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PREFACE. 

THE material contained in the following translation was given 
in substance by Professor Hilbert as a course of lectures on 

euclidean geometry at the University of Gottingen during the 
winter semester of 1898-1899. The results of his investigation 
were re-arranged and put into the form in which they appear here 
as a memorial address published in connection with the celebra­
tion at the unveiling of the Gauss-Weber monument at Gottingen, 
in June, 1899. In the French edition, which appeared soon after, 
Professor Hilbert made some additions, particularly in the con­
cluding remarks, where he gave an account of the results of a re­
cent investigation made by Dr. Dehn. These additions have been 
incorporated in the following translation. 

As a basis for the analysis of our intuition of space. Professor 
Hilbert commences his discussion by considering three systems of 
things which he calls points, straight lines, and planes, and sets 
up a system of axioms connecting these elements in their mutual 
relations. The purpose of his investigations is to discuss syste­
matically the relations of these axioms to one another and also the 
bearing of each upon the logical development of euclidean geom­
etry. Among the important results obtained, the following are 
worthy of special mention : 

1. The mutual independence and also the compatibility of the 
givpn system of axioms is fully discussed by the aid of various new 
systems of geometry which are introduced. 

2. The most important propositions of euclidean geometry are 
demonstrated in such a manner as to show precisely what axioms 
underlie and make possible the demonstration. 

3. The axioms of congruence are introduced and made the 
basis of the definition of geometric displacement. 

4. The significance of several of the most important axioms 
and theorems in the development of the euclidean geometry is 
clearly shown; for example, it is shown that the whole of the 
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euclidean geometry may be developed without the use of the axiom 
of continuity; the significance of Desargues's theorem, as a con­
dition that a given plane geometry may be regarded as a part of a 
geometry of space, is made apparent, etc. 

5. A variety of algebras of segments are introduced in accord­
ance with the laws of arithmetic. 

This development and discussion of the foundation principles 
of geometry is not only of mathematical but of pedagogical im­
portance. Hoping that through an English edition these impor­
tant results of Professor Hilbert's investigation may be made more 
accessible to English speaking students and teachers of geometry, 
I have undertaken, with his permission, this translation. In its 
preparation, I have had the assistance of many valuable sugges­
tions from Professor Osgood of Harvard, Professor Moore of Chi­
cago, and Professor Halsted of Texas. I am also under obliga­
tions to Mr. Henry Coar and Mr. Arthur Bell for reading the 
proof. 

E. J, ToWNSEND 
University of Illinois, 
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"All human kno'wiedge begins with, in­
tuitions, thence passes to concepts and 
ends with ideas." 

Kant, Kritili der reinen Verriuufi^ 
Elemejitarlehre^ Part 2, Sec. z. 

INTRODUCTION. 

GEOMETRY, like arithmetic, requires for its log­
ical development only a small n u m b e r of simple, 

fundamental principles. These fundamental princi­
ples are called the axioms of geometry. T h e choice 

of the axioms and the investigation of their relations 

to one another is a problem which, since the time of 

Euclid, has been discussed in numerous excellent 

memoirs to be found in the mathematical literature.''' 

This problem is tantamount to the logical analysis of 
our intuition of space. 

T h e following investigation is a n e w attempt to 
choose for geometry a simple and complete set of inde­

pendent axioms and to deduce from these the most im­

portant geometrical theorems in such a m a n n e r as to 
bring out as clearly as possible the significance of the 

different groups of axioms and the scope of the con­

clusions to be derived from the individual axioms. 

*Compare the comprehensive and explanatory report of G. Veronese, 
Grundziî e der Geometrie. German translation by A. Schepp, Leipzig, 1894 
(Appendix). See also F. Klein, " Zur ersten Verteilnng des Lobatschefskiy-
Preises," Math. Ann., Vol. .-io. 





T H E F I V E G R O U P S O F A X I O M S . 

§ I. THE ELEMENTS OF GEOMETRY AND THE FIVE 
GROUPS OF AXIOMS. 

LET us consider three distinct systems of things. 

J The things composing the first system, we will 

call points and designate them by the letters A, B, 

C, . . . .; those of the second, we will call straight 

lines and designate them by the letters a, b, c, . . . .; 
and those of the third system, we will call planes and 

designate them by the Greek letters a, /3, y, . . . . 

The points are called the elements of linear geometry; 
the points and straight lines, the elements of plane ge­
ometry ; and the points, lines, and planes, the elements 

of the geometry of space or the elements of space. 

W e think of these points, straight lines, and planes 

as having certain mutual relations, which we indicate 

by means of such words as "are situated," "be­
tween," "parallel," "congruent," "continuous," etc. 

The complete and exact description of these relations 

follows as a consequence of the axioms of geometry. 
These axioms may be arranged in five groups. Each 

of these groups expresses, by itself, certain related 

fundamental facts of our intuition. W e will name 

these groups as follows : 
I, 1-7. Axioms of connection. 

II, 1-5. Axioms of order. 

III. Axiom oiparallels (Euclid's axiom). 



4 THE FOUNDATIONS OF GEOMETRY. 

IV, 1-6. Axioms of congruence. 

V. Axiom of continuity (Archimedes's axiom). 

§ 2. GROUP I. AXIOMS OF CONNECTION. 

The axioms of this group establish a connection 

between the concepts indicated above ; namely, points, 

Straight lines, and planes. These axioms are as fol­
lows : 

I, 1. Two distinct points A and B always completely 
determine a straight line a. W e write AB^^^a 
or B A = a. 

Instead of " determine," we may also employ other 
forms of expression; for example, we may say A 

"lies upon" a, A " is a point of" a, a "goes through" 

A " and .through " J?, a "joins'".^ "and" or" "with" 
B, etc. If A lies upon a and at the same time upon 
another straight line b, we make use also of the ex­

pression : "The straight lines" a "and" b "have the 
point A in common," etc. 

I, 2. Any two distinct points of a straight line com.-
pletely determine that line; that is, if A B = a and 

AC=:=a, where B =\=C, then is also B C = a . 

I, 3. Three points A, B, C not situated in the same 

straight line always completely determine a plane 

a. W e write ABC^:=a. 

W e employ also the expressions: A, B, C, "lie 
in" a; A, B, C "are points of" d, etc. 

I, \yA.ny three points A, B, C of a plane a, which 
do not lie in the same straight line, completely de­

termine that plane, -w 

I, 5. If two points A, B of a straight line a lie in 

a plane a, then every point of a lies in a. 



THE FIVE GROUPS OF AXIOMS. 5 

In this case we say: "The straight line a lies in 
the plane a," etc. 

I, 6. If two planes a, ^ have a point A in common, 

then they have at least a second point B in common. 

I, 7. Upon every straight line there exist at least two 

points, in every plane at least three points not 
lying ill the same straight line, and in space there 

exist at least four points not lying in a plane. 

Axioms 1,1-2 contain statements concerning points 
and straight lines only; that is, concerning the ele­

ments of plane geometry. W e will call them, there­

fore, the plane axioms of group I, in order to distin­
guish them from the axioms I, 3-7, which we will 

designate briefly as the space axioms of this group. 

Of the theorems which follow from the axioms 
I, 3-7, we shall mention only the following : 

Theorem 1. Two straight lines of a plane have 

either one point or no point in common; two 
planes have no point in common or a straight 

line in common; a plane and a straight line 

not lying in it have no point or one point in 

common. 

Theorem 2. Through a straight line and a point 
not lying in it, or through two distinct straight 

lines having a common point, one and only one 

plane may be made to pass. 

§ 3. GROUP II, AXIOMS OF ORDER.* 

The axioms of. this group define the idea expressed 

by the word "between," an# make possible, upon the 

*These axioms were first studied in detail by W. Pasch in his Vorlesungen 
iiier neiiere Geometrie, Leipsic, 1882. Axiom II, 5 is in particular due to him. 
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basis of this idea, an order of sequence of the points 
upon a straight line, in a plane, and in space. The 
points of a straight line have a certain relation to one 

another which the word "between" serves to describe. 
The axioms of this group are as follows : 

II, 1. If A, B, C are points of a straight line and 

B lies between A and C, then B lies also between 

C and A. 

Fig. 1. 

II, 2. If A and C are two points of a straight line, 

then there exists/at least one point B lying-between 

— A and C and) at least one point D so situated that 

C lies between A and D . 

Fig. ̂. 

II, 3. Of any three points situated on a straight line, 

there is always one and only one which lies between 
the other two. 

II, 4. A n y four points A , B,. C, D of a straight line 

,,,̂' • --' can always be so arranged that B shall lie between 
A and C and also between A and D , and, further­

more, so that C shall lie between A and D and 
also between B and D. 

Definition. W e will call the system of two points 
A and B, lying upon a straight line, a segment and 
denote it by A B or BA. The points lying between A 
and B are c.alled the points of the segment A B or the 

points lying within the segment A B . All other points 
are referred to the points lying without the segment A B . 
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The points A and B are called the extremities of the 
segment AB. 

II, 5. let A, B, C be three points not lying in the 
same straight line and 

let a be a straight 

line lying in the plane 

A B C and not passing 
through any of the 

points A, B, C. Then, 
if the straight line a 

passes through a point 
of the segment AB, it 

will also pass through 

either a point of the segment B C or a point of the 
segment A C. 

Axioms II, 1-4 contain statements concerning the 
points of a straight line only, and, hence, we will call 
them the linear axioms of group II. Axiom II, 5 re­

lates to the elements of plane geometry and, conse­
quently, shall be called the plane axiom of group II. 

§ 4. CONSEQUENCES OF THE AXIOMS OF CONNEC­
TION AND ORDER. 

By the aid of the four linear axioms II, 1-4, we 
can easily deduce the following theorems: 

Theorem 3. Between any two points of a straight 
line, there always exists an unlimited number of 

points. 

Theorem 4. If we have given any finite number 

of points situated upon a straight line, we can 
always arrange them in a sequence A, B, C, 

D, E, . . . ., ^ s o that B shall lie between A 

and C, D, E,.. .., K; Cbetween A, B and D, 
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E,.. .., K; D between A, B, C and E,.. ..K, 
etc. Aside from this order of sequence, there 
exists but one other possessing this property 

namely, the reverse order K, .. .., E, D, C 

B, A. 
A B C 0 E K 
1 1 1 1 1 ' • 

Fig. 4. 

Theorem 5. Every straight line a, which lies in 

a plane a, divides the remaining points of this 

plane into two regions having the following 

properties : Every point A of the one region de­

termines with each point B of the other region 

a segment A B containing a point of the straight 
line a. O n the other hand, any two points A , 

A ' of the sam e region determine a segment 

A A ' containing no point of a. 

Fig. 5-

If ̂ , A', O, B are four points of a straight line a, 
where O lies between A and B but not between A and 

Fig. 6. 

A', then w e m a y say : T h e points A , A ' are situated 

on the line ah/pon one and the satne side of the point O, 
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and the points A, B are situated on the straight line a 
upon different sides of the point O. All of the points of 
a which lie upon the same side of O, when taken 
together, are called the half ray emanating from O. 
Hence, each point of a straight line divides it into 
two half-rays. 

Making use of the notation of theorem 5, we say: 
The points A, A' lie in the plane u, upon one and the 
same side of the straight line a, and the points A, B lie 
i7i the plane a upon different sides of the straight line a. 

Definitions. A system of segments A B , B C , 
CD, .. . ., X L is called a broken line joining A with L 
and is designated, briefly, as the broken line A B O D E 
.. . .KI. The points lying within the segments A B , 
BC, CD, , K L , as also the points A, B, C, D, 
.. .., K, L, are called the points of the broken line. In 
particular, if the point A coincides with L, the broken 
line is called a. polygon and is designated as the polygon 
ABCD X. The segments AB, BC, CD, , XA 
are called the sides of the polygon and the points A, B, 
C, D,...., X the vertices. Polygons having 3, 4, 
5, ....,« vertices are called, respectively, triangles, 
quadrangles, pentagons, .. .., n-gons. If the vertices of 
a polygon are all distinct and none of them lie within 
the segments composing the sides of the polygon, 
and, furthermore, if no two sides have a point in com­
mon, then the polygon is called a simple polygon. 

With the aid of theorem 5, we may now obtain, 
without serious difficulty, the following theorems: 

Theorem 6. Every simple polygon, whose ver­
tices all lie in a plane a, divides the points of 
this plane, not belonging to the broken line 
constituting the sides of the polygon, into two 
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regions, an interior and an exterior, having the 
following properties : If ̂  is a point of the in­
terior region (interior point) and B a point of 
the exterior region (exterior point), then any 

broken line joining A and B must have at least 
one point in c o m m o n with the polygon. If, on 

the other hand, A , A' are two points of the in-

Fig. 7. 
terior and B , B ' two points of the exterior re­
gion, then there are always broken lines to be 

found joining A with A ' and B with B ' without 
having a point in c o m m o n with the polygon. 

There exist straight lines in the plane a which 

lie entirely outside of the given polygon, but 
there are none which lie entirely within it. 

Theorem 7. Every plane a divides the remain­

ing points of space into two regions having the 
following properties : Every points of the one 
region determines with each point B of the 
other region a segment AB, within which lies 
a point of a. Any two points^, .̂ 'Jying within 
the same region determine a segment AA' con­
taining no point of a. 
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Making use of the notation of theorem 7, we may 

now say: The points A, A' are situated in space tipon 
one and the same side of the plane a, and the points A, B 

are situated in space upon different sides of the plane a. 

Theorem 7 gives us tlie most important facts re­
lating to the order of sequence of the elements of 

space. These facts are the results, exclusively, of the 

axioms already considered, and, hence, no new space 
axioms are required in group II. 

§ 5. GROUP in. AXIOM OF PARALLELS. (EUCLID'S 
AXIOM.) 

The introduction of this axiom simplifies greatly 
the fundamental principles of geometry and facilitates 

in no small degree its development. This axiom may 
be expressed as follows : 

III. In a plane a there can be drawn through any 
point A, lying outside of a straight line a, one and 

only one straight line which does not intersect the 

line a. This straight line is called the parallel to 
a through the given point A. 

This statement of the axiom of parallels contains 

two assertions. The first of these is that, in the plane 

a, there is always a straight line passing through A 
which does not intersect the given line a. The second 

states that only one such line is possible. The latter 
of these statements is the essential one, and it may 

also be expressed as follows : 

Theorem 8. If two straight lines a, ̂  of a plane 

do not meet a third straight line c of the same 

plane, then they do not meet each other. 

For, if a, b had a point A in common, there would 

then exist in the same plane with c two straight lines 
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a and b each passing through the point A and not 

meeting the straight line c. This condition of affairs 
is, however, contradictory to the second assertion con­
tained in the axiom of parallels as originally stated. 
Conversely, the second part of the axiom of parallels, 
in its original form, follows as a consequence of the­

orem 8. 
The axiom of parallels is a plane axiom. 

§ 6. GROUP IV. AXIOMS OF CONGRUENCE. 

The axioms of this group define the idea of con­
gruence ordisglacement. 

Segments stand in a certain relation to one an­
other which is described by the word ^̂  congruent." 

IV, 1. If A, B are two points on a straight line a, 
and if A' is a point upon the same or another 

straight line a', then, upon a given side of A' of 
the straight line a', we can always find 07ie and 
only one point B' so that the segment A B (or B A ) 

is congruent to the segment A'B'. W e indicate 

this relation by writing 

AB^^A'B'. 

Every segment is congruent to itself; tliat is, we 

always have 
AB = AB. 

W e can state the above axiom briefly by saying 
that every segment can he laid off u-pon a. given side 
of a given point of a given straight line in one and 
and only one way. 

CfvmL^tl:> tt V̂ dtc/fr ̂ ^' 2- ̂ « segment A B is congruent to the segment 
A-̂ '/rtvi ^ • A'B' and also to the segment A"B", then the seg-

' \ ment A'B' is congruent to the segtnent A"B"; that 
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is, if ABee:A'B' and AB^^A"B", then A'B'^ 
A"B". 

IV, 3. Let AB and BO be two segments of a straight ^ ** 
line a which have no points in common aside from '̂̂ '̂ "̂  *-

the point B, and, furthermore, let A'B' and B'C" ^*"^ "'̂ '̂  
be two segments of the same or of another straight ^ " ' ^ jrf. 

line a' having, likewise, no point other than B' in -t̂ K̂ /̂r̂  

Fig. 8. 

common. Then, if ABee^A'B' and BO=B'C', 
we have AC^A'C. 

Definitions. Let a be any arbitrary plane and h, 

k any two distinct half-rays lying in a and emanating 
from the point O so as to form a part of two different 

straight lines. W e call the system formed by these 
two half-rays h, k 3.n angle and represent it by the 

symbol / (/z, k) or / {k, k). From axioms II, 1-5, it 

follows readily that the half-rays h and k, taken to­
gether with the point O, divide the remaining points 

of the plane a into two regions having the following 
property: If ̂  is a point of one region and B a point 

of the other, then every broken line joining A and B 
either passes through O or has a point in common 

with one of the half-rays h, k. If, however, A, A 

both lie within the same region, then it is always pos­

sible to join these two points by a broken line which 

neither passes through O nor has a point in common 

with either of the half-rays h, k. One of these two 

regions is distinguished from the other in that the seg-
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ment joining any two points of this region lies entirely 
within the region. T h e region so characterised is 

called the interior of the angle (Ji, k). T o distinguish 
the other region from this, w e call it the exterior of 
the angle {h, li). T h e half rays h and k are called the 
sides of the angle, and the point O is called the vertex 

of the angle. 

IV, 4. Let an angle {h, k) be given in the plane 

a and let a straight line a' be given in a plane a.'. 

Suppose also that, /« the plane a, a definite side 

of the straight a' be assigned. Denote by h' a 

half ray of the straight line a' emanating from a 

point O' of this line. Then in the plane a there 
is one and only one half-ray k' such that the angle 

(Ji, Ji), or (Ji, h), is congruent to the angle (Ji, k') 
and at the same time all interior points of the angle 

(Ji', k') lie upon the given side of a'. W e express 

this relation by means of the notation 

l{h, k) = l{h', k'). 

Every angle is congruent to itself; that is, 

Lijt, /0=Z(A, k) 
or 

L{h, k)=l{k, h). 

W e say, briefly, that every angle in a given plane 
can be laid off wpon a given side of a given half-ray in 

one and only one way. 

IV, 6. If the angle (Ji, k) is congruent to the angle 
{Ji , k') and to the angle {Ji", k"), then the angle 
{Ji!, k') is congruent to the angle (Ji', k"); that is 

to say, if /_{Ji, k ) ^ ^ { J i , 4') ('•̂'d A{h, k) = 
Z ih", k"), then Z (//, k') = L ffi", k"). 

Suppose w e have given a triangle A B C . Denote 
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by h, k the two half-rays emanating from A. and pass­

ing respectively through B and 0. The angle iji, k) 
is then said to be the angle included by the sides A B 

and AC, or the one opposite to the side B O in the 

triangle ABC. It contains all of the interior points 
of the triangle A B C and is represented by the symbol 

IBAO, or by lA. 

IV, 6. If, in the two triangles ABC and AB'C, 
the congruences 

AB=A'B', AC=A'C', lBAC=B'A'C' 

hold, then the cofigruences 

I A B C = I A ' B ' 0 ' and l A C B = lA'C'B' 

also hold. 

Axioms IV, 1-3 contain statements concerning the 

congruence of segments of a straight line only. They 
may, therefore, be called the linear axioms of group 
IV. Axioms IV, 4, 5 contain statements relating to 

the congruence of angles. Axiom IV, 6 gives the con­

nection between the congruence of segments and the 

congruence of angles. Axioms IV, 3-6 contain state­
ments regarding the elements of plane geometry and 

may be called tYie plane axioms of group IV. 

§ 7. CONSEQUENCES OF THE AXIOMS OF CON­
GRUENCE. 

Suppose the segment AB is congruent to the seg­
ment A'B'. Since, according to axiom IV, 1, the seg­

ment A B is congruent to itself, it follows from axiom 

IV, 2 that A'B' is congruent to A B ; that is to say, if 
AB^A'B', then A'B'^^AB. W e say, then, that the 

two segments are congruent to one another. 
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Let A,B, C,D, , X, L and A', B', C, D', , 
X', L' be two series of points on the straight lines a 
and a', respectively, so that all the corresponding seg­
ments .̂ .5 ̂ ^AA'B', A C and A'C, B O and B'C, , 
X L and X'L' are respectively congruent, then the two 
series of points are said to be congruent to one another. 
A and A', B and B' , L and L' are called corre­
sponding points of the two congruent series of points. 

