
Liang Zhao · Sherif Sakr
Anna Liu · Athman Bouguettaya

Cloud Data
Management

Cloud Data Management

Liang Zhao • Sherif Sakr • Anna Liu
Athman Bouguettaya

Cloud Data Management

Foreword by Albert Y. Zomaya

123

Liang Zhao
NICTA Kensington
NSW, Australia

Anna Liu
NICTA, Eveleigh
NSW, Australia

Sherif Sakr
Software Systems Research Group
NICTA, Eveleigh, NSW
Australia

Faculty of Computers and Information
Cairo University, Egypt

Athman Bouguettaya
School of Computer Science

and Information Technology
RMIT University, Melbourne
VIC, Australia

ISBN 978-3-319-04764-5 ISBN 978-3-319-04765-2 (eBook)
DOI 10.1007/978-3-319-04765-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932980

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To my parents, Dianchi Zhao and Lijuan
Chu, and my wife, Huan Wang, for their love,
understanding, and encouragement.

Liang Zhao

To my wife, Radwa, and my lovely daughter,
Jana, for their love, encouragement, and
support.

Sherif Sakr

Lifelong gratitude to my family.

Anna Liu

To my wife, Malika, and lovely sons, Zakaria,
Ayoub, and Mohamed-Islam.

Athman Bouguettaya

Foreword

The rapidly expanding generation of Internet-based services such as e-mail,
blogging, social networking, search, and e-commerce has substantially redefined
the behavior and trends of web users when it comes to creating, communicating,
accessing content, sharing information, and purchasing products. Information
technology professionals are witnessing a proliferation in the scale of the data
generated and consumed because of the growth in the number of these systems; this
ever increasing need for scalability and new application requirements has created
new challenges for traditional relational database management systems (RDBMS).
Currently, the apparent goal of the system and tool manufacturers is to facilitate
the job of implementing every application as a distributed, scalable, and widely
accessible service on the web (e.g., services from Facebook, Flickr, YouTube,
Zoho, and LinkedIn).

Cloud computing technology is a relatively new model for hosting software
applications. The cloud model simplifies the time-consuming processes of hard-
ware provisioning, hardware purchasing, and software deployment; therefore it
revolutionizes the way computational resources and services are commercialized
and delivered to customers. In particular, it shifts the location of this infrastructure
to the network in order to reduce the costs associated with the management of
hardware and software resources. This means that the cloud represents the long-held
dream of envisioning computing as a utility, a dream in which the economy of scale
principles help to effectively drive down the cost of the computing infrastructure. In
practice, cloud computing promises a number of advantages for the deployment of
software applications such as pay-per-use cost model, short time to market, and the
perception of (virtually) unlimited resources and infinite scalability.

The rise of the cloud technology has been somewhat disruptive. The advantages
of the cloud computing model open up new avenues for deploying novel applications
that were not economically feasible in a traditional enterprise infrastructure setting.
Therefore, the cloud has become an increasingly popular platform for hosting
software applications in a variety of domains such as e-retail, finance, news, and
social networking. The proliferation in the number of applications also delivers
a tremendous increase in the scale of the data generated and consumed by

vii

viii Foreword

these applications. This is why a cloud-hosted database system powering these
applications forms a critical component in the software stack of these applications.

To meet the challenges posed by hosting databases on cloud computing environ-
ments there are a plethora of systems and approaches. This book is the first that
approaches the challenges associated with hosting databases on cloud computing
environments from different but integrated perspectives; it connects the dots.
The authors deal with the problems that may be encountered in every cloud-
based data hosting solution: NoSQL storage services, database-as-a-service (DaaS),
virtualized database servers in addition to batch-based processing systems for big
data. The book is useful for many database researchers or practitioners because the
inherent change in hosting database in cloud environment is fundamental on many
perspectives as it originates from new foundations and models of thinking.

