model.

8.2 Query Optimization

We plan to use a Selinger-style [SELI79] optimizer
that uses cost-based estimation for plan construction.  We
anticipate using a two-phase optimizer [HONG92] to limit
the complexity of the plan search space. Note that query
optimization in this setting differs from traditional query
optimization in at least two respects: the need to consider
compressed representations of data and the decisions
about when to mask a projection using a bitstring.

C-Store operators have the capability to operate on
both compressed and uncompressed input. As will be
shown in Section 9, the ability to process compressed data
is the key to the performance benefits of C-Store.  An
operator’s execution cost (both in terms of I/O and
memory buffer requirements) is dependent on the
compression type of the input. For example, a Select
over Type 2 data (foreign order/few values, stored as a
delta-encoded bitmaps, with one bitmap per value) can be
performed by reading only those bitmaps from disk whose
values match the predicate (despite the column itself not
being sorted). However, operators that take Type 2 data as
input require much larger memory buffer space (one page
of memory for each possible value in the column) than
any of the other three types of compression. Thus, the cost
model must be sensitive to the representations of input and
output columns.

The major optimizer decision is which set of
projections to use for a given query.  Obviously, it will be
time consuming to construct a plan for each possibility,
and then select the best one. Our focus will be on pruning
this search space.  In addition, the optimizer must decide
where in the plan to mask a projection according to a
bitstring.  For example, in some cases it is desirable to
push the Mask early in the plan (e.g, to avoid producing a
bitstring while performing selection over Type 2
compressed data) while in other cases it is best to delay
masking until a point where it is possible to feed a
bitstring to the next operator in the plan (e.g., COUNT) that
can produce results solely by processing the bitstring.

9. Performance Comparison

At the present time, we have a storage engine and the
executor for RS running.  We have an early
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implementation of the WS and tuple mover; however they
are not at the point where we can run experiments on
them.  Hence, our performance analysis is limited to read-
only queries, and we are not yet in a position to report on
updates.  Moreover, RS does not yet support segments or
multiple grid nodes.  As such, we report single-site
numbers.  A more comprehensive performance study will
be done once the other pieces of the system have been
built.

Our benchmarking system is a 3.0 Ghz Pentium,
running RedHat Linux, with 2 Gbytes of memory and 750
Gbytes of disk.

In the decision support (warehouse) market TPC-H is
the gold standard, and we use a simplified version of this
benchmark, which our current engine is capable of
running.  Specifically, we implement the lineitem, order,
and customer tables as follows:

CREATE TABLE LINEITEM (
L_ORDERKEY INTEGER NOT NULL,
L_PARTKEY INTEGER NOT NULL,
L_SUPPKEY INTEGER NOT NULL,
L_LINENUMBER INTEGER NOT NULL,
L_QUANTITY INTEGER NOT NULL,
L_EXTENDEDPRICE INTEGER NOT NULL,
L_RETURNFLAG CHAR(1) NOT NULL,
L_SHIPDATE INTEGER NOT NULL);

CREATE TABLE ORDERS  (
O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERDATE INTEGER NOT NULL);

CREATE TABLE CUSTOMER (
C_CUSTKEY INTEGER NOT NULL,
C_NATIONKEY INTEGER NOT NULL);

We chose columns of type INTEGER and CHAR(1) to
simplify the implementation.  The standard data for the
above table schema for TPC-H scale_10 totals 60,000,000
line items (1.8GB), and was generated by the data
generator available from the TPC website. 

We tested three systems and gave each of them a
storage budget of 2.7  GB (roughly 1.5 times the raw data
size) for all data plus indices.  The three systems were C-
Store as described above and two popular commercial
relational DBMS systems, one that implements a row store
and another that implements a column store.  In both of
these systems, we turned off locking and logging.  We
designed the schemas for the three systems in a way to
achieve the best possible performance given the above
storage budget.  The row-store was unable to operate
within the space constraint so we gave it 4.5 GB which is
what it needed to store its tables plus indices.  The actual
disk usage numbers are shown below.