From the linear axioms IV, 1-3, we can easily de­
duce the following theorems : 

Theorem 9. If the first of two congruent series 
of points A, B, 0, D, , X, L and A', B', 
C , D', .. .., X', L' is so arranged that B lies 
between A and C, D, .. .., X, L, and C between 
A, B and D,. . .., X, L, etc., then the points A', 
B', C, D', X', L' of the second series are 
arranged in a similar way; that is to say, B' 
lies between A' and C , D', . . . ., X', L', and C 
lies between A', B' and D', .. . ., X', L', etc. 

Let the angle (/z, k) be congruent to the angle 
(//', k'). Since, according to axiom IV, 4, the angle 
{h, k) is congruent to itself, it follows from axiom lY, 
5 that the angle (/?,', //) is congruent to the angle 
(h, k). W e say, then, that the angles {h, k) and {h', k') 
are congruent to one another. 

Definitions. Two angles having the same vertex 
and one side in common, while the sides not common 
form a straight line, are called supplemenlaty angles'. 
T w o angles having a common vertex and whose sides 
form straight lines are called vertical angles. An angle 
which is congruent to its supplementary angle is called 
a right a7tgle. 

Two triangles A B O And A'B'C are said to be con-
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gruent to one another when all of the following con­
gruences are fulfilled : 

ABn^A'B', A C ^ A ' C , BC^eieB'C, 
LA=Z.A', IB=IB', i O = lO'. 

Theorem 10. (First theorem of congruence for 

triangles). If, for the two triangles A B O and 
A'B'C, the congruences 

AB=A'B', AC=A'0', /_A=lA' 

hold, then the two triangles are congruent to 
each other. 

Proof. From axiom IV, 6, it follows that the 

two congruences 

l X ^ ^ L B ' and Z CeeeZ C" 

are fulfilled, and it is, therefore,-sufficient to show that 

the two sides B C and B'C are congruent. W e will 
assume the contrary to be true, namely, that B O and 

B'C axe not congruent, and show that this leads to a 
contradiction. W e take upon B'C a point D' so that 

BC^^B'iy. The two triangles A B C and A'B'D' have, 

then, two sides and the included angle of the one 
agreeing, respectively, to two sides and the included 

angle of the other. It follows from axiom IV, 6 that 

the two angles ̂ ^Cand B'A'D' are also congruent to 

each other. Consequently, by aid of axiom IV, 5, 

the two angles B'A'C and B'A'D must be congruent. 
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This, however, is impossible, since, by axiom IV, 4, 

an angle can be laid off in one and only one way on a 
given side of a given half-ray of a plane. From this 
contradiction the theoremi follows. 

W e can also easily demonstrate the following the­
orem : 

Theorem 11. (Second theorem of congruence 

for triangles). If in any two triangles one side 
and the two adjacent angles are respectively 
congruent, the triangles are congruent. 

We are now in a position to demonstrate the fol­
lowing important proposition. 

Theorem 12. If two angles ABC and A'B'C are 

congruent to each other, their supplementary 

angles O B D and O'B'D' are also congruent. 

c 

Fig. 10. 

Proof. Take the points A', C, D' upon the sides 
passing through B' in such a way that 

A'B' = AB, CB'=CB, D'B' = DB. 

Then, in the two triangles A B O and A'B'C, the sides 
A B and B C are respectively congruent to A'B' and 
CB'. Moreover, since the angles included by these 
sides are congruent to each other by hypothesis, it 
follows from theorem 10 that these triangles are con­
gruent; that is to say, we have the congruences 

AO=A'C', lBAO=lB'A'C'. 

On the other hand, since by axiom IV, 3 the segments 
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A D and A'U are congruent to each other, it follows 
again from theorem 10 that the triangles C A D and 

CA'D' are congruent, and, consequently, we have the 
congruences: 

CD=CD', -lADO=lA'D'C'. 
From these congruences and the consideration of the 

triangles B C D and B'O'D', it follows by virtue of 
axiom IV, 6 that the angles O B D and O'B'D' are con­
gruent. 

As an immediate consequence of theorem 12, we 
have a similar theorem concerning the congruence of 

vertical angles. 

Theorem 13. Let the angle (Ji, k) of the plane a 

be congruent to the angle {h', k') of the plane 

a, and, furthermore, let I he a half-ray in the 
plane u, emanating from the vertex of the angle 

(Ji, k) and l5dng within this angle. Then, there 
always exists in the plane a' a half-ray /' em­

anating from the vertex of the angle (/z', k') and 
lying within this angle so that we have 

Z {h, /) = Z {h', I'), Z {k, I) = Z ik', I'). 

Proof. W e will represent the vertices of the an­

gles {h, k) and (/z', k') by O and O', respectively, and 

so select upon the sides h, k, K, k' the points A, B, 

A', B' that the congruences 

OA=0'A', OB=0'B' 
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are fulfilled. Because of the congruence of the tri­
angles O A B and O'A'B', we have at once 

A B = A'B', I OAB^^I O'A'B', I OBA^e^I O'B'A'. 

Let the straight line A B intersect / in C. Take the 
point C" upon the segment ̂ 'i?'so that A'C'^AC. 
Then, O'C is the required half-ray. In fact, it fol­

lows directly from these congruences, by aid of axiom 

IV, 3, that BC^,B'C'- Furthermore, the triangles 
O A O and O'A'C are congruent to each other, and the 
same is true also of the triangles Oi?C and O'B'C. 
With this our proposition is demonstrated. 

In a similar manner, we obtain the following prop­
osition. 

Theorem 14. Let h, k, I and h', k', I' be two sets 
of three half-rays, where those of each set em­

anate from the same point and lie in the same 
plane. Then, if the congruences 

Z {h, /) = Z {h', I'), Z (k, l ) = l ik', I') 

are fulfilled, the following congruence is also 
valid ; viz.: 

Z(/z, k)=l{N, k'). 

By aid of theorems 12 and 13, it is possible to de­

duce the following simple theorem, which Euclid held 
—although it seems to me wrongly—to be an axiom. 

Theorem 15. All right angles are congruent to 

one another. 

Proof. Let the angle BAD be congruent to its 
supplementary angle CAD, and, likewise, let the angle 
B'A'D' be congruent to its supplementary angle 
CA'D'. Hence the angles B A D , CAD, B'A'D', and 
CA'D' are all right angles. W e will assume that the 
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contrary of our proposition is true, namely, that the 
right angle B'A'D' is not congruent to the right angle 

B A D , and will show that this assumption leads to a 
contradiction. W e lay off the angle B'A'D' upon the 
half-ray A B in such a manner that the side A D " aris­

ing from this operation falls either within the angle 
B A D or within the angle CAD. Suppose, for ex­

ample, the first of these possibilities to be true. Be­

cause of the congruence of the angles B'A'D' and 
BAD", it follows from theorem 12 that angle CA'D' 
is congruent to angle CAD", and, as the angles ̂ '^'Z?' 

and CA'D' are congruent to each other, then, by 

IV, 5, the angle B A D " must be congruent to CAD". 

Fig. 12. 

Furthermore, since the angle BAD is congruent to the 
angle C A D , it is possible, by theorem 13, to find within 
the angle C A D a half-ray AD'" emanating from A, so 
that the angle B A D " will be congruent to the angle 

CAD'", and also the angle D A D " will be congruent 
to the angle DAD'" The angle B A D " was shown 

to be congruent to the angle CAD" and, hence, by 

axiom IV, 5, the angle CAD", is congruent to the 
angle CAD"'. This, however, is not possible; for, 

according to axiom IV, 4, an angle can be laid off in 

a plane upon a given side of a given half-ray in only 
one way. With this our proposition is demonstrated. 
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We can now introduce, in accordance with com­
mon usage, the terms "acute angle" and "obtuse an­

gle." 
The theorem relating to the congruence of the 

base angles A and B of an equilateral triangle A B O 
follows immediately by the application of axiom IV, 
6 to the triangles A B C and B A C . By aid of this the­

orem, in addition to theorem 14, we can easily dem­
onstrate the following proposition. 

Theorem 16. (Third theorem of congruence for 

triangles.) If two triangles have the three sides 
of one congruent respectively to the correspond­

ing sides of the other, the triangles are con­

gruent. 

Any finite number of points is called a figure. If 

all of the points lie in a plane, the figure is called a 

plane figure. 

T w o figures are said to be congruent if their points 
can be arranged in a one-to-one correspondence so 

that the corresponding segments and the correspond­
ing angles of the two figures are in every case con­

gruent to each other. 
Congruent figures have, as may be seen from theo­

rems 9 and 12, the following properties: Three points 
of a figure lying in a straight line are likewise in a 

straight line in every figure congruent to it. In con­
gruent figures, the arrangement of the points in corre­
sponding planes with respect to corresponding lines 
is always the same. The same is true of the sequence 
of corresponding points situated on corresponding 

lines. 
The most general theorems relating to congruences 

in a plane and in space may be expressed as follows: 
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Theorem 17. If (A, B, C,.. ..) and (A', B', C, 
....) are congruent plane figures and F is a 

point in the plane of the first, then it is always 
possible to find a point B' in the plane of the 
second figure so that {A, B, 0,....F) and {A', 

B', C,.. . -P') shall likewise be congruent fig­

ures. If the two figures have at least three 
points not lying in a straight line, then the se­
lection of P' can be made in only one way. 

Theorem 18. If (A, B, C, ) and (A', B', C, 
.. ..) are congruent figures and P represents 
any arbitrary point, then there can always be 

found a point P' so that the two figures (A, 

B, C,....,P) and (A', B', C',....P') shall 
likewise be congruent. If the figure (A, B, O, 

.... P ) contains at least four points not lying 
in the same plane, then the determination of 
P' can be made in but one way. 

This theorem contains an important result; namely, 
that all the facts concerning space which have ref­
erence to congruence, that is to say, to displacements 

in space, are (by the addition of the axioms of groups 

I and II) exclusively the consequences of the six 
linear and plane axioms mentioned above. Hence, it 
is not necessary to assume the axiom of parallels in 

order to establish these facts. i 
If we take, in addition to the axioms of congru­

ence, the axiom of parallels, we can then easily estab­

lish the following propositions : 

Theorem 19r If two parallel lines are cut by a 

third straight line, the alternate-interior angles 
and also the exterior-interior angles are con-
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gruent. Conversely, if the alternate-interior or 
the exterior-interior angles are congruent, the 

given lines are parallel. 

Theorem 20. The sum of the angles of a triangle 

is two right angles. 

Definitions. If M is an arbitrary point in the 

plane a, the totality of all points A, for which the seg­
ments M A are congruent to one another, is called a 

circle. M is called the centre of the circle. 
From this definition can be easily deduced, with 

the help of the axioms of groups III and IV, all of the 

known properties of the circle; in particular, the pos­
sibility of constructing a circle through any three 

points'not lying in a straight line, as also the congru­
ence of all angles inscribed in the same segment of 

a circle, and the theorem relating to the angles of an 
inscribed quadrilateral. 

§ 8. GROUP V. AXIOM OF CONTINUITY. (ARCHI­
MEDES'S AXIOM.) 

This axiom makes possible the introduction into 
geometry of the idea of continuity. In order to state 

this axiom, we must first establish a convention con­
cerning the equality of two segments. For this pur­

pose, we can either base our idea of equality upon the 
axioms relating to the congruence of segments and 
define as "equal" the corresponding congruent seg­
ments, or upon the basis of groups I and II, we rnay 
determine how, by suitable constructions (see Chap. 
V, § 24), a segment is to be laid off from a point of a 
given straight line so that a new, definite segment is 
obtained " equal" to it. In conformity with such a 
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convention, the axiom of Archimedes may be stated 
as follows : 

V. Let A^ be any point upon a straight line between 

the arbitrarily chosen, points A and B. Take the 
points A.,, A^, A^,.... so that A^ lies between A 
and A.̂ , A.̂  between A^ and A^, A^ between A^ and 

A^, etc. Moreover, let the segments 

AA.^, A^A^, A^A^, A.^A^, .... 

be equal to one another. Then, among this series 
of points, there always exists a certain point A „ 
such that B lies between A a7id A„. 

The axiom of Archimedes is a linear axiom. 

Remark.* T o the preceeding five groups of ax­
ioms, w e m a y add the following one, which, although 

not of a purely geometrical nature, merits particular 
attention from a theoretical point of view. It m a y be 

expressed in the following form : 

Axiom OF Completeness.f (Vollstdndigkeit): To a 
system of points, straight lines, and planes, it is 

i77ipossible to add other elements in such a 77ianner 

that the syste77i thus generalized shall for77i a new 
geometry obeying all of the five groups of axioms. 
Ln other words, the elements of geometry form a 

system which is 7iot su^eptible of extension, if w e 
regard the five groups of axio7ns as valid. 

This axiom gives us nothing directly concerning-
the existence of limiting points, or of the idea of con­
vergence. Nevertheless, it enables us to demonstrate 

Bolzano's theorem by virtue of which, for all sets of 

• Added by Professor Hilbert in the French translation.— TV. 
tSee Hilbert, " Ueber den Zahlenbegriff," Berichte der deutschen Mathe-

ntatiker-Vereinigung, igoo. 
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points situated upon a straight line between two defi­
nite points of the same line, there exists necessarily 
a point of condensation, that is to say, a limiting point. 

From a theoretical point of yiew, the value of this 
axiom is that it leads indirectly to the introduction 
of limiting points, and, hence, renders it possible to 

establish a one-to-one correspondence between the 
points of a segment and the system of real numbers. 

However, in what is to follow, no use will be made of 
the "axiom of completeness." 



C O M P A T I B I L I T Y A N D M U T U A L IN­

D E P E N D E N C E O F T H E A X I O M S . 

§ 9. COMPATIBILITY OF THE AXIOMS. 

THE axioms, which we have discussed in the pre­
vious chapter and have divided into five groups, 

are not contradictory to one another; that is to say, 

it is not possible to deduce from these axioms, by any 
logical process of reasoning, a proposition which is 
contradictory to any of them. To demonstrate this, 

it is sufficient to produce a geometry where all of the 

five groups are fulfilled. 
To this end, let us consider a domain Q consisting 

of all of those algebraic numbers which may be.ob­

tained by beginning with the number one and apply­

ing to it a finite number of times the four arithmet­
ical operations (addition, subtraction, multiplication, 

and division) and the irrational operation l/l -|- <ô, 

where <o represents a number arising from the five 

operations already given. 
Let us regard a pair of numbers (x, y) of the do­

main CI as defining a point and the ratio of three such 

numbers {u:v: w) of fi, where u, v are not both equal 
to zero, as defining a straight line. Furthermore, let 

the existence of the equation 

ux-\-vy-\-w = Q 

express the condition that the point (x, y) lies on the 
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straight line (u:v:w). Then, as one readily sees, 
axioms I, 1-2 and III are fulfilled. T h e numbers of 
the domain Q, are all real numbers. If n o w w e take 
into consideration the fact that these numbers m a y be 
arranged according to magnitude, w e can easily m a k e 

such necessary conventions concerning our points and 
straight lines as will also m a k e the axioms of order 
(group II) hold. In fact, if {x„ y^), {x„ y^), {x.,, y,), 
.... are any points whatever of a straight line, then 

this m a y be taken as their sequence on this straight 
line, providing the numbers x^, x^, x.„ .. .., or the 

numbers jVi, ŷ , y^,.. .., either all increase or decrease 
in the order of sequence given here. In order that 
axiom II, 5 shall be fulfilled, w e have merely to as­

sume that all points corresponding to values of x and 

y which m a k e u x ^ v y ^ w less than zero or greater 
than zero shall fall respectively upon the one side or 

upon the other side of the straight line { u w : w ) . 

W e can easily convince ourselves that this conven­

tion is in accordance with those which precede, and 

by which the sequence of the points on a straight line 
has already been determined. 

T h e laying off of segments and of angles follows 
by the k n o w n methods of analytical geometry. A 
transformation of the form 

x' =̂ x-\- a 
y'=y-^b 

produces a translation of segments and of angles. 
Furthermore, if, in the accompanying figure, w e rep-

Fig. 13. 

resent the point (0, 0) by O and the point (1, 0) hy E , ' 
then, corresponding to a rotation of the angle C O E 
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about O as a center, any point [x, y) is transformed 
into another point {x', y') so related that 

, a b 
X = = X -^=r=: y, 

Va^ + b"- Va^ + b̂  

;̂  + : 

Since the number 

^/^+b^^a^\l^-[~) 

belongs to the domain O, it follows that, under the 

conventions which we have made, the axioms of con-

(x,'y'); 

0(o,oj E(I,0) 
'Fig. 14. 

gruence (group IV) are all fulfilled. The same is true 
of the axiom of Archimedes. 

From these considerations, it follows that every 
contradiction resulting from our system of axioms 
must also appear in the arithmetic related to the do­

main O. 
The corresponding considerations for the geom­

etry of space present no difficulties. 
If, in the preceding development, we had selected 

the domain of all real numbers instead of the domain 
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O, we should have obtained likewise a geometry in 

which all of the axioms of groups I-V are valid. For 
the purposes of our demonstration, however, it was 
sufficient to take the domain O, containing only an 

enumerable set of elements. 

§ lo, INDEPENDENCE OF THE AXIOM OF PARALLELS. 
(NON-EUCLIDEAN GEOMETRY.)* 

Having shown that the axioms of the above system 
are not contradictory to one another, it is of interest 

to investigate the question of their mutual indepen­
dence. In fact, it may be shown that none of them 

can be deduced from the remaining ones by any logical 
process of reasoning. 

First of all, so far as the particular axioms of 
groups I, II, and IV are concerned, it is easy to show 

that the axioms of these groups are each independent 
of the others of the same group."(• 

According to our presentation, the axioms of groups 
I and II form the basis of the remaining axioms. It 

is sufficient, therefore, to show that each of the groups 

III, IV, and V is independent of the others. 

The first statement of the axiom of parallels can 

be demonstrated by aid of the axioms of groups I, II, 
and IV. In order to do this, join the given point A 
with any arbitrary point B of the straight line a. Let 

O be any other point of the given straight line. At 

"""The mutual independence of Hilbert's system of axioms has also been 
discussed recently by Schur and Moore. Schur's paper, entitled " Ueber die 
Grundlagen der Geometrie " appeared in the Matli. Annaleti, Vol. 55, p. 265, 
and that of Moore, " On the Projective Axioms of Geometry," is to be found 
in the Jan. (1902) number of the Transactions of tlie Amer. Math. Society,— Tr. 

t See ray lectures upon Euclidean Geometry, winter semester of i8g8-
iSgg, which were reported by Dr. Von Schaper and manifolded for the mem­
bers of the class. 
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the point A on AB, construct the angle ABO so that 
it shall lie in the same plane a as the point C, but 
upon the opposite side of A B from it. The straight 

line thus obtained through A does not meet the given 
straight line a; for, if it should cut it, say in the point 

D, and if we suppose B to be situated between C and 

D, we could then find on a a point D' so situated that 
B would lie between D and D', and, moreover, so 

that we should have 

AD=BD'. 

Because of the congruence of the two triangles A B D 

and BAD', we have also 

IABD=IBAD', 

and since the angles A B D ' and A B D are supplemen­
tary, it follows from theorem 12 that the angles B A D 
and B A D ' are also supplementary. This, however, 

cannot be true, as, by theorem 1, two straight lines 

cannot intersect in more than one point, which would 
be the case if B A D and B A D ' were supplementary. 

The second statement of the axiom of parallels is 

independent of all the other axioms. This may be 

most easily shown in the following well known man­
ner. As the individual elements of a geometry of 

space, select the points, straight lines, and planes of 
the ordinary geometry as constructed in § 9, and re­

gard these elements as restricted in extent to the in­
terior of a fixed sphere. Then, define the congruences 

of this geometry by aid of such linear transformations 

of the ordinary geometry as transform the fixed sphere 
into itself. By suitable conventions, we can make 

this "non-euclidean geometry" obey all of the axioms 

of our system except the axiom of Euclid (group III). 

Since the possibility of the ordinary geometry has 
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already been established, that of the non-euclidean 
geometry is now an immediate consequence of the 

abow€ considerations./ 

INDEPENDENCE OF THE AXIOMS OF CON­
GRUENCE. 

W e shall show the independence of the axioms of 

congruence by demonstrating that axiom IV, 6, or 
what amounts to the same thing, that the first theo­
rem of congruence for triangles (theorem 10) cannot 

be deduced from the remaining axioms I, II, III, IV 
1-6, V by any logical process of reasoning. 