I found the book to contain a lot of timely and useful information. The book
has many gems that inspire the readers as they go through the different chapters
which are covering an area that is currently changing the data management field in a
fundamental way. It covers an impressive array of topics with great clarity that will
excite any reader wishing to understand this emerging technology. It also provides
extensive references which will help the interested reader find out more information
about the discussed topics. All in all, this is an impressive piece of work and an
invaluable source of knowledge for advanced students and researchers working in
or wishing to explore this exciting field.

Darlington, NSW, Australia Albert Y. Zomaya

Preface

Cloud computing technology represents a new paradigm for the provisioning of
computing resources. Cloud computing is with us and for the foreseeable future.
This paradigm shift allows for the outsourcing of computing resources to reduce the
ownership costs associated with the management of hardware and software. Cloud
computing simplifies the time-consuming processes of hardware provisioning,
hardware purchasing, and software deployment.

Cloud computing is not a passing trend but a stubborn reality that is rooted on
an emerging trend leading computing into a technological quantum leap. It builds
on decades of research in virtualization, autonomic computing, grid computing, and
utility computing, and ubiquity of the web as the network and delivery medium.

Central to the success of cloud computing is the ability to provision data
using different quality of service requirements, including latency, performance, and
reliability. Unfortunately, most cloud providers do not guarantee, and let alone,
provide information about actual quality of service for data access. This is a complex
exercise that depends on many factors, including the location of the data store, type
of data, network congestion and data store platforms.

This book fills a gap in that it provides an in-depth analysis of major data
cloud platforms using an exhaustive series of tests and experiments to unlock the
unanswered questions surrounding the performance of each cloud data platform
that is considered. The work presented in this book focuses on evaluating cloud
databases in the presence of very little information from cloud providers. This can
also be interpreted as reverse-engineering the performance of cloud databases with
its own risks in interpretation.

The data cloud platforms considered in this book include the leaders in the field,
including, Amazon, Microsoft, and Google. Amazon offers a collection of services,
called Amazon Web Services, which includes Amazon Elastic Compute Cloud
(EC2) as cloud hosting server, offering infrastructure as a service and Amazon
SimpleDB and Simple Storage Service (S3) as cloud databases.

Microsoft Azure is recognized as a combination of infrastructure as a service and
platform as a service. It features web role and worker role for web hosting tasks and
computing tasks, respectively. It also offers a variety of database options including

ix

x Preface

Windows Azure Table Storage and Windows Azure Blob Storage as the NoSQL
database options and Azure SQL Database as the relational database option.

Google App Engine supports a platform as a service model, supporting program-
ming languages including Python and Java and Google App Engine Datastore as a
Bigtable-based, non-relational, and highly sharable cloud database.

We propose a performance evaluation framework of cloud platforms as a
uniform testing environment for all the cloud data environments. We describe novel
frameworks and architectures to address the following issues: (1) the performance
characteristics of different cloud platforms, including cloud hosting servers and
cloud databases, (2) availability and reliability characteristics that cloud platforms
typically exhibit, (3) type of faults and errors that may be encountered when
services are running on different cloud platforms under high request volume or
high stress situations, (4) reasons behind the faults and errors, (5) the architecture
internal insights that may be deduced from these observations, and (6) the software
engineering challenges that developers and architects could face when using cloud
platforms as their production environment for service delivery.

Kensington, NSW, Australia Liang Zhao
Eveleigh, NSW, Australia Sherif Sakr
Eveleigh, NSW, Australia Anna Liu
Melbourne, VIC, Australia Athman Bouguettaya

Acknowledgements

I would like to thank my parents, Lijuan Chu and Dianchi Zhao, for their constant
love, support, and encouragement during my Ph.D. study. I would also like to
express my appreciation to my wife, Huan Wang, for her patience, understanding,
and encouragement. The work would not have been possible without their support
and care.

Liang Zhao

I would like to thank my parents, Ali Sakr and Amira Awad, for their encouragement
and support. I want to thank my daughter, Jana, for the happiness and enjoyable
moments she is always bringing to my life. My most special appreciation goes to
my wife, Radwa Elshawi, for her everlasting support and deep love.