C-Store Row Store Column Store
1.987 GB 4.480 GB 2.650 GB

Obviously, C-Store uses 40% of the space of the row
store, even though it uses redundancy and the row store
does not.  The main reasons are C-Store compression and

absence of padding to word or block boundaries. The
column store requires 30% more space than C-Store.
Again, C-Store can store a redundant schema in less space
because of superior compression and absence of padding.
       We ran the following seven queries on each system:

Q1.  Determine the total number of lineitems shipped for
each day after day D.

SELECT l_shipdate, COUNT (*)
FROM lineitem
WHERE l_shipdate > D
GROUP BY l_shipdate

 Q2.  Determine the total number of lineitems shipped for
each supplier on day D.

SELECT l_suppkey, COUNT (*)
FROM lineitem
WHERE l_shipdate = D
GROUP BY l_suppkey

Q3.  Determine the total number of lineitems shipped for
each supplier after day D.

SELECT l_suppkey, COUNT (*)
FROM lineitem
WHERE l_shipdate > D
GROUP BY l_suppkey

Q4.  For every day after D, determine the latest shipdate
of all items ordered on that day.

SELECT o_orderdate, MAX (l_shipdate)
FROM lineitem, orders
WHERE l_orderkey = o_orderkey AND
      o_orderdate > D
GROUP BY o_orderdate

Q5.  For each supplier, determine the latest shipdate of an
item from an order that was made on some date, D.

SELECT l_suppkey, MAX (l_shipdate)
FROM lineitem, orders
WHERE l_orderkey = o_orderkey AND
      o_orderdate = D
GROUP BY l_suppkey

Q6.  For each supplier, determine the latest shipdate of an
item from an order made after some date, D.

SELECT l_suppkey, MAX (l_shipdate)
FROM lineitem, orders
WHERE l_orderkey = o_orderkey AND
       o_orderdate > D
GROUP BY l_suppkey

Q7.  Return a list of identifiers for all nations represented
by customers along with their total lost revenue for
the parts they have returned.  This is a simplified
version of query 10 (Q10) of TPC-H.

SELECT c_nationkey, sum(l_extendedprice)
FROM lineitem, orders, customers
WHERE l_orderkey=o_orderkey AND

o_custkey=c_custkey AND
l_returnflag='R'

GROUP BY c_nationkey

We constructed schemas for each of the three systems that
best matched our seven-query workload.  These schema
were tuned individually for the capabilities of each
system. For C-Store, we used the following schema:

 D1: (l_orderkey, l_partkey, l_suppkey,
l_linenumber, l_quantity,
l_extendedprice, l_returnflag, l_shipdate
| l_shipdate, l_suppkey)
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D2: (o_orderdate, l_shipdate, l_suppkey |
o_orderdate, l_suppkey)

D3: (o_orderdate, o_custkey, o_orderkey |
o_orderdate)

D4: (l_returnflag, l_extendedprice,
c_nationkey | l_returnflag)

D5: (c_custkey, c_nationkey | c_custkey)
D2 and D4 are materialized (join) views.  D3 and D5

are added for completeness since we don’t use them in any
of the seven queries.  They are included so that we can
answer arbitrary queries on this schema as is true for the
product schemas.

On the commercial row-store DBMS, we used the
common relational schema given above with a collection
of system-specific tuning parameters. We also used
system-specific tuning parameters for the commercial
column-store DBMS.  Although we believe we chose
good values for the commercial systems, obviously, we
cannot guarantee they are optimal.

The following table indicates the performance that we
observed.  All measurements are in seconds and are taken
on a dedicated machine.

Query C-Store Row Store Column
Store

Q1 0.03 6.80 2.24
Q2 0.36 1.09 0.83
Q3 4.90 93.26 29.54
Q4 2.09 722.90 22.23
Q5 0.31 116.56 0.93
Q6 8.50 652.90 32.83
Q7 2.54 265.80 33.24

As can be seen, C-Store is much faster than either
commercial product.  The main reasons are:
• Column representation – avoids reads of unused
attributes (same as competing column store).
• Storing overlapping projections, rather than the whole
table – allows storage of multiple orderings of a column
as appropriate.
• Better compression of data – allows more orderings in
the same space.
• Query operators operate on compressed
representation – mitigates the storage barrier problem of
current processors.