Select, as the points, straight lines, and planes of 
our new geometry of space, the points, straight lines, 

and planes of ordinary geometry, and define the laying 
off of an angle as in ordinary geometry, for example, 

as explained in § 9. W e will, however, define the lay­
ing off of segments in another manner. Let A.̂ , A^ be 
two points which, in ordinary geometry, have the co-

inates x̂ , ŷ , ẑ  and x̂ , ŷ , ẑ , respectively. W e 
will now define the length of the segment A^A^ as the 

positive value of the expression 

Vix^ — «2 + J'l —J'2)' + (J'l —JCa)' + (Zi — 22)'> 
and call the two segments Â A.;. and A'̂ A'̂  congruent, 

when they have equal lengths in the sense just de­
fined. 

It is at once evident that, in the geometry of space 
thus defined, the axioms I, II, III, IV 1-2, 4-5, V are 
all fulfilled. 

In order to show that axiom IV, 3 also holds, we 
select an arbitrary straight line a and upon it three 
points A„ A,,, A^, so that A^ shall lie between A-̂  and 
Â . Let the points x, y, z of the straight line a be 
given by means of the equations 
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x = Xt^X, 
y = fki-\~ix', 

z = vt-\- v , 

where X, X', /x, /*', v, v represent certain constants and 

/ is a parameter. If t̂, t̂  (<^i), 4 (<^2) are the values 
of the parameter corresponding to the points A.̂ , A^, 
A^, we have as the lengths of the three segments Aĵ Â  
A2A3, and A^A^, respectively, the following values : 

(A—^2) I V J x + W + ^ + l I 

(̂2 - h) I Vi\ + f^f+^'+^ I 

(̂ i-̂ 3)|i/Ĉ  + /x)̂ +/̂ +̂''̂ |-
Consequently, the length of A^A^ is equal to the sum of 

the lengths of the segments A^A^ and A^A^. But this 
result is equivalent to the existence of axiom IV, 3. 

Axiom IV, 6, or rather the first theorem of con­
gruence for triangles, is not always fulfilled in this 

geometry. Consider, for example, in the plane z^O, 

the four points 

O, having the co-ordinates x^O, y=:0 

A, 

B, 

C, 

x = l,y^^ 
:K r= 0, JI' = 1 

x = \,y = \. 

kB(0,1) 
T h e n , in the right triangles 

O A O and OBO, the angles at 
0 as also the adjacent sides 
A C and B C are respectively 

congruent; for, the side 0 0 is 
common to the two triangles 

and the sides A C and B O have 
the same length, namely, -J. 

However, the third sides. OA 
and O B have the lengths 1 and l/2, respectively, and 

are not, .therefore, congruent. 

0(0,0) 
Fig. 15. 
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It is not difficult to find in this geometry two tri­
angles for which axiom IV, 6, itself is not valid. 

§ 12. INDEPENDENCE OF T H E AXIOM OF CONTIN­
UITY. (NON-ARCHIMEDEAN GEOMETRY.) 

In order to demonstrate the independence of the 
axiom of Archimedes, we must produce a geometry 

in which all of the axioms are fulfilled with the excep­
tion of the one in question.* 

For this purpose, we construct a domain Q(f) of 
all those algebraic functions of t which may be ob­

tained from / by means of the four arithmetical opera­

tions of addition, subtraction, multiplication, division, 
and the fifth operation l/l -\-1,?, where oi represents 
any function arising from the application of these five 

operations. The elements of Q,{f)—just as was pre­

viously the case for O—constitute an enumerable set. 
These five operations niay all actually be performed 

and that in only one way. The domain O(^) contains, 
therefore, only real, single-valued functions of t. 

Let c be any function whatever of the domain Q,{fy 

Since this function c is an algebraic function of /, it 
can in no case vanish for more than a finite number of 
values of t, and, hence, for sufficiently large positive 
values of /, it must remain always positive or always 

negative. 
Let us now regard the functions of the domain 

Q,(f) as a kind of complex numbers. In the system of 
complex numbers thus defined, all of the ordinary 
rules of operation evidently hold. Moreover, if a, b 
are any two distinct numbers of this system, then a 

*In his very scholarly book,—Gmndzuge der Geometrie, German transla­
tion by A. Schepp, Leipzig, i8g.i,—G. Veronese has also attempted the con­
struction of a geometry independent of the axiom of Archimedes. 
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is said to be greater than, or less than, b (written a>^ 
or a<,b) according as the difference c = a — ^ is always 

positive or always negative for sufficiently large values 

of t. By the adoption of this convention for the num­
bers of our system, it is possible to arrange them ac­

cording to their magnitude in a manner analogous to 

that employed for real numbers. W e readily see also 

that, for this system of complex numbers, the validity 
of an inequality is not destroyed by adding the same 

or equal numbers to both members, or by multiplying 

both members by the same number, providing it is 

greater than zero. 

If 71 is any arbitrary positive integral rational num­

ber, then, for the two numbers « and / of the domain 
0(/), the inequality n<it certainly holds; for, the 

difference n — t, considered as a function of t, is always 

negative for sufficiently large values of t. W e express 

this fact in the following manner : The two numbers 

1 and / of the domain O(^), each of which is greater 
than zero, possess the property that any multiple 

whatever of the first always remains smaller than the 

second. 
From the complex numbers of the domain n(/), 

we now proceed to construct a geometry in exactly 
the same manner as in § 9, where we took as the basis 
of our consideration the algebraic numbers of the do­

main O. W e will regard a system of three numbers 

{x, y, z) of the domain li(/) as defining a point, and 
the ratio of any four such numbers (u-.v.w: r), where 

u, V, w are not all zero, as defining a plane. Finally, 

the existence of the equation 
xu -\-yv -\- zw -|- r =: 0 

shall express the condition that the point (x, y, z) lies 

in the plane {tiw.w: r). Let the straight line be de-
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fined in our geometry as the totality of all the points 

lying simultaneously in the same two planes. If now 
we adopt conventions corresponding to those of § 9 

concerning the arrangement of elements and the lay­
ing off of angles and of segments, we shall obtain a 
"no77-archi7nedean" geo77ietry -fihere, as the properties 

of the complex number system already investigated 
show, all of the axioms, with the exception of that of 

Archimedes, are fulfilled. In fact, we can lay off suc­
cessively the segment 1 upon the segment t an arbi­

trary number of times without reaching the end point 
of the segment t, which is a contradiction to the axiom 
of Archimedes. 



T H E T H E O R Y O F P R O P O R T I O N . * 

§ 13. COMPLEX NUMBER SYSTEMS. 

AT the beginning of this chapter, we shall present 

. briefly certain preliminary ideas concerning com­

plex number systems which will later be of service to 

us in our discussion. 
The real numbers form, in their totality, a system 

of things having the following properties : 

THEOREMS OF CONNECTION (1-12). 

1. From the number a and the number b, there 
is obtained by "addition" a definite number c, 

which we express by writing 

a-\-b=^c or c-=:a-\-b. 

2. There exists a definite number, which we call 

0, such that, for every number a, we have 

a-l-0 = a and 0-|-a = rt. 

3. If a and b are two given numbers, there exists 
one and only one number x, and also one and 

only one number j/, such that we have respect­

ively 
a-\-x=:b, y-]-a = b. 

4. From the number a and the number b, there 
may be obtained in another way, namely, by 

* See also Schur, A!at/t. Annaten, Vol. 55, p. 26i.—Tr. 
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"multiplication," a definite number c, which 
we express by writing 

ab = c or c^ab. 

5. There exists a definite number, called 1, such 
that, for every number a, we have 

a-l = rt and l-a = a. 

6. If a and b are any arbitrarily given numbers, 

where a is different from 0, then there exists 
one and only one number x and also one and 

only one number y such that we have respect­
ively 

ax = b, ya = b. 

If a, b, c are arbitrary numbers, the following laws 
of operation always hold : 

7. a^{b^c) = {a + b)-^c 
8. a-\-b =zb^a 

9. a{bc) ={ab)c 
10. a{b-^c) =ab-\-ac 
11. {a-\-b)c =:ac-\-bc 
12. ab =ba. 

THEOREMS OF ORDER (13-16). 

13. If a, b are any two distinct numbers, one of 
these, say a, is always greater (>) than the 

other. The other number is said to be the 

smaller of the two. W e express this relation 
by writing 

a >. /5 and b <C.a. 

14. li a'^ b and b"^ c, then is also a"^ c. 

15. If a > (5, then is also a-\- c ^ b-\~ c and c-\-a 
->c^b. 
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16. \i a'> b and f>0, then is also ac':>bc and 
ca > cb. 

THEOREM OF ARCHIMEDES (17). 

17. If a, b are any two arbitrary numbers, such 

that a > 0 and ^ > 0, it is always possible to 

add a to itself a sufficient number of times so 
that the resulting sum shall have the property 

that 
a-\- a-\- a-\-.. ..-|-«>3. 

A system of things possessing only a portion of the 

above properties (1-17) is called a complex number 

system, or simply a number system. A number system 

is called archimedean, or non-arclmnedean, according as 

it does, or does not, satisfy condition (17). 

Not every one of the properties (1-17) given above 
is independent of the others. The problem arises to 

investigate the logical dependence of these properties. 

Because of their great importance in geometry, we 
shall, in §§ 32, 33, pp. 101-106, answer two definite 

questions of this character. W e will here merely call 

attention to the fact that, in any, case, the last of these 

conditions (17) is not a consequence of the remaining 
properties, since, for example, the complex number 

system O, (J), considered in § 12, possesses all of the 
properties (1-16), but does not fulfil the law stated 
in (17). 

§ 14. DEMONSTRATION OF PASCAL'S THEOREM. 

In this and the following chapter, we shall take as 
the basis of our discussion all of the plane axioms 
with the exception of the axiom of Archimedes; that 

is to say, the axioms I, 1-2 and II-IV. In the pres-
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ent chapter, we propose, by aid of these axioms, to 
establish Euclid's theory of proportion ; that is, w e 
shall establish it for the plane and that independently of 
the axiom of Archimedes. 

For this purpose, w e shall first denjonstrate a prop­
osition which is a special case of the well k n o w n the­
orem of Pascal usually considered in the theory of 
conic sections, and which w e shall hereafter, for the 

f iiLAhL.<<^ //« • sake of brevity, refer to simply as Pascal's theorem. 
This theorem m a y be stated as follows : 

T h e o r e m 21. (Pascal's theorem.) Given the two 
sets of points A, B , O and A', B', C so situated 
respectively upon two intersecting straight lines 

that none of them fall at the intersection of 
these lines. If O B ' is parallel to B C and CA' 
is also parallel to A C , then B A ' is parallel to 

AB'.* 

In order to demonstrate this theorem, w e shall 
first introduce the following notation. In a right 
triangle, the base a is uniquely determined by the 

*F. Schur has published in the MatJt. Ann., Vol. 51, a very interesting 
proof of the theorem of Pascal, based upon the axioms I-II, IV. 
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Fig. 17. 

hypotenuse c and the base angle a included by a and 
c. W e will express this fact 
briefly by v/riting 

a=ac. 

Hence, the symbol a.c always 

represents a definite segment, 
providing c is any given seg­

ment whatever and a is any given acute angle. 
Furthermore, if c is any arbitrary segment and a, 

yS are any two acute angles whatever, then the two 
segments a^c and ̂ ac are always congruent; that is, 
we have 

a/JfT̂ ySaC, 

and, consequently, the symbols a and /3 are inter­
changeable. 

In order to prove this statement, we take the seg­

ment c = AB, and with A as a vertex lay off upon the 

one side of this seg­

ment the angle a 

and upon the other 

the angle /8. Then, 
from the point B, 

let fall upon the 
opposite sides of 

the a and y8 the 
perpendiculars B C 

and B D , respec­

tively. Finally, join 
C with D and let fall from A the perpendicular A E 

upon CD. 
Since the two angles A CB and A D B are right an­

gles, the four points A, B, 0, D are situated upon a 

circle. Consequently, the angles A C D and A B D , 

Fig. 18. 
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being inscribed in the same segment.of the circle, 
are congruent. But the angles A CD and CAE, taken 
together, make a right angle, and the same is true of 
the two angles A B D and B A D . Hence, the two an­
gles C A E and B A D are also congruent; that is to say, 

l C A E = fi 

and, therefore, 
iDAE^o.. 

F r o m these considerations, w e have immediately 

the following congruences of segments : 

Pc^E^AD, a.c = AC, 
aPc=a.{AD) = AE, l3ac^j3{AC)=AE. 

F r o m these, the validity of the congruence in ques­
tion follows. 

Returning n o w to the figure in connection with 
Pascal's theorem, denote the intersection of the two 
given straight lines by O and the segments O A , O B , 

DC, OA', OB', OC, CB',BC, OA', A C , BA', AB' 
by a, b, c, a', b', c', I, /*, wz, m*, n, n*, respectively. 

Fig. ig. 

Let fall from the point O a perpendicular upon each 
of the segments /, m, n. T h e perpendicular to /will 
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form with the straight lines OA and OA' acute an­

gles, which we shall denote by X' and X, respectively. 
Likewise, the perpendiculars to m and n form with 
these same lines .OA and OA' acute angles, which we 

shall denote by yx', ft, and v, v, respectively. If we 
now express, as indicated above, each of these per­
pendiculars in terms of the hypotenuse and base angle, 

we have the three following congruences of segments : 

(1) X// = XV 

(2) (jLa'̂ fn'c 

(3) va'^Ev'b. 

But since, according to our hypothesis, / is parallel to 

/* and 7n is parallel to »z*, the perpendiculars from O 

falling upon /* and m* must concide with the perpen­

diculars from the same point falling upon / and m, 

and consequently, we have 

(4) Xc'E^X'b, 

(5) i>.c'̂ iii!a. 

Multiplying both members of congruence (3) by 

the symbol X'lx and remembering that, as we have 

already seen, the symbols in question are commuta­

tive, we have 
vX'/x-zz'̂ v fiX b. 

In this congruence, we may replace ^a' in the first 

member by its value given in (2) and Wb in the second 
member by its value given in (4), thus obtaining as a 

result 
^ vWix! C ̂ E V flXc', 

or 
v/a'XV̂ v'X/azt'. 

Here again in this congruence we can, by aid of (1), 
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replace XV by \b', and, by aid of (5), we may replace 
in the second member \>,c' by //,'«. W e then have 

vjilXb' ^B v'Xjx a, 
or 

Xfxvb' ̂  Xfjfv'a. 

Because of the significance of our symbols, we can 
conclude at once from this congruence that 

IJLvb' ^ fji'v a, 

and, consequently, that 

(6) vb'^v'a. 

li now we consider the perpendicular let fall from 

O upon n and draw perpendiculars to this same line 
from the points A and B', then congruence (6) shows 
that the feet of the last two perpendiculars must coin­

cide; that is to say, the straight line n*-:=AB' makes 
a right angle with the perpendicular to n and, conse­
quently, is parallel to n. This establishes the truth 

of Pascal's theorem. 
Having given any straight line whatever, together 

with an arbitrary angle and a point lying outside of 
the given line, we can, by constructing the given angle 

and drawing a parallel line, find a straight line pass­
ing through the given point and cutting the given 
straight line at the given angle. B y means of this 
construction, we can demonstrate Pascal's theorem in 
the following very simple manner, for which, how­
ever, I am indebted to another source. 

Through the point B, draw a straight line cutting 
OA' in the point D' and making with it the angle 
OCA', so that the congruence 

(1*) Z OCA' = l_ OD'B 
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is fulfilled. Now, according to a well known property 
of circles, OBD'A' is an inscribed quadrilateral, and, 
consequently, by aid of the theorem concerning the 

congruence of angles inscribed in the same segment 

of a circle, we have the congruence 

(2*) z OBA'=i one. 

Since, by hypothesis, CA' and A C are parallel, we 

have 
(3*) lOOA' — l O A C , 

and from (1*) and (3*) we obtain the congruence 

lOD'B = l O A C . 

However, B A D ' C is also an inscribed quadrilateral, 
and, consequently, by virtue of the theorem relating 

to the angles of such a quadrilateral, we have the con­

gruence 
(4*) Z OAD'^L OCB. 

But as OB' is, by hypothesis, parallel to B C , we 

have also 
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(5=*) Z OB'0=1 OCB. 

From (4*) and (5*), we obtain the congruence 

Z OAD' = l OB'C, 

which shows that CAD'B' is also an inscribed quad­

rilateral, and, hence, the congruence 

(6*) Z OAB'tebI OD'O 

is valid. From (2*) and (6*), it follows that 

lOBA'^l OAB', 

and this congruence shows that BA' and AB' are par­

allel as Pascal's theorem demands. 
In case D' coincides with one of the points A', B', 

C, it is necessary to make a modification of this 

method, which evidently is not difficult to do. 

§ 15. AN ALGEBRA OF SEGMENTS, BASED UPON 
PASCAL'S THEOREM. 

Pascal's theorem, which was demonstrated in the 

last section, puts us in a position to introduce into 
geometry a method of calculating with segments, in 
which all of the rules for calculating with real num­

bers remain valid without any modification. 
Instead of the word "congruent" and the sign ̂ , 

we make use, in the algebra of segments, of the word 
"equal" and the sign ̂ . 

^ ? K ^ 5. 

X-ig. 21. 

If A, B, C are three points of a straight line and 
if B lies between A and C, then we say that c=ACis 
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the sum of the two segments a^^AB and b^=BC. W e 
indicate this by writing 

c^=a-\- b. 

T h e segments a and b are said to be smaller than c, 
which fact w e indicate by writing 

(2 <; (T, b <^c. 

O n the other hand, c is said to be larger than a and b, 

and w e indicate this by writing 

C^ a, c^b. 

F r o m the linear axioms of congruence (axioms 
IV, 1-3), w e easily see that, for the above definition 

of addition of segments, the associative law 

« + (̂  + 0=(« + ^)+^' 

as well as the commutative law 

a-\-b^=b -Y a 
is valid. 

In order to define geometrically the product of two 
segments a and b, w e shall m a k e use of the following 

construction. Select any convenient segment, which, 

having been selected, shall remain constant through­

out the discussion, and denote the same by 1. U p o n 

the one side of a 

right angle, lay off at>l-
from the vertex O 

the segment 1 and 

also the segment b. 

Then, from O lay off 
upon the other side 

of the right angle the 
segment a. Join the 
extremities of the segments 1 and a by a straight line, 

and from the extremity of b draw a line parallel to 

Fig. 22. 
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this Straight line. This parallel will cut off from the 
other side of the right angle a segment c. W e call 
this segment c the product of the segments a and b, 

and indicate this relation by writing 

c = ab. 

W e shall now demonstrate that, for this definition 
of the multiplication of segments, the com7ttutative law 

ab = ba 

holds. For this purpose, we construct in the above 
manner the product ab. Furthermore, lay off from O 

upon the first side (I) 
of the right angle the 

segment a and upon 
the other side (II) the 
segment b. Connect by 

a straight line the ex­

tremity of the segment 

1 with the extremity of 

b, situated on II, and 
draw through the end-
point of a, on I, a line 

parallel to this straight 
line. This parallel will 

determine, by its intersection with the side II, the 

segment ba. But, because the two dotted lines ar^, 
by Pascal's theorem, parallel, the segment ba just 
found coincides with the segment ab previously con­
structed, and our proposition is established. 

In order to show that the associative law 

a{bc) = {ab)c 

holds for the multiplication of segments, we construct 
first of all the segment d = be, then da, after that the 
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s e g m e n t ^ = î a, and finally ifz.-. B y virtue of Pascal's 
theorem, the extremities of the segments da and ec 
coincide, as m a y b e clearly seen from figure 24. If 

da=Cbc)a 

a (be) = {ab) c 
Fig. 24. 

now we apply the commutative law which we have 

just demonstrated, we obtain the above formula, which 
expresses the associative law for the multiplication of 

two segments. 
Finally, the distributive law 

a{b-{- c)-=ab-{- ac 

• if) = a3 -j- ac 
Fig. 25. 

also holds for our algebra of segments. In order to 
demonstrate this, w e construct the segments, ab, ac. 
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and a{b^ c"), and draw through the extremity of the 
segment c (Fig. 25) a straight line parallel to the other 
side of the right angle. From the congruence of the 

two right-angled triangles which are shaded in the 
figure and the application of the theorem relating to 
the equality of the opposite sides of a parallelogram, 

the desired result follows. If b and c are any two ar­
bitrary segments, there is always a segment a to be 

found such that c:̂ =ab. This segment a is denoted 

by— and is called the quotient of c by b. 

§ i6. PROPORTION AND THE THEOREMS OF SIMILI­
TUDE. 

By aid of the preceding algebra of segments, we 
can establish Euclid's theory of proportion in a man­

ner free from objections and without making use of 
the axiom of Archimedes. 