Sherif Sakr

I would like to sincerely thank the excellent hard work of my coauthors, without
their dedication, commitment, and persistence, this book would not be here. I would
also like to thank the wider NICTA Dependable Cloud Computing research team,
who have provided wonderful companionship through our research journey. Lastly,
many thanks go to our industry partners, who have provided much of the use
inspiration for our work.

Anna Liu

I would like to thank my family for their love and understanding during my work
on this book.

Athman Bouguettaya

The authors of this book would like to extend their sincere gratitude and appreciation
to their collaborators for the contribution to this book; in particular, we would like
to mention Alan Fekete, Jacky Keung, Kevin Lee, Hiroshi Wada, Xiwei Xu, Zhen
Ye, Xiaofang Zhou, and Liming Zhu. Thank you all!

xi

Contents

1 Introduction . 1

2 Cloud Computing . 9
2.1 Definitions . 9
2.2 Related Technologies for Cloud Computing . 11
2.3 Cloud Service Models. 14
2.4 Cloud Deployment Models . 15
2.5 Public Cloud Platforms: State-of-the-Art . 16
2.6 Business Benefits of Cloud Computing . 19

3 Cloud-Hosted Data Storage Systems . 21
3.1 Introduction . 21
3.2 NoSQL Key Systems. 23
3.3 NoSQL Open Source Projects . 29
3.4 Database-as-a-Service. 32
3.5 Virtualized Database Servers . 39
3.6 Web Scale Data Management: Trade-Offs . 39
3.7 Discussion and Conclusions . 42

4 Performance Evaluation Framework of Cloud Platforms 47
4.1 The CARE Framework. 48
4.2 Application of CARE to Cloud Platform Evaluation 54
4.3 Experiment Results and Exception Analysis. 55
4.4 Discussion . 65

5 Database Replication of NoSQL Database-as-a-Service 67
5.1 Architecture of Benchmark Application . 67
5.2 Staleness of Data on Different Cloud Platforms . 69
5.3 Trade-Off Analysis of Amazon SimpleDB . 74
5.4 Discussion . 78

xiii

xiv Contents

6 Replicating Virtualized Database Servers . 81
6.1 Design of Benchmark Application . 82
6.2 Implementation of Benchmark Application. 86
6.3 Trade-Off Analysis of Virtualized Database Servers 87
6.4 Discussion . 95

7 SLA-Driven Database Replication on Virtualized
Database Servers . 97
7.1 SLA Management for Virtualized Database Servers 98
7.2 Architecture of SLA Management Framework . 101
7.3 Implementation of SLA Management Framework 105
7.4 Evaluation of SLA Management Framework . 107
7.5 Provisioning the Database Tier Based on SLA

of Transaction Response Times. 114
7.6 Related work. 117
7.7 Discussion . 118

8 QoS-Aware Service Compositions in Cloud Computing 119
8.1 Preliminaries. 120
8.2 QoS-Aware Service Composition in Cloud Computing 124
8.3 Experiment and Evaluation . 128
8.4 Related Work . 131
8.5 Conclusion . 133

9 Big Data Processing Systems . 135
9.1 Introduction . 135
9.2 MapReduce Framework: Basic Architecture . 137
9.3 Extensions and Enhancements of the MapReduce Framework 140
9.4 Systems of Declarative Interfaces for the MapReduce

Framework . 163
9.5 Conclusions . 175

10 Conclusions . 177
10.1 True Elasticity . 177
10.2 Data Replication and Consistency Management . 179
10.3 SLA Management . 182
10.4 Transaction Support . 184
10.5 Summary. 186

References . 191

List of Figures

Fig. 1.1 Characteristics of Big Data . 2

Fig. 2.1 The evolution towards cloud computing in hosting
software applications . 11

Fig. 2.2 Exploitation of virtualization technology in the
architecture of cloud computing . 13