In order to give the other systems every possible
advantage, we tried running them with the materialized
views that correspond to the projections we used with C-
Store.  This time, the systems used space as follows (C-
Store numbers, which did not change, are included as a
reference):

C-Store Row Store Column Store
1.987 GB 11.900 GB 4.090 GB

The relative performance numbers in seconds are as
follows:

Query C-Store Row Store Column
Store

Q1 0.03 0.22 2.34
Q2 0.36 0.81 0.83
Q3 4.90 49.38 29.10
Q4 2.09 21.76 22.23
Q5 0.31 0.70 0.63
Q6 8.50 47.38 25.46
Q7 2.54 18.47 6.28
As can be seen, the performance gap closes, but at the

same time, the amount of storage needed by the two
commercial systems grows quite large.

In summary, for this seven query benchmark, C-Store
is on average 164 times faster than the commercial row-
store and 21 times faster than the commercial column-
store in the space-constrained case.  For the case of
unconstrained space, C-Store is 6.4 times faster than the
commercial row-store, but the row-store takes 6 times the
space.  C-Store is on average 16.5 times faster than the
commercial column-store, but the column-store requires
1.83 times the space.

 Of course, this performance data is very preliminary.
Once we get WS running and write a tuple mover, we will
be in a better position to do an exhaustive study.

10. Related Work

One of the thrusts in the warehouse market is in
maintaining so-called “data cubes.”  This work dates from
Essbase by Arbor software in the early 1990’s, which was
effective at “slicing and dicing” large data sets
[GRAY97].  Efficiently building and maintaining specific
aggregates on stored data sets has been widely studied
[KOTI99, ZHAO97]. Precomputation of such aggregates
as well as more general materialized views [STAU96] is
especially effective when a prespecified set of queries is
run at regular intervals.  On the other hand, when the
workload cannot be anticipated in advance, it is difficult to
decide what to precompute.  C-Store is aimed entirely at
this latter problem.

Including two differently architected DBMSs in a
single system has been studied before in data mirrors
[RAMA02].  However, the goal of data mirrors was to
achieve better query performance than could be achieved
by either of the two underlying systems alone in a
warehouse environment.  In contrast, our goal is to
simultaneously achieve good performance on update
workloads and ad-hoc queries.  Consequently, C-Store
differs dramatically from a data mirror in its design.

Storing data via columns has been implemented in
several systems, including Sybase IQ, Addamark, Bubba
[COPE88], Monet [BONC04], and KDB.  Of these, Monet
is probably closest to C-Store in design philosophy.
However, these systems typically store data in entry
sequence and do not have our hybrid architecture nor do
they have our model of overlapping materialized
projections.
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Similarly, storing tables using an inverted organization
is well known.  Here, every attribute is stored using some
sort of indexing, and record identifiers are used to find
corresponding attributes in other columns.  C-Store uses
this sort of organization in WS but extends the architecture
with RS and a tuple mover.

There has been substantial work on using compressed
data in databases; Roth and Van Horn [ROTH93] provide
an excellent summary of many of the techniques that have
been developed.  Our coding schemes are similar to some
of these techniques, all of which are derived from a long
history of work on the topic in the broader field of
computer science [WITT87].  Our observation that it is
possible to operate directly on compressed data has been
made before [GRAE91, WESM00].

Lastly, materialized views, snapshot isolation,
transaction management, and high availability have also
been extensively studied.  The contribution of C-Store is
an innovative combination of these techniques that
simultaneously provides improved performance, K-safety,
efficient retrieval, and high performance transactions.

11. Conclusions

This paper has presented the design of C-Store, a
radical departure from the architecture of current DBMSs.
Unlike current commercial systems, it is aimed at the
“read-mostly” DBMS market.  The innovative
contributions embodied in C-Store include:
• A column store representation, with an associated

query execution engine.
• A hybrid architecture that allows transactions on a

column store.
• A focus on economizing the storage representation on

disk, by coding data values and dense-packing the data.
• A data model consisting of overlapping projections of

tables, unlike the standard fare of tables, secondary
indexes, and projections.

• A design optimized for a shared nothing machine
environment.

• Distributed transactions without a redo log or two
phase commit.

• Efficient snapshot isolation.
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