If a, b, a', b' are any four segments whatever, the 
proportion 

a:b^a':b' 

expresses nothing else than the validity of equation 

ab' ̂ ba'. 

Definition. Two triangles are called similar when 
the corresponding angles are congruent. 

Theorem 22. If a, b and a', b' are homologous 
sides of two similar triangles, we have the pro­
portion 

a: b:=a' -.b' 

Proof. We shall first consider the special case 
where the angle included between a and b and the 
one included between a' and b' are right angles. More-
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Fig. 25 

over, w e shall a s s u m e that the two triangles are laid 
off in one and the same right angle. Upon one of the 
sides of this right 
angle, we lay off 
from the vertex O 

the segment 1, and 
through the extrem­
ity of this segment, 

we draw a straight 
line parallel to the 

hypotenuses of the 
two triangles. This 

parallel determines 
upon the other side of the right angle a segment e. 

Then, according to our definition of the product of 

two segments, we have 
b = ea, b' = ea', 

from which we obtain 

ab' = ba', 
that is to say, 

a: b = a': b'. 

Let us now return to the general case. In each of 
the two similar triangles, find the point of intersection 

of the bisectors of 
the three angles. De­

note these points by 

6' and .S". From 

these points let fall 

upon the sides of the 
triangles the perpen­

diculars r a,nd r', re­
spectively. Denote 

the segments thus 
determined upon the sides of the triangles by 

Fig. 27. 
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«« «« b^, b^, c^, Ct 
and 

a'i, a', b'„ b'̂ , c'̂, 4, 

respectively. T he special case of our proposition, 

demonstrated above, gives us then the following pro­
portions : 

a,:r = a'i,:r', b,: r = b'̂ : r , 

a,:r = a'̂ :r', b^:r = b'̂ :r'. 

By aid of the distributiye law, we obtain from these 
proportions the following : 

a: r=.a' : 7'', b : r^b' : r . 

Consequently, by virtue of the commutative law of 
multiplication, w e have 

a:b = a': b'. 

From the theorem just demonstrated, we can easily 

deduce the fundamental theorem in the theory of pro­
portion. This theorem m a y be stated as follows: 

Theorem 23. If two parallel lines cut from the 
sides of an arbitrary angle the segments a, b 
and a', b' respectively, then w e have always the 
proportion 

a: b ̂ :a': b'. 

Conversely, if the four segments a, b, a', b 
fulfill this proportion and if a, a' and b, b' are 
laid off upon the two sides respectively of an 
arbitrary angle, then the straight lines joining 

the extremities of a and b and of a' and b' are 
parallel to each other. 
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§ 17. EQUATIONS OF STRAIGHT LINES AND OF 
PLANES. 

To the system of segments already discussed, let 
us now add a second system. W e will distinguish the 

segments of the new system from those of the former 
one by means of a special sign, and will call them 

"7iegative" segments in contradistinction to the "pos­
itive" segvnerxts already considered. If we introduce 

also the segment 0, which is determined by a definite 

point, and make other appropriate conventions, then 

all of the rules deduced in § 13 for calculating with 

real numbers will hold equally well here for calcu­

lating with segments. W e call special attention to 
the following particular propositions : 

We have always a • 1 = 1 •« = a. 

If a-^ = 0, then either a = 0, or (5 = 0. 

li a ^ b and ̂ > 0, then ac> be. 

In a plane a, we now take two straight lines cut­
ting each other in O at right angles as the fixed axes 

of rectangular co-ordinates, and lay off from O upon 
these two straight lines the arbitrary segments x and 
y. W e lay off these segments upon the one side or 

upon the other side of O, according as they are posi­
tive or negative. At the extremities of x and y, erect 
perpendiculars and determine the point P of their in­

tersection. The segments ;» and jv are called the co­

ordinates of P Every point of the plane a is uniquely 
determined by its co-ordinates x, y, which may be 

positive, negative, or zero. 
Let / be a straight line in the plane a, such that it 
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shall pass through O and also through a point 0 hav­
ing the co-ordinates a, b. If x, y are the co-ordinates 

Fig. 28. 

of any point on /, it follows at once from theorem 22 
that 

a:b^x:y, 
or 

bx — ay^O, 
is the equation of the straight line /. If /' is a straight 
line parallel to / and cutting off from the zt-axis the 
segment c, then we may obtain the equation of the 
straight line l' by replacing, in the equation for /, the 
segment X by the segment X — c. The desired equa­

tion will then be of the form 

bx — ay — bc = .̂ 

From these considerations, w e may easily con­
clude, independently of the axiom of Archimedes, that 

every straight line of a plane is represented by an 
equation which is linear in the co-ordinates x, y, and, 
conversely, every such linear equation represents a 
straight line when the co-ordinates are segments ap­
pertaining to the geometry in question. 
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The corresponding results for the geometry of 
space may be easily deduced. 

The remaining parts of geometry may now be de­
veloped by the usual methods of analytic geometry. 

So far in this chapter, we have made absolutely 

no use of the axiom of Archimedes. If now we as­
sume the validity of this axiom, we can arrange a 
definite correspondence between the points on any 

straight line in space and the real numbers. This 
may be accomplished in the following manner. 

W e first select on a straight line any two points, 

and assign to these points the numbers 0 and 1. 
Then, bisect the segment (0, 1) thus determined and 

denote the middle point by the number 1. In the 
same way, we denote the middle of (0, i) by 1, etc. 

After applying this process 7t times, we obtain a point 

which corresponds to-^^. Now, lay off ;;z times in 

both directions from the point O the segmentf 0,-^ ]. 

W e obtain in this manner a point corresponding to 
7H 'ill 

the numbers-^and — -̂ .̂ From the axiom of Archi-
medes, we now easily see that, upon the basis of this 
association, to each arbitrary point of a straight line 

there corresponds a single, definite, real number, and, 
indeed, such that this correspondence possesses the 

following property: H A , B, Care any three points 
on a straight line and a., fS, y are the corresponding 

real numbers, and, if B lies between A and O, then 

one of the inequalities, 

a<l3<y or a>/S>y, 

is always fulfilled. 
From the development given in § 9, p. 27, it is 

evident, that to every number belonging to the field of 
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algebraic numbers O, there must exist a correspond­
ing point upon the straight line. Whether to every 
real number there corresponds a point cannot in gen­
eral be established, but depends upon the geometry to 
which we have reference. 

However, it is always possible to generalize the 
original system of points, straight lines, and planes 
by the addition of "ideal" or "irrational" elements, 
so that, upon any straight line of the corresponding 

geometry, a point corresponds without exception to 
every system of three real numbers. By the adoption 

of suitable conventions, it may also be seen that, in 
this generalized geometry, all of the axioms I-V are 
valid. This geometry, generalized by the addition of 
irrational elements, is nothing else than the ordinary 
analytic geometry of space. 
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T H B T H E O R Y O F P L A N E A R E A S . 

§ i8. EQUAL AREA AND EQUAL CONTENT OF 
POLYGONS.* 

WE shall base the investigations of the present 
chapter upon the same axioms as were made 
use of in the last chapter, §§ 13-17, namely, upon the 

plane axioms of all the groups, with the single excep­
tion of the axiom of Archimedes. This involves then 
the axioms I, 1-2 and II-IV. 

The theory of proportion as developed in §§13-17 
together with the algebra of segments introduced in 
the same chapter, puts us now in a position to estab­

lish Euclid's theory of areas by means of the axioms 
already mentioned; that is to say, for thepla7te geom­

etry, and that i7idepende7itly of the axioi7i of Archimedes. 

Since, by the development given in the last chapter, 

pp. 37-56, the theory of proportion was made to de-

* In connection wilh the theory of areas, we desire to call attention to 
the following works of M. Gdrard : Tkise de Doctorat sur la gdotuHrie 7ion 
euclidienne (1892) and Geometric plane {Paris, i8g8). M. Gerard has developed 
a theory concerning the measurement of polygons analogous to that presented 
in § 20 of the present work. The difference is that M. Gerard makes use of 
parallel transversals, while I use transversals emanating from the vertex. 
The reader should also compare the following works of F. Schur, where he 
will iind a similar development: Sitzungsberichtc der Dorpater Naturf. Ges., 
1892, and LeJirbuch der analytisclten Geometrie, Leipzig, 1898 (introduction). 
Finally, let me refer to an article by O. Stolz in Monatsheftefur Math, und 
Phys., 1894. (Note by Professor Hilbert in French ed.) 

M. Gerard has also treated the subject of areas in various ways in the 
following journals: Bulletin de Math, speciales (May, 1895), Bulletin de la So-
ciHi maihitnaiigue de France (Dec, 1895), Bulletin Math. Uimentaires (Jan­uary, 1896, June, 1897, June, i8g8J. (Note in French ed.) 
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pend essentially upon Pascal's theorem (theorem 21), 
the same may then be said here of the theory of areas. 
This manner of establishing the theory of areas seems 
to me a very remarkable application of Pascal's theo­
rem to elementary geometry. 

If we join two points of a polygon P by any arbi­
trary broken line lying entirely within the polygon, 

we shall obtain two new polygons P^ and /'j whose 
interior points all lie within P W e say that P is de­

composed into P^ and /'2, or that the polygon P is com­
posed of P^ and P.̂. 

Definition. Two polygons are said to be of equal 
area when they can be decomposed into a finite num­
ber of triangles which are respectively congruent to 

one another in pairs. 
Definition. Two polygons are said to be of equal 

content when it is possible, by the addition of other 

polygons having equal area, to obtain two resulting 

polygons having equal area. 
From these definitions, it follows at once that by 

combining polygons having equal area, we obtain as 
a result polygons having equal area. However, if 
from polygons having equal area we take polygons 
having equal area, we obtain polygons which are of 
equal content. 

Furthermore, we have the following propositions : 

Theorem 24. If each of two polygons P.̂  and P^ 
is of equal area to a third polygon P.̂, then P.̂  

and Pg S-'̂s themselves of equal area. If each 
of two polygons is of equal content to a third, 
then they are themselves of equal content. 

Proof. By hypothesis, we can so decompose each 
of the polygons P^ and P^ into such a system of tri-



THE THEORY OF PLANE AREAS. 59 

angles that any triangle of either of these systems 
will be congruent to the corresponding triangle of a 

system into which P^ may be decomposed. If we con­
sider simultaneously the two decompositions of P̂ , 
we see that, in general, each triangle of the one de-

Fig. 29-
composition is broken up into polygons by the seg­

ments which belong to the other decomposition. Let 
us add to these segments a sufficient number of others 

to reduce each of these polygons to triangles, and 
apply the two resulting methods of decompositions to 

/"j and ̂ 3, thus breaking them up into corresponding 

triangles. Then, evidently the two polygons P^ and 
P.̂  are each decomposed into the same number of tri­

angles, which are respectively congruent by pairs. 

Consequently, the two polygons are, by definition, of 

equal area. 
The proof of the second part of the theorem fol­

lows without difficulty. 
W e define, in the usual manner, the terms: rect­

angle, base and height of a parallelogram, base and height 

of a triangle. 

§ ig. PARALLELOGRAMS AND TRIANGLES HAVING 
EQUAL BASES AND EQUAL ALTITUDES. 

The well known reasoning of Euclid, illustrated 

by the accompanying figure, furnishes a proof for the 

following theorem : 
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Theorem 25. Two parallelograms having equal 
bases and equal altitudes are also of equal con­

tent. 

T ^ 

Fig. 30, 

W e have also the following well k n o w n proposi­

tion : 

Theorem 26. Any triangle A B C is always of 

equal area to a certain parallelogram having 
an equal base and an altitude half as great as 

that of the triangle. 

Proof. Bisect^CinZ' 
and B O in E, and extend 
the line D E to F, making 
.fiT̂ equal to D E . Then, the 

triangles D E C and F B E 
are congruent to each other, 
and, consequently, the tri­
angle DE-C- and the par­
allelogram A B F D are of 
equal area. 

From theorems 26 and 26, we have at once, by aid 
of theorem 24, the following proposition. 

Theorem 27. Two triangles having equal bases 
and equal altitudes have also equal content. 

It is usual to show that two triangles having equal 
bases and equal altitudes are always of equal area. It 
is to be remarked, however, that this de7nonstration 
cannot be made without the aid of the axiom of Archi-

Fjg. 3r, 
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medes. In fact, we may easily construct in our non-
archimedean geometry (see § 12, p. 34) two triangles 

so that they shall have equal bases and equal alti­
tudes and, consequently, by theorem 27, must be of 
equal content, but which are not, however, of equal 

area. As such an example, we may take the two tri­

angles ̂ i?C and .̂ .̂-SZ* having each the hase AB^^l 
and the altitude 1, where the vertex of the first triangle 

is situated perpendicularly above ̂ , and in the second 
triangle the foot Z" of the perpendicular let fall from 

the vertex D upon the base is so situated that AF=^t. 
The remaining propositions of elementary geom­

etry concerning the equal content of polygons, and 
in particular the pythagorian theorem, are all simple 

consequences of the theorems which we have already 
given. In the further development of the theory of 
area, we meet, however, with an essential difficulty. 

In fact, the discussion so far leaves it still in doubt 
whether all polygons are not, perhaps, of equal con­
tent. In this case, all of the propositions which we 

have given would be devoid of meaning and hence of 
no value. Furthermore, the more general question 

also arises as to whether two rectangles of equal con­
tent and having one side in common, do not also have 

their other sides congruent; that is to say, whether a 
rectangle is not definitely determined by means of a 

side and its area. As a closer investigation shows, 
in order to answer this question, we need to make use 
of the converse of theorem 27. This may be stated as 

follows: 

Theorem 28. If two triangles have equal con­
tent and equal bases, they have also equal alti­

tudes. 
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This fundamental theorem is to be found in the 
first book of Euclid's Elements as proposition 39. In 
the demonstration of this theorem, however, Euclid 
appeals to the general proposition relating to magni­

tudes : "Kat TO oXov rov fiipovq jxeit̂ov ccrriv"—a method 
of procedure which amounts to the same thing as in­

troducing a new geometrical axiom concerning areas. 
It is now possible to establish the above theorem 

and hence the theory of areas in the manner we have 
proposed, that is to say, with the help of the plane 

axioms and without making use of the axiom of Archi­
medes. In order to show this, it is necessary to in­
troduce the idea of the measure of area. 

§ 20. T H E MEASURE OF AREA OF TRIANGLES AND 
POLYGONS. 

Definition. If in a triangle A B O , having the 
sides a, b, c, we construct the two altitudes h„=^AD, 
h^^^BE, then, according to theorem 22, it follows 

from the similarity of the 
triangles B O E and A C D , 
that we have the propor­
tion 

a: h,, = b : h^; 

that is, we have 

Fig. 32. a-h^ = b-hy 

This shows that the product of the base and the cor­
responding altitude of a triangle is the same which­
ever side is selected as the base. The half of this 
product of the base and the altitude of a triangle A is 
called the measure of area of the triangle A and we de­
note it by -^(A). 
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A segment joining a vertex of a triangle with a 
point of the opposite side is called a tra7isversal. A 
transversal divides the given triangle into two others 

having the same altitude and having bases which lie 
in the same straight line. Such a decomposition is 
called a transversal dcco7npositio7i of the triangle. 

Theorem 29. If a triangle A is decomposed by 
means of arbitrary straight lines into a finite 

number of triangles Â ., then the measure of 
area of A is equal to the sum of the measures 
of area of the separate triangles A^. 

Proof. From the distributive law of our algebra 
of segments, it follows immediately that the measure 
of area of an arbitrary triangle is equal to the sum of 

the measures of area of two such triangles as arise 
from any transversal de­

composition of the given 

triangle. The repeated 
application of this prop­

osition shows that the 
measure of area of any 

triangle is equal to the p. 
sum of the measures of 

area of all the triangles arising by applying the trans­
versal decomposition an arbitrary number of times in 
succession. 

In order to establish the corresponding proof for 
an arbitrary decomposition of the triangle A into the 

triangles A,j,, draw from the vertex A of the given tri­

angle A a transversal through each of the points of 
division of the required decomposition ; that is to say, 

draw a transversal through each vertex of the triangles 

A^. B y means of these transversals, the given tri-
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Fig. 34. 

angle A is decomposed into certain triangles A,. Each 
of these triangles A, is broken up by the segments 

which determined this decom­

position into certain triangles 
and quadrilaterals. If, now, in 
each of the quadrilaterals, we 

draw a diagonal, then each tri­
angle A; is decomposed into 
certain other triangles Â .̂ W e 

shall now show that the de-. 
composition into the triangles 
A„ is for the triangles A,, as 
well as for the triangles A^, 
nothing else than a series of 

transversal decompositions. In fact, it is at once evi­
dent that any decomposition of a triangle into partial 

triangles may always bepfected by a series of trans­
versal decompositions, providing, in this decomposi­

tion, points of division do not exist within the triangle, 
and further, that at least one side of the triangle re­
mains free from points of division. 

W e easily see that these conditions hold for the 
triangles Â . In fact, the interior of each of these tri­
angles, as also one side, namely, the side opposite the 
point A, contains no points of division. 

Likewise, for each of the triangles A^, the decom­

position into A„ is reducible to transversal decompo­
sitions. Let us consider a triangle A^. A m o n g the 
transversals of the triangle A emanating from the 
point A, there is always a definite one to be found 
which either coincides with a side of A.;,, or which it­
self- divides A,,, into two triangles. In the first case, 
the side iii question always remains free from further 
points of division by the decomposition into the tri-
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angles A,^. In the second case, the segment of the 
transversal contained within the triangle A^ is a side 
of the two triangles arising from the division, and this 
side certainly remains free from further points of divi­
sion. 

According to the considerations set forth at the be­

ginning of this demonstration, the measure of area 
i^(A) of the triangle A is equal to the sum of the 

measures of area -^(A,) of all the triangles A, and this 

sum is in turn equal to the sum of all the measures of 
area î (A,j). However, the sum of -the measures of 

area F{£i.̂ ) of all the triangles A.;, is also equal to the 

sum of the measures of areai^(A^j). Consequently, 

we have finally that the measure of area E{/\) is also 
equal to the sum of all the measures of area F{A^), 

and with this conclusion our demonstration is com­
pleted. 

Definition. If we define the measure of area F{F) 

of a polygon as the sum of the measures of area of all 
the triangles into which the polygon is, by a definite 
decornposition, divided, then upon the basis of theo­

rem 29 and by a process of reasoning similar to that 
which we have employed in § 18 to prove theorem 24, 
we know that the measure of area of a polygon is inde 

pendent of the manner of decomposition into triangles 

and, consequently, is definitely determined by the pol­
ygon itself. From this we obtain, by aid of theorem 
29, the result that polygons of equal area have also equal 

measures of area. 
Furthermore, if P and Q are two polygons of equal 

content, then there must exist, according to the above 
definition, two other polygons P' and Q of equal area, 

such that the polygon composed of P and F shall be 
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of equal area with the polygon formed by combining 
the polygons Q and Q. From the two equations 

F{P^P')=F{Q^Q) 
E{P')=F(^Q'), 

we easily deduce the equation 

E{F)=E{Q); 

that is to say, polygons of equal co7itent ha%ie also equal 

measure of area. 
From this last statement, we obtain immediately 

the proof of theorem 28. If we denote the equal bases 

of the two triangles by g and the corresponding alti­

tudes by h and /z', respectively, then we may conclude 

from the assumed equality of content of the two tri­

angles that they must also have equal measures of 
area; that is to say, it follows that 

and, consequently, dividing by \g, we get 

h=h', 

which is the statement made in theorem 28. 

§21. EQUALITY OF CONTENT AND THE MEASURE 
OF AREA. 

In § 20 we have found that polygons having equal 
content have also equal measures of area. The con­

verse of this is also true. 
In order to prove the converse, let us consider two 

triangles A B C and AB'C having a common right 
angle at A. The measures of area of these two tri­
angles are expressed by the formulae 

F{ABO) = \AB-AO, 
F{AB'0') = ̂ AB'-AC. 
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W e n o w assume that these measures of area are equal 
to each other, and consequently w e have 

AB-AC=AB' AC, 
or 

AB:AB' = AO':AC. 

Fig. 35-

From this proposition, it follows, according to theo­
rem 23, that the two straight lines B C and B'C are 
parallel, and hence, by theorem 27, the two triangles 

B C B ' and B C 0 are of equal content. By the addi­
tion of the triangle ABO'., it follows that the two tri­

angles A B O and A B ' C are of equal content. W e 
have then shown that two right triangles having the 
same measure of area are always of equal content. 