Fig. 2.3 The service models of cloud computing . 14

Fig. 3.1 Database scalability options . 22
Fig. 3.2 Sample BigTable structure . 25
Fig. 3.3 PNUTS system architecture . 27
Fig. 3.4 Partitioning and replication of keys in dynamo ring 29
Fig. 3.5 Basic GQL syntax . 34
Fig. 3.6 Coexistence of multiple data management solution in

one application . 45

Fig. 4.1 Time measurement terminologies . 49
Fig. 4.2 The flow chart of evaluation strategies . 51
Fig. 4.3 Contract-First Web Service based client application 55
Fig. 4.4 The cumulative distribution function of high stress

round-trip between the end-user and the Amazon EC2
cloud hosting servers . 57

Fig. 4.5 The cumulative distribution function of high stress
round-trip between the end-user and the Microsoft
Windows Azure cloud hosting servers . 57

Fig. 4.6 The cumulative distribution function of high stress
round-trip between the end-user and the Google App
Engine cloud hosting servers . 58

Fig. 4.7 The average read time in cloud databases with low
stress database read test set . 58

Fig. 4.8 The average write time in cloud databases with low
stress database write test set . 59

xv

xvi List of Figures

Fig. 4.9 The cumulative distribution function of read
throughput in cloud databases with low stress database
read test set . 60

Fig. 4.10 The cumulative distribution function of write
throughput in cloud databases with low stress database
write test set . 60

Fig. 4.11 The cumulative distribution function of read and
write throughput in cloud databases with high stress
database read and write test sets . 60

Fig. 4.12 The database processing time of read, write, and delete
in cloud databases with low stress large file read, write,
and delete test sets. 61

Fig. 5.1 The architecture of NoSQL database as a service
benchmark applications . 68

Fig. 5.2 Probability of reading freshest value . 70
Fig. 5.3 Time to see freshness with eventual consistent read. 72
Fig. 5.4 The average, 95 percentile, and 99:9 percentile

response time of reads at various levels of load . 75
Fig. 5.5 Response time of reads at various read/write ratios on

Amazon SimpleDB . 76
Fig. 5.6 Response time of writes at various read/write ratios on

Amazon SimpleDB . 76
Fig. 5.7 Processed requests of Amazon SimpleDB . 77
Fig. 5.8 Throughput percentage of Amazon SimpleDB . 77
Fig. 5.9 Request failure rate of Amazon SimpleDB . 78

Fig. 6.1 The architecture of relational database as a service
benchmark application . 83

Fig. 6.2 End-to-end throughput with 50/50 read/write ratio
and 300 initial data size in the same zone . 87

Fig. 6.3 End-to-end throughput with 50/50 read/write ratio
and 300 initial data size in different zones . 88

Fig. 6.4 End-to-end throughput with 50/50 read/write ratio
and 300 initial data size in different regions . 88

Fig. 6.5 End-to-end throughput with 80/20 read/write ratio
and 600 initial data size in the same zone . 89

Fig. 6.6 End-to-end throughput with 80/20 read/write ratio
and 600 initial data size in different zones . 89

Fig. 6.7 End-to-end throughput with 80/20 read/write ratio
and 600 initial data size in different regions . 90

Fig. 6.8 Average relative replication delay with 50/50
read/write ratio and 300 initial data size in the same zone 92

Fig. 6.9 Average relative replication delay with 50/50
read/write ratio and 300 initial data size in different zones 92

List of Figures xvii

Fig. 6.10 Average relative replication delay with 50/50
read/write ratio and 300 initial data size in different regions 93

Fig. 6.11 Average relative replication delay with 80/20
read/write ratio and 600 initial data size in the same zone 93

Fig. 6.12 Average relative replication delay with 80/20
read/write ratio and 600 initial data size in different zones 94

Fig. 6.13 Average relative replication delay with 80/20
read/write ratio and 600 initial data size in different regions 94

Fig. 7.1 SLA parties in cloud environments. 99
Fig. 7.2 The SLA management framework architecture . 102
Fig. 7.3 The implementation of the SLA management

framework in the setup of experiments. 106
Fig. 7.4 The performance of the replication delay for fixed 3

replica servers with the framework disabled . 110
Fig. 7.5 The performance of the replication delay for fixed 6

replica servers with the framework disabled . 110
Fig. 7.6 The performance of the replication delay for up

to 6 replica servers with the framework enabled,
delaytolerance D 1; 000 ms, and intvlmon D 60 s 111