Take now any arbitrary triangle having the base g 
and the altitude h. Then, according to theorem 27, 
it has equal content with a right triangle having the 

two sides g and h. Since the original triangle had 
evidently the same measure of area as the right tri­
angle, it follows that, in the above consideration, the 

restriction to right triangles was not necessary. Hence, 
two arbitrary tria7igles with equal measures of area are 

also of equal conte7it. 
Moreover, let us suppose P to be any polygon 
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having the measure of area g and let P be decomposed 
into n triangles having respectively the measures of 
area ĝ , g.̂ , g.̂ , , g„. Then, we have 

S:=ffi + 6°"2 + .fj + • • • • + s;,-

Construct now a triangle A B C having the base 
A B : = g and the altitude /z= 1. Take, upon the base 
of this triangle, the points Â ,̂ A^,.. .., A„_^, so that 
g, = A A „ ĝ  = A,A„ ...., g„_,=A„_,A„_„ g„ = A„_,B. 

Fig. 36. 

Since the triangles composing the polygon P have re­
spectively the same measures of area as the triangles 
AA^C, A^A,^0, , A„_^A^^C, A„_^BC, it follows 
from what has already been demonstrated that they 
have also the same content as these triangles. Con­
sequently, the polygon F and a triangle, having the 
base g and the altitude /z=l are of equal content. 
F r o m this, it follows, by the application of theorem 
24, that two polygons having equal measures of area 
are always of equal content. 

W e can now combine the proposition of this sec­
tion with that demonstrated in the last, and thus ob­
tain the following theorem : 

Theorem 30. Two polygons of equal content 
have always equal measures of area. Con-



THE THEORY OF PLANE AREAS. 69 

versely, two polygons having equal measures 
of area are always of equal content. 

In particular, if two rectangles are of equal content 
and have one side in common, then their remaining 

sides are respectively congruent. Hence, we have the 
following proposition: 

Theorem 31. If we decompose a rectangle into 
several triangles by means of straight lines and 

then omit one of these triangles, we can no 
longer make up completely the rectangle from 

the triangles which remain. 

This theorem has been demonstrated by F. Schur* 
and by W . Killing,! but by making use of the axiom 

of Archimedes. By O. Stolz, J it has been regarded 
as an axiom. In the foregoing discussion, it has been 

shown that it is completely independent of the axiom 

of Archimedes. However, when we disregard the ax­

iom of Archimedes, this theorem (31) is not sufficient 

of itself to enable us to demonstrate Euclid's theo­
rem concerning the equality of altitudes of triangles 

having equal content and equal bases. (Theorem 28.) 
In the demonstration of theorems 28, 29, and 30, 

we have employed essentially the algebra of segments 
introduced in § 15, p. 46, and as this depends sub­
stantially upon Pascal's theorem (theorem 21), we see 

that this theorem is really the corner-stone in the the­

ory of areas. W e may, by the aid of theorems 27 and 
28, easily establish the converse of Pascal's theorem. 

Of two polygons P and Q, we call F the smaller 
or larger in content according as the measure of area 

* Sitzungsherichte der Dorpater Naturf. Ges. 1892. 
t Grundlagen der Geometrie, Vol. i, Chapter 5, § 5, 1898. 
X Monatstte/te fur Mq-th. }ind Pk^s. 189,̂ , 
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F{jP) is less or greater than the measure of area F{Q). 
From what has already been said, it is clear that the 
notions, equal content, smaller content, larger con­

tent, are mutually exclusive. Moreover, we easily see 
that a polygon, which lies wholly within another pol­
ygon, must always be of smaller content than the ex­

terior one. 
With this we have established the important the­

orems in the theory of areas. 



D E S A R G U E S ' S T H E O R E M . 

§22. DESARGUES'S THEOREM AND ITS DEMONSTRA­
TION FOR PLANE GEOMETRY BY AID OF 

THE AXIOMS OF CONGRUENCE. 

OF-the axioms given in §§ 1-8, pp. 1-26, those 

of groups II-V are in part linear and in part 
plane axioms. Axioms 3-7 of group I are the only 

space axioms. In order to show clearly the signifi­
cance of these axioms of space, let us assume a plane 

geometry and investigate, in general, the conditions 

for which this plane geometry may be regarded as a 
part of a geometry of space in which at least the ax­
ioms of groups I-III are all fulfilled. 

Upon the basis of the axioms of groups I-III, it is 
well known that the so-called theorem of Desargues 

may be easily demonstrated. This theorem relates to 

points of intersection in a plane. Let us assume in 
particular that the straight line, upon which are sit­

uated the points of intersection of the homologous 

sides of the two triangles, is the straight line which 
we call the straight line at infinity. W e will desig­

nate the theorem which arises in this case, together 

with its converse, as the theorem of Desargues. This 
theorem is as follows : 

Theorem 32. (Desargues's theorem.) W h e n two 
triangles are so situated in a plane that their 

homologous sides are respectively parallel, then 
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the lines joining the homologous vertices pass 
through one and the s a m e point, or are parallel 

to one another. 
Conversely, if two triangles are so situated 

in a plane that the straight lines joining the 
homologous vertices intersect in a c o m m o n 
point, or are parallel to one another, and, fur 
thermore, if two pairs of homologous sides are 

parallel to each other, then the third sides of 
the two triangles are also parallel to each other. 

Fig. 37-

A s w e have already mentioned, theorem 32 is a 

consequence of the axioms I-III. Because of this 

fact, the validity of Desargues's theorem in the plane 

is, in any case, a necessary condition that the geom­
etry of this plane m a y be regarded as a part of a geom­
etry of space in which the axioms of groups I-III are 
all fulfilled. 

Let us assume, as in §§ 13-21, pp. 37-70, that w e 
have a plane geometry in which the axioms I, 1—2 and 
II-IV all hold and, also, that w e have introduced in 
this geometry an algebra of segments conforming to 
§15. 

Now, as has already been established in § 17, there 
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may be made to correspond to each point in the plane 

a pair of segments (,v, y) and to each straight line a 

ratio of three segments {ti:v:w), so that the linear 
equation 

ux -\- vy -\- w^'d 

expresses the condition that the point is situated upon 
the straight line. The system composed of all the 

segments in our geometry forms, according to § 17, a 

domain of numbers for which the properties (1-16), 
enumerated in § 13, are valid. W e can, therefore, by 

means of this domain of numbers, construct a geom­

etry of space in a manner similar to that already em­
ployed in § 9 or in § 12, where we made use of the 

systems of numbers O and O(^), respectively. For 

this purpose, we assume that a system of three seg­
ments {x, y, z) shall represent a point, and that the 

ratio of four segments {u w-.tv. r) shall represent a 
plane, while a straight line is defined as the intersec­

tion of two planes. Hence, the linear equation 

ux -\- vy -\- 7VZ -\- r ̂  0 

expresses the fact that the point {x, y, z) lies in the 

plane {u: v : w : ;•). Finally, we determine the arrange­

ment of the points upon a straight line, or the points 
of a plane with respect to a straight line situated in 

this plane, or the arrangement of the points in space 

with respect to a plane, by means of inequalities in a 
manner similar to the method employed for the plane 

in§ 9. 
Since we obtain again the original plane geometry 

by putting z:=0, we know that our plane geometry 

can be regarded as a part of geometry of space. N o w , 

tlie validity of Desargues's theorem is, according to the 

above considerations, a necessary condition for this 
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result. Hence, in the assumed plane geometry, it 

follows that Desargues's theorem must also hold. 
It will be seen that the result just stated may also 

be deduced without difficulty from theorem 23 in the 
theory of proportion. 

§ 23. THE IMPOSSIBILITY OF DEMONSTRATING DE­
SARGUES'S THEOREM FOR THE PLANE WITH­

OUT THE HELP OF THE AXIOMS 
OF CONGRUENCE.* 

W e shall now investigate the question whether or 

no in plane geometry Desargues's theorem may be 
deduced without the assistance of the axioms of con­

gruence. This leads us to the following result: 

Theorem 33. A plane geometry exists in which 
the axioms I 1-2, II-III, IV 1-5, V, that is to 

say, all linear and all plane axioms with the 

exception of axiom IV, 6 of congruence, are 

fulfilled, but in which the theorem of Desargues 

(theorem 32) is not valid. Desargues's theorem 

is not, therefore, a consequence solely of the 
axioms mentioned; for, its demonstration ne­

cessitates either the space axioms or all of the 

axioms of congruence. 

Proof. Select in the ordinary plane geometry (the 

possibility of which has already been demonstrated in 
§ 9, pp. 27-30) any two straight lines perpendicular 
to each other as the axes oix andy. Construct about 
the origin O of this system of co-ordinates an ellipse 
having the major and minor axes equal to 1 and ^, re-
spectivel}'. Finally, let F denote the point situated 
upon the positive zc-axis at the distance ̂  from O. 

*See also a recent paper by F. R. Moulton on " Simple Non-desarguesian 
Geometry," Transactions cf the Amer, Math. Soc, April, 1902.—TV. 
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Consider all of the circles which cut the ellipse in 

four real points. These points may be either distinct 

or in any way coincident. Of all the points situated 
upon these circles, w e shall attempt to determine the 

one which lies upon the a;-axis farthest from the ori­

gin. For this purpose, let us begin with an arbitrary 

circle cutting the ellipse in four distinct points and 
intersecting the positive a;-axis in the point C. Sup­

pose this circle then turned about the point C in 
such a manner that two or more of the four points of 

intersection with the ellipse finally coincide in a single 
point A, while the rest of them remain real. Increase 

now the resulting tangent circle in such a way that A 

always remains a point of tangency with the ellipse. 

In this way w e obtain a circle which is either tangent 
to the ellipse in also a second point B, or which has 

with the ellipse a four-point contact in A. Moreover, 
this circle cuts the positive zr-axis in a point more re­
mote than C. The desired farthest point will accord­

ingly be found among those points of intersection of 

the positive x axis by circles lying exterior to the 

ellipse and being doubly tangent to it. All such cir­
cles must lie, as we can easily see, symmetrically with 
repect to thej'-axis. Let z?, b he the co-ordinates of 

any point on the ellipse. Then an easy calculation 
shows that the circle, which is symmetrical with re­

spect to jv-axis and tangent to the ellipse at this point, 

cuts off from the positive a;-axis the segment 

zc=|i/r+3^|. 

The greatest possible value of this expression occurs 
for b ^ ^ and, hence, is equal to 4|l/7|. Since the 
point on the x axis which w e have denoted by 7^has 

for its abscissa the value •|>|^|l''7|, it follows that 
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among the circles cutting the ellipse four times there is 
certainly no7ie which passes through the point F. 

W e will now construct a new plane geometry in 
the following manner. As points in this new geom­
etry, let us take the points of the (zr)z)-plane. W e 
will define a straight line of our new geometry in the 

following manner. Every straight line of the {xy)-
plane which is either tangent to the fixed ellipse, or 

does not cut it at all, is taken unchanged as a straight 
line of the new geometry. However, when any straight 
line g of the {xy)-^\ar\e cuts the ellipse, say in the 
points P and Q, we will then define the correspond-

Fig. 38. 

ing straight line of the new geometry as follows. Con­
struct a circle passing through the points F and Q 
and the fixed points. From what has just been said, 
this circle will have no other point in common with 
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the ellipse. We will-now take the broken line, con­
sisting of the arc P Q just mentioned and the two 

parts of the straight line g extending outward indefi­

nitely, from the points-f and Q, as the required straight 

line in our new geometry. Let us suppose all of the 

broken lines constructed which correspond to straight 

lines of the (a;j)-plane. W e have then a system of 

broken lines which, considered as straight lines of our 

new geometry, evidently satisfy the axioms I, 1-2 and 

III. By a convention as to the actual arrangement 
I if the points and the straight lines in our new geom­

etry, we have also the axioms II fulfilled. 

Moreover, we will call two segments A B and A'B' 

congruent in this new geometry, if the broken line 
extending between A and B has equal length, in the 

ordinary sense of the word, with the broken line ex­

tending from A' to B'. 
Finally, we need a convention concerning the con­

gruence of angles. So long as neither of the vertices 

of the angles to be compared lies upon the ellipse, we 

call the two angles congruent to each other, if they 

are equal in the ordinary sense. In all other cases 

we make the following convention. Let A, B, C he 

points which follow one another in this order upon a 
straight line of our new geometry, and let A', B', C 

be also points which lie in this order upon another 

straight line of our new geometry. Let D h e a point 
lying outside of the straight line A B O and D' be a 

point outside of the straight A'B'C. W e will now 
say that, in our new geometry, the angles between 

these straight lines fulfill the congruences 

LABD = lA'B'D' and /_OBD= IC'B'D', 

whenever the natural angles between the correspond-



78 THE FOUNDATIONS OF GEOMETRY. 

ing broken lines of the ordinary geometry fulfill the 

proportion 

Z A B D : Z OBD = Z A'B'D' • Z O'B'D'. 

These conventions render the axioms IV, 1-5 and V 

valid. 

Fig. 39-

In order to see that Desargues's theorem does not 

hold for our n e w geometry, let us consider the follow­
ing three ordinary straight lines of the (zri')-plane; 
viz., the axis of x, the axis oiy, and the straight line 
joining the two points of the ellipse (|, |) and (—|, 
— I). Since these three ordinary straight lines pass 
through the origin, w e can easily construct two tri­
angles so that their vertices shall lie respectively u p o n 
these three straight lines and tlieir homologous sides 
shall be parallel and all three sides shall lie exterior to 
the ellipse. A s w e m a y see from figure 40, or s h o w 
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by an easy calculation, the broken lines arising fro.m 
the three straight lines in question do not intersect in 

a c o m m o n point. H e n c e , it follows that Desargues's 

Y 

Fig. 40. 

theorem certainly does not hold for this particular 
plane geometry in which w e have constructed the two 

triangles just considered. 

This n e w geometry serves at the s a m e time as an 

example of a plane geometry in which the axioms I, 
1-2, II-III, IV, 1-5, V all hold, but which cannot be 

considered as a part of a geometry of space. 

§ 24. INTRODUCTION OF AN ALGEBRA OF SEGMENTS 
BASED UPON DESARGUES'S THEOREM AND INDE­
PENDENT OF THE AXIOMS OF CONGRUENCE.* 

In order to see fully the significance of Desargues's 

theorem (theorem 32), let us take as the basis of our 

consideration a plane geometry where all of the ax-

• Discussed also by Moore in a paper before the Am. Math. Soc, Jan., 
1902. See Trans. Am. MatlL. Soc.— Tr. 
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ioms I 1-2, II-III are valid, that is to say, where all 

of the plane axioms of the first three groups hold, and 
then introduce into this geometry, in the following 
manner, a new algebra of segments independent of 

the axioms of congruence. 
Take in the plane two fixed straight lines inter­

secting in O, and consider only such segments as have 
O for their origin and their other extremity in one of 
the fixed lines. W e will regard the point O itself as 

a segment and call it the segment 0. W e will indi­
cate this fact by writing 

OC = 0, or 0 = 00. 

Let E and E' be two definite points situated re­
spectively upon the two fixed straight lines through 
O. Then, define the two segments O E and OE' as 
the segment 1 and write accordingly 

OE=OE' = \ or l^OE^OE'. 

We will call the straight line EE', for brevity, the 
unit-line. If, furthermore, A and A' are points upon 

Fig. 41. 

the straight lines O E and OE', respectively, and, if 
the straight line AA' joining them is parallel to .EE', 
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then we will say that the segments OA and OA' are 
equal to one another, and write 

OA = OA', or OA'=OA. 

In order now to define the sum of the segments 

«^= OA and b ^ OB, we construct A A' parallel to the 
unit-line E E and draw through A' a parallel to O E 

and through B a parallel to OE'. Let these two par­

allels intersect in A" Finally, draw through A" a 

straight line parallel to the unit-line EE'. Let this 
parallel cut the two fixed lines O E and OE' in C and 

C, respectively. Then c = 0 0 = O C ' is called the 
sum of the segments â =: OA and (5= OB. W e indi­
cate this by writing 

c:^a-\-b, or a-^b = c. 

In order to define the product of a segment « = OA 

by a segment b = OB, we make use of exactly the 

same construction as employed in § 15, except that, 
in place of the sides of a right angle, we make use 
here of the straight lines O E and O E . The construc-

Fig. 42. 

tion is consequently as follows. Determine upon OE' 
a point A' so that A A' is parallel to the unit-line EE', 

and join E with A'. Then draw through B a straight 
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line parallel to E A ' This parallel will intersect the 
fixed straight line O E ' in the point C , and we call 
c ^ O C the product of the segment a = C ^ by the 
segment b^= OB. W e indicate this relation by writing 

c = ab, or ab=r^c. 

§ 25. THE COMMUTATIVE AND THE ASSOCIATIVE 
LAW OF ADDITION FOR OUR N E W ALGE­

BRA OF SEGMENTS. 

In this section, we shall investigate the laws of 

operation, as enumerated in § 13, in order to see which 
of these hold for our new algebra of segments, when 

we base our considerations upon a plane geometry in 
which axioms I 1-2, II-III are all fulfilled, and, more­

over, in which Desargues's theorem also holds. 
First of all, we shall show that, for the addition of 

segments as defined in § 24, the commutative law 

a-\- b::=b -)- z? 
holds. Let 

a=OA = OA' 
b=OB=OB'. 

Hence, A A' and B B ' are, according to our conven­
tion, parallel to the 

unit-line. Construct 
the points A " and B " 
by drawing A'A" and 
B'B" parallel to O A 

and also A B " and 
B A ' parallel to OA. 

W e see at once that 
the line A " B " is paral­
lel to A A' as the com­

mutative law requires. W e shall show the validity of 
this statement by the aid of Desargues's theorem in 
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the following manner. Denote the point of intersec­
tion of A B " and A'A" by î  and that of B A " and B'B' 
by D. Then, in the triangles AA'F and BB'D, the 

homologous sides are parallel to each other. By De­

sargues's theorem, it follows that the three points 
O, F, D lie in a straight line. In consequence of this 

condition, the two triangles OAA' and DB"A" lie in 
such a way that the lines joining the corresponding 

vertices pass through the same point F, and since the 

homologous sides OA and DB", as also OA' and DA", 
are parallel to each other, then, according to the sec­

ond part of Desargues's theorem (theorem 32), the 
third sides AA' and B"A" are parallel to each other. 

To prove the associative law of addition 

a^{b^c)={a^b)-^^c, 

we shall make use of figure 44. In consequence of 

the commutative law of addition just demonstrated, 
the above formula states that the straight line A " B " 

a + b-fc 

a^{b^c) = {a^b)-^c 

Fig. 44. 

must be parallel to the unit-line. The validity of this 

statement is evident, since the shaded part of figure 

44 corresponds exactly with figurg 43. 
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§ 26. THE ASSOCIATIVE LAW OF MULTIPLICATION 
AND THE TWO DISTRIBUTIVE LAWS FOR 

THE NEW ALGEBRA OF SEGMENTS. 
The associative law of multiplication 

a{bc) = {ab)c 

has also a place in our n e w algebra of segments. 
Let there be given upon the first of the two fixed 

straight lines through O the segments 

\ = 0A, b=OC, c=OA' 

a {be) =^ {ab) c 

Fig. 45-

and upon the second of these straight lines, the seg­

ments 
a=OG, b=OB. 

In order to construct tlie segments 

bc=OB' and bc=OC', 
ab = OD, 

{ab)c=OD', 
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in accordance with § 24, draw A'B' parallel to AB, 

B'C parallel to BO, O D parallel to ^G^, and A'D' par­
allel to AD. W e see at once that the given law 

amounts to the same as saying that O D must also be 
parallel to CD'. Denote the point of intersection of 

the straight lines A'D' and B'C by F' and that of the 
straight lines .<4i? and i)'C by î . Then the triangles 

A B E and A'B'F' have their homologous sides par­

allel to each other, and, according to Desargues's 
theorem, the three points O, F, F' must lie in a 

straight line. Because of these conditions, we can 

apply the second part of Desargues's theorem to the 

two triangle C D F and O'D'F', and hence show that, 

in fact, O D is parallel to CD'. 
Finally, upon the basis of Desargues's theorem, 

we shall show that the two distributive laws 

a{b -\- c)^=ab -{- ac 

and 
{a-\- b)c = ac-\- be 

hold for our algebra of segments. 
In the proof of the first one of these laws, we shall 

make use of figure 46.* In this figure, we have 

b = OA' c=00', 

ab^OB', ab-=OA", ac=0C", etc. 

In the same figure, B"D^ is parallel to 0"D^, which 

is parallel to the fixed straight line OA', and B'D^ is 

parallel to CD,^, which is parallel to the fixed straight 

line OA" Moreover, we have A'A" parallel to CO", 
and A'B" parallel to B'A", paraUel to F'D^, parallel 

to F"D^. 

* Figures 46, 47, and 48 were designed by Dr. Von Schaper, as have also 
the details of the demonstrations relating to these figures. 
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Our proposition amounts to asserting that we must 

necessarily have also 

F'F" parallel to A'A" and to C O " . 

W e construct the following auxiliary lines : 

i^'y parallel to the fixed straight line OA', 

F'f " " " " " " OA". 

Let us denote the points of intersection of the straight 

lines 0"D^ and CD,,, 0"D, and F'f, CD^ and F"f 
by G, H^, II2, respectively. Finally, w e obtain the 
other auxiliary lines indicated in the figure by joining 

the points already constructed. 

abtac, F' TTTTrrrrT-' '/''/f/'//////W 

a{b ̂  c ) ^ a b ̂  ac 

Fig 46. 

In the two triangles ̂ '.5" C" and F'Dfi, the straight 
lines joining homologous vertices are parallel to each 
other. According to the second part of Desargues's 

theorem, it follows, therefore, that 

A' O " is parallel to F' G. 

In the two triangles A ' C ' F " and F'Gil.,, the straight 
lines joining the homologous vertices are also par­
allel to each other. From the properties already dem-
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onstrated, it follows by virtue of the second part of 
Desargues's theorem that we must have 

A'F" parallel to F'll.,. 

Since in the two horizontally shaded triangles OA'F' 

arid JIfF' the homologous sides are parallel, Desar­

gues's theorem shows that the three straight lines 

joining the homologoiis vertices, viz.: 

Of, A'H.,, F"F' 

all intersect in one and the same point, say in P. 
In the same way, we have necessarily 

A"F' parallel to F"H^ 

and since, in the two obliquely shaded triangles OA"F' 
and fH^F", the homologous sides are parallel, then, 

in consequence of Desargues's theorem, the three 
straight lines'joining the homologous vertices, viz.: 

Of, A"H„ F'F", 

all intersect likewise in the same- point, namely, in 

point P. 
Moreover, in the triangles OA'A" and JH^II^, the 

straight lines joining the homologous vertices all pass 
through this same point P, and, consequently, it fol­

lows that we have 

IÎ II., parallel to A'A", 

and, therefore, 

H f l , is parallel to C O " 

Finally, let us consider the figure F"II,_C'O"ff^E'E". 

Since, in this figure, we have 

F"II, parallel to CF', parallel to 0"II„ 

H^C " " F"C', " " H^F', 
C O " " " H-̂ H,,, 
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we recognize here again figure 43, which we have 
already made use of in § 25 to prove the commutative 
law of addition. The conclusions, analogous to those 

which we reached there, show that we must have 

F'F" parallel to Ĥ H.,, 

and, consequently, we must have also 

F'F" parallel to A'A", 

which result concludes our demonstration. 
To prove the second formula of the distributive 

law, we make use of an entirely different figure,— 
figure 47. In this figure, we have 

{a -]- b) c = ac-\- be 
Fig. 47-

l = OD, a=OA, a=OB, b=OG, c=OD', 
ac^^OA', ac=OB', bc=^OG', etc., 

and, furthermore, we have 

Ĝ iiTparallel to G'H', parallel to the fixed line OA, 

A H " " A'H', " " " " " OB. 

W e have also 
A B parallel to A'B' 
B D " " B'D' 
D G " " D'G' 
HJ '•• " H'J'. 
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That which we are to prove amounts, then, to dem­
onstrating that 

D J must be parallel to D'f. 

Denote the points in which BD and GD intersect 

the straight line A H by C and F, respectively, and 

the points in which B'D' and G'D' intersect the straight 
line A'H' by C and F', respectively. Finally, draw 

the auxiliary lines Ff and F'J', indicated in the figure 

by dotted lines. 

In the triangles ̂ ^Cand A'B'C, the homologous 
sides are parallel and, consequently, by Desargues's 

theorem the three points O, C, C lie on a straight 
line. Then, by considering in the same way the tri­

angles C D F and C D'F', it follows that the points 

O, F, F' lie upon the same straight line and like­

wise, from a consideration of the triangles F G H and 
F' G'H', we find the points O, H, H' to be situated 

on a straight line. Now, in the triangles FH/and 

F'H'f, the straight lines joining the homologous 
vertices all pass through the same point O, and, 

hence, as a consequence of the second part of De­

sargues's theorem, the straight lines i^and F'J' must 

also be parallel to each other. Finally, a considera­
tion of the triangles D F J and D'F'J' shows that the 

straight lines D J and D'J' are parallel to each other 
and with this our proof is completed. 

§ 27. EQUATION OF THE STRAIGHT LINE, BASED 
UPON THE N E W ALGEBRA OF SEGMENTS. 

In §§ 24-26, we have introduced into the plane 

geometry an algebra of segments in which the com­
mutative law of addition and that of multiplication, 

as well as the two distributive laws, hold. This was 
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done upon the assumption that the axioms cited in 
§ 24, as also the theorem of Desargues, were valid. 
In this section, we shall show how an analytical rep­
resentation of the point and straight line in the plane 
is possible upon the basis of this algebra of segments. 

Definition. Take the two given fixed straight 

lines lying in the plane and intersecting in O as the 
axis of X and of ji', respectively. Let us suppose any 

point P of the plane determined by the two segments 
zK, _>< which we obtain upon the «-axis andjz-axis, re­

spectively, by drawing through P parallels to these 
axes. These segments are called the co-ordinates of 

the point P. Upon the basis of this new algebra of 
segments and by aid of Desargues's theorem, we shall 

deduce the following proposition. 

Theorem 34. The co-ordinates x, y oi a point on 

an arbitrary straight line always satisfy an equa­

tion in these segments of the form 

ax -\- by -j- c^O. 

In this equation, the segments a and b stand 

necessarily to the left of the co-ordinates x and 
y. The segments a and b are never both zero 
and c is an arbitrary segment. 

Conversely, every equation in these segments 
and of this form represents always a straight 

line in the plane geometry under consideration. 

Proof. Suppose that the straight line / passes 
through the origin O. Furthermore, let C be a defi­
nite point upon / different from O, and F any arbitrary 
point of /. Let O A and O B be the co-ordinates of O 
and X, y be the co-ordinates of P. W e will denote 
the straight line joining the extremities of the seg­
ments X, y by g. Finally, through the extremity of 
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the segment 1, laid off on the zK-axis, draw a straight 
line h parallel to A B . This parallel cuts off upon the 

jc-axis the segment e. From the second part of De­

sargues's theorem, it follows that the straight line g 
is also always parallel to A B . Since g is always par­

allel to h, it follows that the co-ordinates x, y of the 

point P must satisfy the equation 

ex=g. 

Moreover, in figure 49 let l' he any arbitrary 

straight line in our plane. This straight line will cut 
off on the ic-axis the segment z:=C(9'. Now, in the 
same figure, draw through O the straight line / par­

allel to /'. Let P' be an arbitrary point on the line /'. 

The straight line through P', parallel to the zr-axis, 

intersects the straight line / in P and cuts off upon 

the j-axis the segment y =^ OB. Finally, through P 

and P' let parallels to thejaxis cut off on the ze-axis 

the.segments x = O A and x' = OA'. 

W e shall now undertake to show that the equation 
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is fulfilled by the segments in question. For this pur­
pose, draw O'C parallel to the unit-line and likewise 
C D parallel to the x-axis and A D parallel to theji'-axis. 

Fig. 49-

T hen, to prove our proposition amounts to showing 

that w e must have necessarily 

A ' D parallel to O'C. 

Let D' he the point of intersection of the straight 
lines O D and A ' P ' and draw O ' C parallel to they -axis. 

Since, in the triangles O O P and O C P ' , the straight 
lines joining the homologous vertices are parallel, it 
follows, by virtue of the second part of Desargues's 
theorem, that w e must have 

CP parallel to CP'. 

In a similar way, a consideration of the triangles A OF 
and A'C'F' shows that we must have 

^ C parallel to A'C. 

Since, in the triangles ̂ ^CZ) and CA'O', the homol­
ogous sides are parallel to each other, it follows that 
the straight lines A C , OA' and DO' intersect in a 
common point. A consideration of the triangles CA'D 
and A CO' then shows that A'D and CO' are parallel 
to each other. 
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F r o m the two equations already obtained, viz.: 

ex = y and x' ̂ =x -\- c, 

follows at once the equation 

ex' = y -\- ec. 

If w e denote, finally, by n the segment which added 

to the segment 1 gives the segment 0, then, from this 
last equation, w e m a y easily deduce the following 

ex' -\- ny -\- nee = 0, 

and this equation is of the form required by theo­
rem 34. 

W e can now show that the second part of the the­

orem is equally true ; for, every linear equation 

ax-\-by-\-c = Q 

m a y evidently be brought into the required form 

ex -{- ny -\- 7tec =• 0 

by a left-sided multiplication by a properly chosen 
segment. 

It must be expressly stated, however, that, by our 
hypothesis, an equation of segments of the form 

xa -\r yb -f- •? ̂  0, 

where the segments a, b stand to the right of the co­

ordinates X, y does not, in general, represent a straight 
line. 

In § 30, w e shall make an important application 
of theorem 34. 

§ 28. THE TOTALITY OF SEGMENTS, REGARDED AS 
A COMPLEX NUMBER SYSTEM. 

We see immediately that, for the new algebra of 

segments established in § 24, theorems 1-6 of § 13 are 

fulfilled. 
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Moreover, by aid of Desargues's theorem, we have 
already shown in §§ 25 and 26 that the laws 7-11 of 
operation, as given in § 13, are all valid in this algebra 
of segments. With the single exception of the com­

mutative law of multiplication, therefore, all of the 
theorems of connection hold. 

Finall}', in order to make possible an order of mag­

nitude of these segments, we make the following con­
vention. Let A and B he any two distinct points of 

the straight line OE. Suppose then that the four 
points O, E, A, B stand, in conformity with axiom II, 

4, in a certain sequence. If this sequence is one of 
the following six possible ones, viz.: 

ABOE, AOBE, AOEB, OABE, OAEB, OEAB, 

then we will call the segment a^= OA smaller than the 
segment b ^ O B and indicate the same by writing 

a<,b. 

On the other hand, if the sequence is one of the six 
following ones, viz.: 

BAOE, BOAE, B O E A, OBAE, OBEA, OEBA, 

then we will call the segment z?= OA greater than the 
segment b^= OB, and we write accordingly 

a->b. 

This convention remains in force whenever A or B 
coincides with O or E, only then the coinciding points 
are to be regarded as a single point, and, consequently, 
we have only to consider the order of three points. 

Upon the basis of the axioms of group II, we can 
easily show also that, in our algebra of segments, the 
laws 13-16 of operation given in § 13 are fulfilled. 
Consequently, the totality of all the different segments 
forms a complex number system for which the laws 
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1-11, 13-16 of § 13 hold; that is to say, all of the 
usual laws of operation except the commutative law 

of multiplication and the theorem of Archimedes. W e 

will call such a system, briefly, a desarguesian number 
system. 

§ 29. CONSTRUCTION OF A GEOMETRY OF SPACE BY 
AID OF A DESARGUESIAN NUMBER SYSTEM. 

Suppose we have given a desarguesian number 
system D. Such a system makes possible the con­
struction of a geometry of space in which axioms I, 

II, III are all fulfilled. 

In order to show this, let us consider any system 
of three numbers {x, y, z) of the desarguesian number 

system D as a point, and the ratio of four such num­
bers {u w-.w: r), of which the first three are not 0, 

as a plane. However, the systems {u : v. tv: 7-) and 

{av : au : aw : ar), where a is any number of D different 
from 0, represent the same plane. The existence of 

the equation 
ux Ar vy Â  wz-\- rz^^ 

expresses the condition that the point {x, y, z) shall 
lie in the plane {uw.w.i-). Finally, we define a 

straight line by the aid of a system of two planes 
{u':v'.w':7-') and {ti":v":w":r"), where we impose the 

condition that it is impossible to find in D two num­
bers a', a" different from zero, such that we have 

simultaneously the relations 

a'u' ̂ =a"u", a'v' ̂ =a"v", a'w' ̂ :=a"w". 

A point {x, y, z) is said to be situated upon this 
straight line 1 u': v': w': 7-'), (it" w''-.w"•.r")'], if it is 
c o m m o n to the two planes {u : v': w': 7-') and(zz":z'": 
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r '). T w o straight lines which contain the same 

points are not regarded as being distinct. 
B y application of the laws 1-11 of § 13, which by 

hypothesis hold for the numbers of D , w e obtain with­
out difficulty the resuh that the geometry of space 
which w e have just constructed satisfies all of the ax­

ioms of groups I and III. 
In order that the axioms (II) of order m a y also be 

valid, w e adopt the following conventions. Let 

(-T-"l. Jv Zl)> (^2. J'2> ^2)' (-"V-S. J's. ^3) 

be any three points of a straight line 

[(zz': v': w': r'), {1.1": v": w":r")'\. 

Then, the point (x,, jVj, Zj) is said to lie between the 
other two, if we have fulfilled at least one of the six 

following double inequalities : 

\̂ J ^l '̂  ̂ 2 *~̂  ̂ 3' 1̂ ̂  ^2 '̂  "̂ 3' 

(2) j'i<ji'2<j'3. y^>y2>y3> 

(3) Zj < Zj < ẑ , Zj > Zj > Z3, 

If one of the two double inequalities (1) exists, then 
we can easily conclude that either yi^y^=y^, or one 

of the two double inequalities (2) exists, and, conse­

quently, either z^^z^^:^z^ or one of the double inequal­
ities (3) must exist. In fact, from the equations 

u'xj -\- '̂y,- + ^'^i -|- ''' = 0, 

u"xi -\- v"y.j -|- w"Z; -(-;-'' = 0, 

(z-=l, 2, 3) 

w e m a y obtain, by a left-sided multiplication of these 
equations by numbers suitably chosen from D and 
then adding the resulting equations, a system of equa­
tions of the form 

(4) u'"x,A-v"'yi + r'" = 0, (z = l, 2, 3). 
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this system, the coefficient v'" is certainly different 
rom zero, since otherwise the three numbers zCj, x̂_, x.̂  
would be mutually equal. 

From 

it follows that 

yv* ^̂  .y* ^̂  -v* 

trt JC-i •;—— lA- /tg .̂  X 

and, hence, as a consequence of (4), we have 

and, therefore. 

»">, + r" ̂  v"'y, + r'" ̂  '̂''j'g + r" 

v"'yi^v"'y^^v"'y.,. 

Since v'" is different from zero, we have 

. % ^ ' 
'>-^'>-

j'î ;'2 5=j'3-

In each of these double inequalities, w e must take 

either the upper sign throughout, or the middle sign 

throughout, or the lower sign throughout. 

The preceding considerations show, that, in our 
geometry, the linear axioms II, 1-4 of order are all 

valid. However, it remains yet to show that, in this 
geometry, the plane axiom II, 5 is also valid. 

For this purpose let a plane {u:v:zv. r) and a 
straight line \_{u : v : w : r), (u':v':w':r')'\ in this plane 
be given. Let us assume that all the points {x, y, z) 
of the plane {u: v : w : 7-), for which w e have the ex­
pression u'x -\- v'y -|- w'z -\- r' greater than or less than 
zero lie respectively upon the one side or upon the 
other side of the given straight line.. W e have then 
only to show that this convention is in accordance 
with the preceding statements. This, however, is 

easily done. 
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We have thus shown that all of the axioms of 
groups I, II, III are fulfilled in the geometry of space 

which we have obtained in the above indicated man­
ner from the desarguesian number system D. Re­
membering now that the theorem of Desargues is a 

consequence of the axioms I, II, III, we see that the 
proposition just stated is exactly the converse of the 

result reached in § 28. 

§ 30. SIGNIFICANCE OF DESARGUES'S THEOREM. 

If, in a plane geometrj', axioms I, 1-2, II, III are 
all fulfilled and, moreover, if the theorem of Desar­

gues holds, then, according to §§ 24-28, it is always 
possible to introduce into this geometry an algebra of 
segments to which the laws 1-11, 13-16 of § 13 are 
applicable. W e will now consider the totality of these 

segments as a complex number system and construct, 

upon the basis of this system, a geometry of space, in 
accordance with § 29, in which all of the axioms I, II, 

III hold. 
In this geometry of space, we shall consider only 

the points {x, y, 0) and those straight lines upon 
which such points lie. W e have then a plane geom­

etry which must, if we take into account the proposi­
tion established in § 30, coincide exactly with the 

plane geometry proposed at the beginning. Hence, 
we are led to the following proposition, which may be 
regarded as the objective point of the entire discus­
sion of the present chapter. 

Theorem 35. If, in a plane geometry, axioms I, 
1--2, II, III are all fulfilled, then the existence of 
Desargues's theorem is the necessary and suffi­
cient condition that this plane geometry may 
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be regarded as a part of a geometry of space in 
which all of the axioms I, II, III are fulfilled. 

The theorem of Desargues may be characterized 
for plane geometry as being, so to speak, the result 

of the elimination of the space axioms. 

The results obtained so far put us now in the posi­
tion to show that every geometry of space in which 
axioms I, II, III are all fulfilled may be always re­

garded as a part of a "geometry of any number of di­

mensions whatever." By a geometry of an arbitrary 

number of dimensions is to be understood the totality 
of all points, straight lines, planes, and other linear 

elements, for which the corresponding axioms of con­

nection and of order, as well as the axiom of paral­

lels, are all valid. 
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PASCAL'S T H E O R E M . 

§ 31. TWO THEOREMS CONCERNING THE POSSIBIL­
ITY OF PROVING PASCAL'S THEOREM. 

AS is well known, Desargues's theorem (theorem 32) 

± .̂̂  may be demonstrated by the aid of axioms I, II, 
III; that is to say, by the use, essentially, of the ax­
ioms of space. In § 23, we have shown that the dem­
onstration of this theorem without the aid of the space 

axioms of group I and without the axioms of congru­
ence (group IV) is impossible, even if we make use 
of the axiom of Archimedes. 

Upon the basis of axioms I, 1-2, II, III, IV and, 
hence, by the exclusion of the axioms of space but 

with the assistance, essentially, of the axioms of con­
gruence, we have, in § 14, deduced Pascal's theorem 
and, consequently, according to § 22, also Desargues's 
theorem. The question arises as to whether Pascal's 

theorem can be demonstrated without the assistance 
of the axioms of congruence. Our investigation will 
show that in this respect Pascal's theorem is very dif­
ferent from Desargues's theorem; for, in the demon­
stration of Pascal's theorem, the admission or exclu­
sion of the axiom of Archimedes is of decided influence. 
W e may £ombine the essential results of our investi­
gation in the two following theorems. 

Theorem 36. Pascal's theorem (theorem 21) may 
be demonstrated by means of the axioms I, II, 
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III, V; that is to say, without the assistance 

of the axioms of congruence and with the aid 

•of the axiom of Archimedes. 

Theorem 37. Pascal's theorem (theorem 21) can­

not be demonstrated by means of the axioms I, 
II, III alone; that is to say, by exclusion of 

the axioms of congruence and also the axiom 

of Archimedes. 

In the statement of these two theorems, we may, 
by virtue of the general theorem 35, replace the space 

axioms I, 3-7 by the plane condition that Desargues's 

theorem Ttheorem 32) shall be valid. ',','.',: 
^ • * • • • • 
• • • • • •* 

§ 32. THE COMMUTATIVE LAW OF MULTIPLICATION 
FOR AN ARCHIMEDEAN NUMBER SYSTEM. 

The demonstration of theorems 36 and 37 rests 
essentially upon certain mutual relations concerning 
the laws of operation and the fundamental proposi­
tions of arithmetic, a knowledge of which is of itself 

of interest. W e will state the two following theorems. 

Theorem 38. For an archimedean number sys­

tem, the commutative law of multiplication is a 

necessary consequence of the remaining laws of 
operation ; that is to say, if a number system 
possesses the properties 1-11, 13-17 given in 

§ 13, it follows necessarily that this system sat­

isfies also formula 12. 

Proof. Let us observe first of all that, if a is an 

arbitrary number of the system, and, if 

;z = l + l + ....-f 1 

is a positive integral rational number, then for n and 
a the commutative law of multiplication always holds. 

Ill fact, we have 
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zj«=<?(l + l-f + 1) 
=rZ'Z-l+Z2-l+ + ZZl 
= a-\- a-\- .. .. -\- a, 

and likewise 
«Z?:=(1 + 1 -|-. . . . + 1)Z? 

= l-zz-^l-a-l-.. . .-\-l-a 

• = r ZZ -|- ZZ -|- . . . . -|- ZZ. 