Fig. 7.7 The performance of the replication delay for up
to 6 replica servers with the framework enabled,
delaytolerance D 1; 000 ms, and intvlmon D 120 s 111

Fig. 7.8 The performance of the replication delay for up
to 6 replica servers with the framework enabled,
delaytolerance D 1; 000 ms, and intvlmon D 240 s 112

Fig. 7.9 The performance of the replication delay for up
to 6 replica servers with the framework enabled,
delaytolerance D 1; 000 ms, and intvlmon D 480 s 112

Fig. 7.10 The performance of the replication delay for up
to 6 replica servers with the framework enabled,
delaytolerance D 500 ms, and intvlmon D 120 s 113

Fig. 7.11 The performance of the replication delay for up
to 6 replica servers with the framework enabled,
delaytolerance D 2; 000 ms, and intvlmon D 120 s 113

Fig. 7.12 The performance of the replication delay for up
to 6 replica servers with the framework enabled,
delaytolerance D 4; 000 ms, and intvlmon D 120 s 114

Fig. 7.13 Comparison of SLA-based vs resource-based database
provisioning rules. (a) Workload: 80/20 (r/w).
(b) Workload: 50/50 (r/w) . 116

Fig. 8.1 Cloud system . 120
Fig. 8.2 Control flows . 121
Fig. 8.3 Data flow graphs . 122
Fig. 8.4 Aggregation functions for each QoS attribute . 123

xviii List of Figures

Fig. 8.5 Composition solution . 124
Fig. 8.6 Crossover and mutation operators . 126
Fig. 8.7 Example of scheduling string. (a) Example 1.

(b) Example 2 for data forwarding . 127
Fig. 8.8 Fitness vs Dataset . 130
Fig. 8.9 GA vs Random selection . 130
Fig. 8.10 Time vs concrete services . 131
Fig. 8.11 GA vs Integer programming approach. (a) GA vs

Integer programming on time. (b) GA vs Integer
programming on fitness . 132

Fig. 9.1 An example MapReduce program. 137
Fig. 9.2 An overview of the flow of execution a MapReduce operation 139
Fig. 9.3 Decision tree for choosing between various join

strategies on the MapReduce framework . 142
Fig. 9.4 An overview of the Map-Reduce-Merge framework 142
Fig. 9.5 A sample execution of the Map-Reduce-Merge framework 144
Fig. 9.6 An overview of HaLoop architecture . 146
Fig. 9.7 An example structure of CFile . 151
Fig. 9.8 An example structure of RCFile . 153
Fig. 9.9 Example file colocation in CoHadoop . 155
Fig. 9.10 An example Sawzall program . 164
Fig. 9.11 An example SQL query and its equivalent Pig Latin program 165
Fig. 9.12 Pig compilation and execution steps . 166
Fig. 9.13 An example HiveQl query . 167
Fig. 9.14 Basic syntax of SQL/MR query function . 170
Fig. 9.15 The architecture of HadoopDB . 173
Fig. 9.16 Sample Jaql script . 174
Fig. 9.17 Jaql system architecture . 175

List of Tables

Table 2.1 Feature similarities and differences between related
technologies and cloud computing . 12

Table 2.2 Summary of cloud deployment models. 17

Table 3.1 Design decisions of various web scale data
management systems . 41

Table 4.1 Building a test set . 53
Table 4.2 Total error detail analysis . 63
Table 4.3 Average error (rates) of high stress database read

over different time periods . 64
Table 4.4 Average error (rates) of high stress database write

over different time periods . 64

Table 5.1 Probability of reading freshest value . 71
Table 5.2 Successive eventual consistent reads . 72

Table 7.1 The effect of the adaptive SLA management
framework on the end-to-end system throughput 108

Table 7.2 Number of provisioned database replicas . 117

Table 10.1 Open research challenges of cloud-hosted database systems. 187

xix

Chapter 1
Introduction

We live in the era of big data. Information from multiple sources is growing at
a staggering rate. The number of Internet users reached 2.27 billion in 2012.
Google estimates that the total number of web pages exceeds one trillion. Every
day, Facebook generates more than 25 TB of log data, Twitter generates more
than 12 TB of tweets, and the New York Stock Exchange captures 1 TB of trade
information. Each minute, 15 h of video are uploaded to YouTube. About 30 billion
radio-frequency identification (RFID) tags are created every day. Add to this mix
the data generated by the hundreds of millions of GPS devices sold every year, and
the more than 30 million networked sensors currently in use (and growing at a rate
faster than 30 percent per year). Modern high-energy physics experiments, such as
DZero [46], typically generate more than one TeraByte of data per day. These data
volumes are expected to double every two years over the next decade.

The rapidly expanding generation of Internet-based services such as email,
blogging, social networking, search, and e-commerce have substantially redefined
the behavior and trends of web users when it comes to creating, communicating,
accessing content, sharing information, and purchasing products. For example,
we buy books on Amazon, sell thing on eBay, stay in contact with friends and
colleagues via Facebook and Linkedin, start a blog using WordPress. share pictures
via Flickr, and share videos via YouTube. These are just examples to name a few
well-known internet-based services that we use in our everyday life. IT professionals
are witnessing a proliferation in the scale of the data generated and consumed
because of the growth in the number of these systems.

A company can generate up to petabytes of information in the course of a
year: web pages, blogs, clickstreams, search indices, social media forums, instant
messages, text messages, email, documents, consumer demographics, sensor data
from active and passive systems, and more. By many estimates, as much as 80%
of this data is semi-structured or unstructured. Companies are always seeking
to become more nimble in their operations and more innovative with their data
analysis and decision-making processes. And they are realizing that time lost in
these processes can lead to missed business opportunities. The core of the big

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__1,
© Springer International Publishing Switzerland 2014

1

2 1 Introduction

Velocity

Volume

Variety

Terabyte

Petabyte

Exabyte

Zettabyte

...

...

...

Streaming

Batching

...

...

...

Relational
Data

... Log
Data

... Raw
Text

...

Fig. 1.1 Characteristics of Big Data

data challenge is for companies to gain the ability to analyze and understand
Internet-scale information just as easily as they can now analyze and understand
smaller volumes of structured information.

As shown in Fig. 1.1, the characteristics of these overwhelming flows of data
which are produced at multiple sources are currently subsumed under the notion of
Big Data with 3Vs (volume, variety and velocity) defining properties as follows:

• Volume: refers to the scale of data, from terabytes to zettabytes.
• Velocity: reflects streaming data and large-volume data movements.
• Variety: refers to the complexity of data in many different structures, ranging

from relational to logs to raw text.

In general, the continuous increase of computational power, in the last two
decades, has been behind producing this overwhelming flow of data which called
for a paradigm shift in the computing architecture and large scale data processing

1 Introduction 3

mechanisms. Jim Gray, a database software pioneer and a Microsoft researcher,
called the shift a “fourth paradigm” [151]. The first three paradigms were experi-
mental, theoretical and, more recently, computational science. Gray argued that the
only way to cope with this paradigm is to develop a new generation of computing
tools to manage, visualize and analyze the data flood. In general, the current
computer architectures are increasingly imbalanced where the latency gap between
multi-core CPUs and mechanical hard disks is growing every year which makes the
challenges of data-intensive computing harder to overcome [76].

Recently, there has been a great deal of hype about cloud computing. Cloud
computing is associated with a new paradigm for the provision of computing
infrastructure. This paradigm shifts the location of this infrastructure to the network
to reduce the costs associated with the management of hardware and software
resources. Hence, businesses and users become able to access application services
from anywhere in the world on demand. Therefore, it represents the long-held dream
of envisioning computing as a utility [68] where the economy of scale principles
help to drive the cost of computing infrastructure effectively down. Big players such
as Amazon, Google, IBM, Microsoft and Sun Microsystems have established new
data centers for hosting Cloud computing applications in various locations around
the world to provide redundancy and ensure reliability in case of site failures.