Siippose now, in contradiction to our hypothesis, 
a, b to be numbers of this system, for which the com­
mutative law of multiplication does not hold. It is 
then at once evident that we may make the assump­
tion th.al> we-have 

. . . • * 
':.' i'i 'a.^0, z^>0, ab — b a > 0 . 

By virtue of condition 6 of § 13, there exists a number 
z-O 0), such that 

(zz -f- i5-|- 1) c=^ab — ba. 

Finally, if we select a number d, satisfying simultane­

ously the inequalities 

z/> 0, z^<l, d<.c, 

and denote by m and n two such integral rational 
numbers > 0 that we have respectively 

md-Ca<^{m-\- V)d 
and 

nd<ib<^{nA- 1)d, 

then the existence of the numbers ;« and n is an im­
mediate consequence of the theorem of Archimedes 
(theorem 17, § 13). Recalling now the remark made 
at the beginning of this proof, we have by the multi­
plication of the last inequalities 

abKmnd'^ -\- {m -\-n-\'V)d'̂  

ba > 7nnd^, 

file://-/-l-a
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and, hence, by subtraction 

ab — ba^{m-\-n + l)d\ 

W e have, however, 

md <.a, 7id<^b, z/ < 1 

and, consequently, 

(;« + «+l)z/<zz + ,J+l; 
i. e., 

ab — ba <C{a-\- b -{-l)d, 

or, since d<C.c, we have 

ab — ^zj<(z?+ b-\-V)c. 

This inequality stands in contradiction to the defini­
tion of the number c, and, hence, the validity of the 
theorem 38 follows. 

§ 33. THE COMMUTATIVE LAW OF MULTIPLICATION 
FOR A NON-ARCHIMEDEAN NUMBER SYSTEM. 

Theorem 39. For a non-archimedean number 

system, the commutative law of multiplication 

is not a necessary consequence of the remain­
ing laws of operation; that is to say, there ex­

ists a system of numbers possessing the prop­

erties 1-11, 13-16 mentioned in § 13, but for 
which the commutative law (12) of multiplica­
tion is not valid. A desarguesian number sys­

tem, in the sense of § 28, is such a system. 

Proof. Let ̂  be a parameter and T any expres­
sion containing a finite or infinite number of terms, 

say of the form 

T = rj." -1- r̂ t"+̂  + r2/''+2 + r3z"'+3 -f , 

where ^,,(=1= 0), r^, r^.. .. are arbitrary rational num­

bers and n is an arbitrary integral rational number 
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= 0. Moreover, let j- be another parameter and S any 

expression having a finite or infinite number of terms, 

say of the form 

5=.r"' i\ + j'"+i r, + j'«+2 7; + , 

where T ^ { ^ ^ ) , T^, T.... denote arbitrary expres­

sions of the form 7" and m is again an arbitrary integral 

rational number = 0 . W e will regard the totality of 

all the expressions of the form .5" as a complex num­

ber system fl(j, t), for which w e will assume the fol­

lowing laws of operation; namely, w e will operate 

with s and t according to the laws 7-11 of § 13, as 

with parameters, while in place of rule 12 we will ap­

ply the formula 

(1) ts = 2st. 

If, now, S', S" are any two expressions of the form 

S, say 

.s" = s'"' r; + j"''+' r; + .?""+= r; +...., 

s"=s'"" r;'-f '̂""+1 r;'-f s"'"+̂  7-;'+...., 

then, by combination, we can evidently form a new ex­
pression S' A- S" which is of the form S, and is, more­
over, uniquely determined. This expression 6" + 6" 
is called the sum of the numbers represented by S' 
and S". 

By the multiplication of the two expressions S' and 
,5"' term by term, we obtain another expression of the 
form 

s'S"=s"" r, s"'" r ; -f {s-' r, ̂""'+i t'[+.»'+i r; j--" r;') 
+(J-"" r; -f ""'+2 r;'+j'«'+i r^ j""'+i r;'+ j""+2 t, s'̂ " r;') -f-.... 

This expression, by the aid of formula (1), is evidently 
a definite single-valued expression of the form S and 
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we will call it the product of the numbers represented 
by S' and S". 

This method of calculation shows at once the valid­

ity of the laws 1-5 given in § 13 for calculating with 

numbers. The validity of law 6 of that section is also 
not difficult to establish. To this end, let us assume 

that 
,5"=.?"'' T'^+5'"'+^ r; -|- j-'"'+2 r; + 

and 
_5.'" ̂  ^»"' J.- J^ ̂m"'+l -jp.n _̂  ̂ „„„+2 J,,,, _ _ _ 

are two expressions of the form S, and let us suppose, 
further, that the coefficient ;-„ of T'̂  is different from 

zero. B y equating the like powers of s in the two 

members of the equation 

S'S"=S'", 

we find, first of all, in a definite manner an integral 
number ni' as exponent, and then such a succession 

of expressions 
T" T" T" 
•̂  Ot -̂  If - ^ 2 ' ' ' * 

that, by aid of formula (1), the expression 

,5"' =: s"'"r;' + j"'"+i r; + s"'"+^-r;'.... 

satisfies equation (2). With this our theorem is estab­

lished. 
In order, finally, to render possible an order of se­

quence of the numbers of our system O {s, t), w e m a k e 

the following conventions. Let a number of this sys­
tem be called greater or less than 0 according as in 

the expression S, which represents it, the first coeffi­

cient 7-f, of T^ is greater or less than zero. Given any 

two numbers zz, b of the complex number system under 

consideration, w e say that a<^b or a'-^b according as 



io6 THE FOUNDATIONS OF GEOMETRY. 

we have a — (5 < 0 or > 0. It is seen immediately that, 
with these conventions, the laws 13-16 of § 13 are 

valid ; that is to say, O {s, t) is a desarguesian number 
system (see § 28). 

As equation (1) shows, law 12 of § 13 is not ful­
filled by our complex number system and, conse­

quently, the validity of theorem 39 is fully established. 
In conformity with theorem 38, Archimedes's the­

orem (theorem 17, § 13) does not hold for the number 

system O {s, t) which we have just constructed. 
W e wish also to call attention to the fact that the 

number system Q,{s, t), as well as the systems Q, and 

Q.{t) made use of in § 9 and § 12, respectively, con­
tains only an enumerable set of numbers. 

§ 34, PROOF OF THE TWO PROPOSITIONS CONCERN­
ING PASCAL'S THEOREM. (NON-PASCALIAN 

GEOMETRY.) 

If, in a geometry of space, all of the axioms I, II, 

III are fulfilled, then Desargues's therem (theorem 
32) is also valid, and, consequently, according to §§ 
24-26, pp. 79-89, it is possible to introduce into this, 

geometry an algebra of segments for which the rules 
1-11, 13-16 of § 13 are all valid. If we assume now 

that the axiom (V) of Archimedes is valid for our 
geometry, then evidently Archimedes's theorem (the­
orem 17 of § 13) also holds for our algebra of seg­
ments, and, consequently, by virtue of theorem 38, 
the commutative law of multiplication is valid. Since, 
however, the definition of the product of two seg­
ments, as introduced in § 24 (figure 42) and which is 
the definition here also under discussion, agrees with 
the definition in § 15 (figure 22), it follows from the 
construction made in § 15 that the commutative law 
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of multiplication is nothing else than Pascal's theo­
rem. Coiisequently, the validity of theorem 36 is estab­
lished. 

In order to demonstrate theorem 37, let us con­

sider again the desarguesian number system Q,{s, t) 
introduced in § 33, and construct, in the manner de­

scribed in § 29, a geometry of space for which all of 

the axioms I, II, III are fulfilled. However, Pascal's 

theorem will not hold for this geometry; for, the com­

mutative law of multiplication is not valid in the de­
sarguesian number system n(j, t). _According to theo-

^rem 36, the non-pascalian geometry is_thgi_jieces;̂  
sarily a non-archimedean^eometry. 

-"^y adopting the hypothesis we have, it is evident 
that we cannot demonstrate Pascal's theorem, pro­

viding we regard our geometry of space as a part of 

a geometry of an arbitrary number of dimensions in 

which, besides the points, straight lines, and planes, 
still other linear elements are present, and providing 

there exists for these elements a corresponding sys­

tem of axioms of connection and of order, as well as 
the axiom of parallels. 

§ 35- THE DEMONSTRATION, BY MEANS OF THE THE­
OREMS OF PASCAL AND DESARGUES, OF ANY 

THEOREM RELATING TO POINTS 
OF INTERSECTION. 

Every proposition relating to points of intersection 

in a plane has necessarily the following form : Select, 

first of all, an arbitrary system of points and straight 

lines satisfying respectively the condition that certain 

ones of these points are situated on certain ones of 

the straight lines. If, in some known manner, we 

construct the straight lines joining the given points 
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and determine the points of intersection of the given 
lines, w e shall obtain finally a definite system of three 
straight lines, of which our proposition asserts that 

they all pass through the same point. 
Suppose w e n o w have a plane geometry in which 

all of the axioms I 1-2, II.. .., V are valid. Accord­
ing to § 17, pp. 53-56, w e m a y n o w find, by making 

use of a rectangular pair of axes, for each point a cor­

responding pair of numbers (Xjjc) and for each straight 
line a ratio of three definite numbers {u:v: w ) . Here, 
the numbers x, y, u, v, w are all real numbers, of 

which u,.v cannot both be zero. The condition show­
ing that the given point is situated upon the given 
straight line, viz.: 

Kzv: -|- zyz -|- w = 0 

is an equation in the ordinary sense of the word. Con­
versely, in case x, y, u, v, w are numbers of the alge­
braic domain O of § 9, and u, v are not both zero, we 

m a y certainly assume that each pair of numbers {x,y) 

gives a point and that each ratio of three numbers 
{u: V : w ) gives a straight line in the geometry in ques­

tion. 
If, for all the points and straight lines which occur 

in connection with any theorem relating to intersec­

tions in a plane, w e introduce the corresponding pairs 
and triples of numbers, then such a theorem asserts 
that a definite expression A {p^, p„ .. .., /,) with real 
coefficients and depending rationally upon certain 
parameters/i, p„ .. . ., p^ always vanishes as soon as 
we put for each of these parameters a number of the 
main O considered in § 9. W e conclude from this 
that the expression A {p^, /j , /,.) must also van­
ish identically in accordance with the laws 7-12 of 
§13. 
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Since, according to § 32, Desargues's theorem holds 
for the geometry in question, it follows that w e cer­
tainly can make use of the algebra of segments intro­

duced in § 24, and because Pascal's theorem is equally 
valid in this case, the commutative law of multiplica­

tion is also. Hence, for this algebra of segments, all 
of the laws 7-12 of § 13 are valid. 

If w e take as our axes in this new algebra of seg­

ments the co-ordinate axes already used and consider 
the unit points E , E ' as suitably established, w e see 

that the new algebra of segments is nothing else than 

the system of co-ordinates previously employed. 

In order to show that, for the new algebra of seg­
ments, the expression A {p^, p„ .. .., p^) vanishes 

identically, it is sufficient to apply the theorems of 

Pascal and Desargues. Consequently we see that: 

Every proposition relative to points of i7itersectio7i in 

the geometry in question must always, by the aid of suit­
ably coTistructed auxiliary points a7id straight lines, turn 

out to be a combination of the theorems of Pascal and 
Desargues. Hence for the proof of the validity of a theo-

re7n relating to points of intersection, we need not have 

resource to the theore7ns of congruence. 
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B A S E D U P O N T H E A X I O M S I-V. 

§ 36. GEOMETRICAL CONSTRUCTIONS BY MEANS OF 
A STRAIGHT-EDGE AND A TRANS­

FERER OF SEGMENTS. 

SUPPOSE we have given a geometry of space, in 
which all of the axioms I-V are valid. For the 

sake of simplicity, we shall consider in this chapter a 

a plane geometry which is contained in this geometry 
of space and shall investigate the question as to what 

elementary geometrical constructions may be carried 

out in such a geometry. 
Upon the basis of the axioms of group I, the fol­

lowing constructions are always possible. 
Problem 1. To join two points with a straight 

line and to find the intersection of two straight lines, 

the lines not being parallel. 
Axiom III renders possible the following construc­

tion : 
Problem 2. Through a given point to draw a par­

allel to a given straight line. 
By the assistance of the axioms (IV) of congru­

ence, it is possible to layoff segments and angles; 
that is to say, in the given geometry we may solve the 
following problems: 

Problem 3. To lay off from a given point upon a 
given straight line a given segment. 
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Problem 4. To lay off on a given straight line a 
given angle; or what is the same thing, to construct 
a straight line which shall cut a given straight line at 
a given angle. 

It is impossible to make any new constructions by 
the addition of the axioms of groups II and V. Con­

sequently, when we take into consideration merely the 

axioms of groups I-V, all of those constructions and 
only those are possible, which may be reduced to the 
problems 1-4 given above. 

W e will add to the fundamental problems 1-4 also 

the following: 
Problem 5. To draw a perpendicular to a given 

straight line. 

W e see at once that this construction can be made 
in different ways by means of the problems 1-4. 

In order to carry out the construction in problem 

1, we need to make use of only a straight edge. An 

instrument which enables us to make the construction 
in problem 3, we will call a transferer of seg7ne7its. W e 

shall now show that problems 2, 4, and 5 can be re­

duced to the constructions in problems 1 and 3 and, 
consequently, all of the problems 1-5 can be com­

pletely constructed by means of a straight-edge and a 
transferer of segments. W e arrive, then, at the fol­

lowing result: 

Theorem 40. Those problems in geometrical 
construction, which may be solved by the as­

sistance of only the axioms I-V, can always be 
carried out by the use of the straight-edge and 

the transferer of segments. 

Proof. In order to reduce problem 2 to the solu­
tion of problems 1 and 3, we join the given point P 
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with any point A of the given straight line and pro­
duce P A to C, making A C — PA. Then, join C with 

any other point B of the 

given straight line and 
produce CB to Q, making 
B Q ^ C B . The straight 
line P Q is the desired 

parallel. 

W e can solve problem 
5 in the following manner. 
Let ^ be an arbitrary point 

of the given straight line. 
Then upon this straight line, lay off in both directions 

from A the two equal segments A B and AC. Deter­
mine, upon any two straight lines passing through the 
point A, the points E and D so that the segments 

A D and A E will equal A B and AC. Suppose the 

Fig 50. 

straight lines B D and O E intersect in F and the 
straight lines B E and C D intersect in H . F H is 
then the desired perpendicular. In fact, the angles 
.^Z'Cand B E C , being inscribed in a semicircle having 
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the diameter BC, are both right angles, and, hence, 

according to the theorem relating to the point of in­
tersection of the altitudes of a triangle, the straight 

lines F H and B O are perpendicular to each other. 
Moreover, we can easily solve problem 4 simply by 

the drawing of straight lines and the laying off of seg­

ments. W e will employ the following method which 
requires only the drawing of parallel lines and the 

erection of perpendiculars. Let /3 be the angle to be 
laid off and A its vertex. Draw through A a straight 
line / parallel to the given straight line, upon which 

Fig. 52-

we are to lay off the given angle /3. From an arbi­
trary point B of one side of the angle j3, let fall a per­
pendicular u p o n the other side of this angle and also 
one u p o n /. Denote the feet of these perpendiculars 

by D and C respectively. T h e construction of these 
perpendiculars is accomplished by means of problems 
2 and 5. Then, let fall from A a perpendicular upon 

O D , and let its foot be denoted by E . According to 
the demonstration given in § 14, the angle C A E equals 

yS. Consequently, the construction in 4 is m a d e to 
depend u p o n that of 1 and 3 and with this our propo­

sition is demonstrated. 
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§ 37. ANALYTICAL REPRESENTATION OF T H E CO­
ORDINATES OF POINTS W H I C H CAN 

BE SO CONSTRUCTED. 

Besides the elementary geometrical problems con­

sidered in § 36, there exists a long series of other 
problems whose solution is possible by the drawing 
of .straight lines and the laying off of segments. In 
order to get a general survey of the scope of the prob­
lems which may be solved in this manner, let us take 

as the basis of our consideration a system of axes in 
rectangular co-ordinates and suppose that the co-or­
dinates of the points are, as usual, represented by real 

numbers or by functions of certain arbitrary param­
eters. In order to answer the question in respect to 
all the points capable of such a construction, we em­

ploy the following considerations. 
Let a system of definite points be given. Combine 

the co-ordinates of these points into a domain R. 
This domain contains, then, certain real numbers and 
certain arbitrary parameters /. Consider, now, the 
totality of points capable of construction by the draw­

ing of straight lines and the laying oft of definite seg­
ments, making use of the system of points in question. 
W e will call the domain formed from the co-ordinates 

of these points O {R), which will then contain real 
numbers and functions of the arbitrary parameters/. 

The discussion in § 17 shows that the drawing of 

straight lines and of parallels amounts, analytically, 
to the addition, subtraction, multiplication, and divi­
sion of segments. Furthermore, the well known for­
mula given in § 9 for a rotation shows that the laying 

off of segments upon a straight line does not necessi-
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tate any other analytical operation than the extraction 
of the square root of the sum of the squares of two 

segments whose bases have been previously con­
structed. Conversely, in consequence of the Pytha­
gorean theorem, we can always construct, by the aid 

of a right triangle, the square root of the sum of the 
squares of two segments by the mere laying oft of 
segments. 

From these considerations, it follows that the do­
main 0(i?) contains all of those and only those real 

numbers and functions of the parameters/, which arise 

from the numbers and parameters in R by means of a 

finite number of applications of the five operations; 
viz., the four elementary operations of arithmetic and, 
in addition, the fifth operation of extracting the square 

root of the sum of two squares. W e may express this 

result as follows : 

Theorem 41. A problem in geometrical construc­
tion is, then, possible of solution by the drawing 

of straight lines and the laying off of segments, 

that is to say, by the use of the straight-edge 
and a transferer of segments, when and only 

when, by the analytical solution of the prob­
lem, the co-ordinates of the desired points are 
such functions of the co-ordinates of the given 

points as may be determined by the rational 
operations and, in addition, the extraction of 

the square root of the sum of two squares. 

From this proposition, we can at once show that 
not every problem which can be solved by the use of 

a compass can also be solved by the aid of a trans­
ferer of segments and a straight-edge. For the pur­

pose of showing this, let us consider again that geom-
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etry which was constructed in § 9 by the help of the 
domain O of algebraic numbers. In this geometry, 

there exist only such segments as can be constructed 

by means of a straight-edge and a transferer of seg­
ments, namely, the segments determined by the num­
bers of the domain fJ. 

Now, if m is a number of the domain O, we easily 
see from the definition of O that everj' algebraic num­
ber conjugate to to must also lie in O. Since the num­

bers of the domain O are evidently all real, it follows 
that it can contain only such real algebraic numbers 
as have their conjugates also real. 

Let us now consider the following problem; viz., 

to construct a right triangle having the hypotenuse 
1 and one side |l/2| — 1. The algebraic number 

1/ 211/2 I — 2, which expresses the numerical value of 
the other side, does not occur in the domain O, since 

the conjugate number y — 2 | l / 2 | — 2 is imaginary. 

This problem is, therefore, not capable of solution in 
the geometry in question and, hence, cannot be con­
structed by means .of a straight-edge and a transferer 
of segments, although the solution by means of a com­
pass is possible. 

§ 38. T H E REPRESENTATION OF ALGEBRAIC NUM­
BERS AND OF INTEGRAL RATIONAL FUNC­

TIONS AS SUMS OF SQUARES. 

The question of the possibility of geometrical con­
structions by the aid of a straight-edge and a transferer 
of segments necessitates, for its complete treatment, 
particular theorems of an arithmetical and algebraic 
character, which, it appears to me, are themselves of 
interest. 
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Since the time of Fermat, it has been known that 
every positive integral rational n u m b e r can be repre­
sented as the s u m of four squares. This theorem of 

Fermat permits the following remarkable generaliza­
tion : 

Definition. Let k be an arbitrary n u m b e r field 
and let 7n be its degree. W e will denote by k', k", 

...., ,^'""1' the 7n — 1 n u m b e r fields conjugate to k. 
If, a m o n g the ot fields k, k', k", .. .., k^"—^\ there is 

one or m o r e formed entirely of real numbers, then w e 

call these fields real. Suppose that the fields k, k', 

.. . ., Z''*-" are such. A n u m b e r a of the field k is called 

in this case totally positive i7i k, whenever the s n u m ­
bers conjugate to a, contained respectively in k, k', 

k", .. .., k'-'~̂'', are all positive. H o w e v e r , if in each 
of the 7n fields k, k', k", .. .., k'̂ '"-" there are also im­

aginary n u m b e r s present, w e call every n u m b e r a in 
k totally positive. 

W e have, then, the following proposition : 

T h e o r e m 42. Every totally positive n u m b e r in k 
m a y be represented as the s u m of four squares, 

w h o s e bases are integral or fractional numbers 
of the field k. 

T h e demonstration of this theorem presents seri­
ous difficulty. It depends essentially u p o n the theory 

of relatively quadratic n u m b e r fields, which I have 
recently developed in several papers.* W e will here 

call attention only to that proposition in this theory 
which gives-the condition that a ternary diophantine 

equation of the form 

•"Ueber die Theorie der relativquadratischen Zahlkorper," yiẑ reĵ g-
richt der Deutschen Math. Vercinigung, Vol. 6, 1899, and Math. Annalen, Vol. 
51. See, also, " Ueber die Theorie der relativ-AbelschenZahlkbrper," Nadir. 
der K. Ges. der JViss. zu Gottingen, 1898. 
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a^^+/?,= +7^^ =0 

can be solved when the coefficients a, /3, y are given 
numbers in k and i, rj, t, are the required numbers in 
k. The demonstration of theorem 42 is accomplished 

by the repeated application of the proposition just 
mentioned. 

From theorem 42 follow a series of propositions 
concerning the representation of such rational func­
tions of a variable, with rational coefficients, as never 

have negative values. I will mention only the follow­
ing theorem, which will be of service in the following 

sections. 

Theorem 43. Let/(a;) be an integral rational func­
tion of X whose coefficients are rational num­

bers and which never becomes negative for any 
real value of x. Theny(z«.-) can always be rep­
resented as the quotient of two sums of squares 
of which the bases are all integral rational func­

tions of X with rational coefficients. 

Proof. W e will denote the degree of the function 
f{x) by 7n, which, in any case, must evidently be even. 
When m^^Q, that is to say, when f{x) is a rational 

number, the validity of theorem 43 follows imme­
diately from Fermat's theorem concerning the repre­
sentation of a positive number as the sum of four 
squares. W e will assume that the proposition is al­
ready established for functions of degree 2, 4, 6,.. .., 
wz — 2, and show, in the following manner, its validity 
for the case of a function of the m"' degree. 

Let us, first of all, consider briefly the case where 
f{x) breaks up into the product of two or more in­
tegral functions of x with rational coefficients. Sup­
pose p{x) to be one of those functions contained in 
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f{x), which itself cannot be further decomposed info 

a product of integral functions having rational co­
efficients. It then follows at once from the "definite" 
character which we have given to the function/(.*:), 
that the factor/(zr) must either appear in/(z«:) to an 

even degree or p{x) must be itself "definite"; that 
is to say, must be such a function as never has nega­

tive values for any real values of x. In the first case, 
f{x) 

the quotient and, in the second case, both p{x) 
^f(x) \Py^)s\ 

and -—^are "definite," and these functions have an 
p{x) 

even degree < m. Hence, according to our hypoth-
f{x) 

esis, in the first case, -f~^—v, and, in the last case, p(x) 
f(x) lA^)}- ^^ ̂  

and /• may be represented as the quotient of the 
p{x) 

sum of squares of the character mentioned in theorem 
43. Consequently, in both of these cases, the func-
tXon f{x) admits of the required representation. 

Let us now consider the case where/(ic) cannot 
be broken up into the product of two integral functions 
having rational coefficients. The equation/(5) = 0 de­
fines, then, a field of algebraic numbers k{B) of the 
;«* degree, which, together with all their conjugate 
fields, are imaginary. Since, according to the defini­
tion given just before the statement of theorem 42, 
each number given in /5(̂ ), and hence also — 1 is to­
tally positive in k{B), it follows from theorem 42 that 
the number — 1 can be represented as a sum of the 
squares of four definite numbers in k{Q). Let, for ex­
ample 

(1) -l=a^ + ;8̂  + / + Ŝ  

where o., /?, y, 8 are integral or fractional numbers in 

k{B). Let us put 
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a = zj,0»'-^ + a,Gr-' + ...• + «»= <^ W. 
/3 = ^^r-' -f b.̂ Q'"-' -H .... + /'» = '/'C^). 
y = ^,r-' -I- z-̂fl"-'- -f . . . . + f„ = xC^). 
Q = z/.e-"-̂  -I- z/̂e-'-'- + .. .. -f z/„, =^((9) ; 

where zZi, a,,, , a„„ , d̂ , d,,, .. .., d„̂  are the 
rational numerical coefficients and ^{$), \li{e), x(^), 
p{6) the integral rational functions in question, hav­

ing the degree {m — 1) in 0. 

From (1), we have 

i+{<^(e)}^+iV'(e)P+lxC^)}^+IK^)}==0-

Because of the irreducibility of the equation f{x)=Q, 

the expression 

F{x)=iJr\K^)V+ {K^)Y-V \xi^)Y+\p{^)V 

represents, necessarily, such an integral rational func­

tion of X as is divisible by/(.a;). F{x) is, then, a 

"definite" function of the degree (2ot—2) or lower. 
Fix) 

Hence, the quotient ̂ ^ is a "definite" function of 
the degree {m — 2) or lower in x, having rational co­

efficients. Consequently, by the hypothesis we have 

made, - J ^ can be represented as the quotient of two 
f{x) 

sums of squares of the kind mentioned in theorem 43 
and, since F{x) is itself such a sum of squares, it fol­
lows that/(zi;) must also be a quotient of two sums of 
squares of the required kind. The validity of theo­

rem 43 is accordingly established. 
It would be perhaps difficult to fonnulate and to 

demonstrate the corresponding proposition for integral 
functions of two or more variables. However, I will 
here merely remark that I have demonstrated in an 
entirely different manner the possibility of represent­
ing any "definite" integral rational function of tWO 
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variables as the quotient of sums of squares of in­
tegral functions, upon the hypothesis that the func­
tions represented may have as coefficients not only 
rational but any real numbers.* 

§ 39. CRITERION FOR THE POSSIBILITY OF A GEO­
METRICAL CONSTRUCTION BY MEANS OF A 

STRAIGHT-ElDGE AND A TRANSFERER 
OF SEGMENTS. 

Suppose we have given a problem in geometrical 

construction which can be affected by means of a com­

pass. W e shall attempt to find a criterion which will 

enable us to decide, from the analytical nature of the 
problem and its solutions, whether or not the construc­

tion can be carried out by means of only a straight­

edge and a transferer of segments. Our investigation 
will lead us to the following proposition. 

Theorem 44. Suppose we have given a problem 

in geometrical construction, which is of such a 

character that the analytical treatment of it 
enables us to determine uniquely the co-ordi­

nates of the desired points from the co-ordinates 
of the given points by means of the rational 

operations and the extraction of the square root. 
Let n be the smallest number of square roots 

which suffice to calculate -the co-ordinates of 
the points. Then, in order that the required 
construction shall be possible by the drawing 

of straight lines and the laying off of segments, 
it is necessary and sufficient that the given geo­

metrical problem shall have exactly 2" real so­
lutions for every position of the given points; 

that is to say, for all values of the arbitrary 

*See " Ueber ternare definite Formen," Acta mathematica. Vol. 17. 
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parameter expressed in terms of the co-ordi­

nates of the given points. 

Proof. W e shall demonstrate this proposition 
merely for the case where the co-ordinates of the 
given points are rational functions, having rational 

coefficients, of a single parameter p. 
It is at once evident that the proposition gives a 

necessary condition. In order to show that it is also 

sufficient, let us assume that it is fulfilled and then, 
among the « square roots, consider that one which, 

in the calculation of the co-ordinates of the desired 
points, is first to be extracted. The expression under 

this radical is a rational function/i(/), having rational 
coefficients, of the parameter/. This rational func­
tion cannot have a negative value for any real value 
of the parameter /; for, otherwise the problem must 

have imaginary solutions for certain values of/, which 

is contrary to the given hypothesis. Hence, from 
theorem 43, we conclude that/i(/) can be represented 

as a quotient of the sums of squares of integral ra­
tional functions. 

Moreover, the formulae 

i/^^TTqr^ ̂  1/ {V'tfA-lF)"' + c", 

l/a^+W+~^~+~iP = l/ (Vâ -̂ b'̂  + ĉ ) ' + z/2, 

show that, in general, the extraction of the square root. 
of a sum of any number of squares may always be re­
duced to the repeated extraction of the square root of 
the sum of two squares. 

If now we combine this conclusion with the pre­
ceding results, it follows that the expression V'fl'p\ 
can certainly be constructed by means of a straight­
edge and a transferer of segments. 
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Among the n square roots, consider now the sec­

ond one to be extracted in the process of calculatiiig 
the co-ordinates of the required points. The expres­

sion under this radical is a rational function y(/, Vf-^ 
of the parameter/ and the square root first considered. 
This function 7^ can never be negative for any real 

arbitrary value of the parameter/ and for either sign 

of 1//1; for, otherwise among the 2" solutions of our 

problem, there would exist for certain values of/ also 
imaginary solutions, which is contrary to our hypoth­

esis. It follows, therefore, that7^ must satisfy a quad­

ratic equation of the form 

where <^i(/) and </'i(/>) are, necessarily, such ratioiial 
functions of/ as have rational coefficients and for real 

values of/ never become negative. From this equa­

tion, we have 

r_fl±Uf) 
' ~ <t>l(.P) • 

Now, according to theorem 43, the functions <̂ i(/) and 

i/fi(/) must again be the quotient of the sums of squares 
of rational functions, and, on the other hand, the ex­

pression f may be, from the above considerations, 
constructed by means of a straight-edge and a trans­

ferer of segments. The expression found for ̂  shows, 

therefore, that/j is a quotient of the sum of squares 
of functions which may be constructed in the same 
way. Hence, the expression V^f can also be con­

structed by means of a straight-edge and a transferer 

of segments. 
Just as with the expressions^, and other rational 

function e^//, V f ) of/ and V f may be shown to be 
the quotient of two sums of squares of functions which 
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may be constructed, providing, this rational function 
^2 possesses the property that, for real values of the 
parameter / and for either sign of Vf^, it never be­

comes negative. 
This remark permits us to extend the above method, 

of reasoning in the following manner. 
Let f.̂ {p, V f , V f ^ be such an expression as de­

pends in a rational manner upon the three arguments 

/. Vfi, V'f and of which, in the analytical calcula.tion 
of the co-ordinates of the desired points, the square 
root is to-be extrated a third time. As before, it fol­
lows that^j can never have negative values for real 
values of/ and for either sign of V f and V f . This 

condition of affairs shows again that/3 must satisfy a 
quadiratic equation of the form 

7?—<^2(A VfiV.^UP, ^7i)-=^, 
where ̂ ,, and i/tj are such rational functions of/ and 
l//j as never become negative for any real value of / 

and either sign of V'f. But, according to the preced­

ing remark, the functions <̂2 and i/̂j are the quotients 
of two sums* of squares of functions which may be con­

structed and, hence, it follows that the expression 

. ̂ fl±HP^Vf^ 

U h Vf) 
is likewise possible of construction by aid of a straight­
edge and a transferer of segments. 

The continuation of this method of reasoning leads 
to the demonstration of theorem 44 for 'the case of a 
single parameter/. 

The trut-h of theorem 44 for the general case de­
pends upon whether or not theorem 43 can be gen­
eralized in a similar manner to cover the case of two 
or more variables. 
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As an example of the application of theorem 44, 
we may consider the regular polygons which may be 
constructed by means of a compass. In this case, the 
arbitrary parameter / does not occur, and the expres­

sions to be constructed all represent algebraic num­
bers. W e easily see that the criterion of theorem 44 

is fulfilled, and, consequently, it follows that every 
regular polygon can be constructed by the drawing of 
straight lines and the laying off of segments. W e 

might deduce this result also directly from the theory 

of the division of the circle (̂ Xreisteilung). 
Concerning the other known problems of construc­

tion in the elementary geometry, we will here only 
mention that the problem of Malfatti may be con­

structed by means of a straight-edge and a transferer 

of segments. This is, however, not the case with the 

contact problems of Appolonius. 



CONCLUSION. 

THE preceding work treats essentially of the prob­

lems of the euclidean geometry only; that is to 

say, it is a discussion of the questions which present 

themselves when we admit the validity of the axiom 

of parallels. It is none the less important to discuss 
the principles and the fundamental theorems when we 

disregard the axiom of parallels. W e have thus ex­

cluded from our study the important question as to 

whether it is possible to construct a. geometry in a 
logical manner, without introducing the notion of the 

plane and the straight line, by means of only points 
as elements, making use of the idea of groups of trans­
formations, or employing the idea of distance. This 
last question has recently been the subject of consider­

able study, due to the fundamental and prolific works 
of Sophus Lie. However, for the complete elucida­

tion of this question, it would be well to divide into 
several parts the axiom of Lie, that space is a numer­
ical multiplicity. First of all, it would seem to m e 

desirable to discuss thoroughly the hypothesis of Lie, 
that functions which produce transformations are not 
only continuous, but may also be differentiated. As 
to myself, it does not seem to m e probable that the 
geometrical axioms included in the condition for the 
possibility of differentiation are all necessary. 

In the treatment of all questions of this character 
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I believe the methods and the principles employed in 
the preceding work will be of value. As an example, 

let me call attention to an investigation undertaken at 

my suggestion by Mr. Dehn, and which has already 
appeared.* In this article, he has discussed the known 
theorems of Legendre concerning the sum of the an­

gles of a triangle, in the demonstration of which that 
geometer made use of the idea of continuity. 

The investigation of Mr. Dehn rests upon the ax­
ioms of connection, of order, and of congruence; that 

is to say, upon the axioms of groups I, II, IV. How­

ever, the axiom of parallels and the axiom of Archi­

medes are excluded. Moreover, the axioms of order 

are stated in a more general manner than in the pres­

ent work, and in substance as follows: Among four 

points A, B, O, D oi a straight line, there are always 
two, for example A, O, which are separated from the 

other two and conversely. Five points A, B, O, D, 

E upon a straight line may always be so arranged that 

A, C shall be separated from B, E and from B, D. 

Consequently, A, D are always separated from B, E 
and from C, E, etc. The (elliptic) geometry of Rie-

mann, which we have not considered in the present 
work, is in this way not necessarily excluded. 

Upon the basis of the axioms of connection, order, 
and congruence, that is to say, the axioms I, II, IV, 
we may introduce, in-the well known manner, the ele­

ments called ideal,—ideal points, ideal straight lines, 
and ideal planes. Having done this, Mr. Dehn dem­

onstrates the following theorem. 

If, with the exception of the straight line t and 

the points lying upon it, we regard all of the 

* Math. Annaten, Vol. 53 (xgoo). 
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straight lines and all of the points (ideal or 

real) of a plane as the elements of a new geom­
etry, we may then define a new kind of congru­

ence so that all of the axioms of connection, 
order, and congruence, as well as the axiom of 
Euclid, shall be fulfilled. In this new geom­

etry, the straight line t takes the place of the 
straight line at infinity. 

This euclidean geometry, confined thus to a non-
euclidean plane, may be called a pseudo-geometry and 

the new kind of congruence a pseudo-congruence. 
By aid of the preceding theorem, we may now in­

troduce an algebra of segments relating to the plane 
and depending upon the developments made in § 15, 
pp. 46-50. This algebra of segments permits the 
demonstration of the following important theorem : 

If, in any triangle whatever, the sum of the an­

gles is greater than, equal to, or less than, two 
right angles, then the same is true for all tri­

angles. 

The case where the sum of the angles is equal to 
two right angles gives the well known theorem of 
Legendre. However, in his demonstration, Legeildre 

makes use of continuity. 
Mr. Dehn then discusses the connection between 

the three different hypotheses relative to the sum of 
the angles and the three hypotheses relative to par­
allels. 

H e arrives in this manner at the following remark­
able propositions. 

Upon the hypothesis that through a given point 
we may draw an infinity of lines parallel to a 
given straight line, it does not follow, when we 
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exclude the axiom of Archimedes, that the sum 
of the angles of a triangle is less than two right 
angles, but on the contrary, this sum may be 

{a) greater than two right angles, or 
{b) equal to two right angles. 

In order to demonstrate part {a) of this theorem, 
Mr. Dehn constructs a geometry where we may draw 
through a point an infinity of lines parallel to a given 

straight line and where, moreover, all of the theorems 

of Riemann's (elliptic) geometry are valid. This geom­
etry may be called non-legendrian, for it is in contra­

diction with that theorem of Legendre by virtue of 

which the sum of the angles a triangle is never greater 

than two right angles. From the existence of this 

non-legendrian geometry, it follows at once that it is 
impossible to demonstrate the theorem of Legendre 

just mentioned without employing the axiom of Ar­

chimedes, and, in fact, Legendre made use also of 

continuity in his demonstration of this theorem. 
For the demonstration of case (Jb), Mr. Dehn con­

structs a geometry where the axiom of parallels does 

not hold, but where, nevertheless, all of the theorems 
of the euclidean geometry are valid. Then, we have 

the sum of the angles of a triangle equal to two right 
angles. There exist also similar triangles, and the ex­

tremities of the perpendiculars having the same length 
and their bases upon a straight line all lie upon the 

same straight line, etc. The existence of this geom­
etry shows that, if we disregard the axiom of Archi­

medes, the axiom of parallels cannot be replaced by 
any of the propositions which we usually regard as 

equivalent to it. 
This new geometry may be called a se7ni-euclidean 
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geometry. As in the case of the non-legendrian geom­
etry, it is clear that the semi-euclidean geometry is at 

the same time a non-archimedean geometry. 
Mr. D e h n finally arrives at the following surpris­

ing theorem: 

U p o n the hypothesis that there exists no parallel, 
it follows that the s u m of the angles of a tri­
angle is greater than two right angles. 

This theorem shows that the two non-euclidean 
hypotheses concerning parallels lead to very different 

results from those of the axiom of Archimedes. 
W e m a y combine the preceding results in the fol­

lowing table. 

THE SUM OF 
THE AKGLES 
OF A TRIAN­
GLE IS 

> 2 right 
angles 

< 2 right 
angles 

= aright 
angles 

THROUGH A GIVEN POINT, WE MAY DRAW 

NO PARALLELS 
TO A 

STRAIGHT LINE 
Riemann's 
(elliptic) ge­
ometry 

This case im­
possible 

This case im­
possible 

ONE PARALLEL 
TO A 

STRAIGHT LINE 

This case im­
possible 

Euclidean 
(parabolic) 
geometry 

This case im­
possible 

AN INFINITY OF PARALLELS 
TO A STRAIGHT LINE 

Non-legendrian geometry 

Semi-euclidean geometry 

Geometry of Lobatschewski 
(hyperbolic) 

H o w e v e r , as I have already remarked, the present 
w o r k is rather a critical investigation of the principles 
of the euclidean geometry. In this investigation, w e 
have taken as a guide the following fundamental prin­
ciple ; viz., to m a k e the discussion of each question 
of such a character as to examine at the s a m e time 
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whether or not it is possible to answer this question 
by following out a previously determined method and 

by employing certain limited means. This fundamen­
tal rule seems to m e to contain a general law and to 
conform to the nature of things. In fact, whenever 

in our mathematical investigations we encounter a 
problem or suspect the existence of a theorem, our 
reason is satisfied only when we possess a complete 
solution of the problem or a rigorous demonstration-of 
the theorem, or, indeed, when we see clearly the rea­

son of the impossibility of the success and, conse­
quently, the necessity of failure. 

Thus, in the modern mathematics, the question of 

the impossibility of solution of certain problems plays 

an important role, and the attempts made to answer 
such questions have often been the occasion of dis­

covering new and fruitful fields for research. W e re­

call in this connection the demonstration by Abel of 

the impossibility of solving an equation of the fifth 
degree by means of radicals, as also the discovery of 

the impossibility of demonstrating the axiom of par­

allels, and, finally, the theorems of Hermite and Lin-
deman concerning the impossibility of constructing 

by algebraic means the numbers e and x. 
This fundamental principle, by virtue of which we 

are everywhere able to discuss the principles under­
lying the impossibility of demonstrations, is intimately 

connected with the condition for the ''purity" of 
methods in demonstration, which in recent times has 

been considered of the highest importance by many 
mathematicians. The foundation of this condition is 

nothing else than a subjective conception of the fun­
damental principle given above. In fact, the preced­

ing geometrical study attempts, in general, to explain 
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what are the axioms, hypotheses, or means, necessary 
to the demonstration of a truth of elementary geom­
etry, and it only remains novz for us to judge from the 

point of view in which we place ourselves as to what 
are the methods of demonstration which we should 
pr'efer. 
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