In principle, one of the main reasons for the success of cloud computing is the
role it has played in eliminating the size of an enterprise as a critical factor in
its economic success. An excellent example of this change is the notion of data
centers which provide clients with the physical infrastructure needed to host their
computer systems, including redundant power supplies, high bandwidth commu-
nication capabilities, environment monitoring, and security services. In practice,
on-premise data centers are often under-utilized due to over-provisioning, as well as
the time-varying resource demands of typical enterprise applications. Multi-tenancy
is an optimization mechanism for hosted services in which multiple customers are
consolidated onto the same operational system (a single instance of the software
runs on a server, serving multiple clients) and thus the economy of scale principles
help to effectively drive down the cost of computing infrastructure. In particular,
multi-tenancy allows pooling of resources which improves utilization by eliminating
the need to provision each tenant for their maximum load. This makes multi-tenancy
an attractive mechanism for both: Cloud providers (who are able to serve more
customers with a smaller set of machines) and Customers of cloud services (who
do not need to pay the price of renting the full capacity of a server). Therefore,
Public data centers have helped to eliminate the need for small companies to make
a large capital expenditure in building an infrastructure to create a global customer
base [62]. The data center model has been effective since it allows an enterprise
of any size to manage growth with the popularity of its product or service while at
the same time also allows the enterprise to cut its losses if the launched product or
service does not succeed.

In general, the concept of renting computing power goes back decades to the days
when companies would share space on a single mainframe with big spinning tape
drives and it has been envisioned that computing facilities will be provided to the

4 1 Introduction

general public like a utility [191]. Recently, the technology industry has matured
to the point where there is now an emerging mass market for this rental model.
Hence, cloud computing is not a revolutionary new development. However, it is an
evolution that has taken place over several decades and different technologies such
as virtualization, grid computing, utility computing and autonomic computing.

From the data management and processing point of view, there are two general
archetypes of data-intensive applications:

1. On-Line Analytical Processing (OLAP): is characterized by relatively low
volume of transactions. Queries are often complex, involve aggregations. and
require accessing historical and multi-dimensional data with the purpose of
analyzing it and reporting certain figures. For OLAP systems, queries usually
runs in a batch processing mode.

2. On-line Transaction Processing (OLTP): is characterized by a large number of
short transactions. The main emphasis for OLTP systems is put on very fast
query processing, maintaining data integrity in multi-access environments and
an effectiveness measured by number of transactions per second.

In general, successful cloud data management systems are normally designed to
satisfy as much as possible from the following wish list [58, 110]:

• Availability: They must be always accessible even on the occasions where
there is a network failure or a whole datacenter has gone offline. Towards this
goal, the concept of Communication as a Service (CaaS) emerged to support
such requirements, as well as network security, dynamic provisioning of virtual
overlays for traffic isolation or dedicated bandwidth, guaranteed message delay,
communication encryption, and network monitoring [235].

• Scalability: They must be able to support very large databases with very high
request rates at very low latency. They should be able to take on new tenants
or handle growing tenants without much effort beyond that of adding more
hardware. In particular, the system must be able to automatically redistribute
data to take advantage of the new hardware.

• Elasticity: They must be able to satisfy changing application requirements in
both directions (scaling up or scaling down). Moreover, the system must be able
to gracefully respond to these changing requirements and quickly recover to its
steady state.

• Performance: On public cloud computing platforms, pricing is structured in a
way such that one pays only for what one uses, so the vendor price increases
linearly with the requisite storage, network bandwidth, and compute power.
Hence, the system performance has a direct effect on its costs. Thus, efficient
system performance is a crucial requirement to save money.

• Multitenancy: They must be able to support many applications (tenants) on
the same hardware and software infrastructure. However, the performance of
these tenant must be isolated from each another. Adding a new tenant should
require little or no effort beyond that of ensuring that enough system capacity
has been provisioned for the new load.

1 Introduction 5

• Load and Tenant Balancing: They must be able to automatically move load
between servers so that most of the hardware resources are effectively utilized
and to avoid any resource overloading situations.

• Fault Tolerance: For transactional workloads, a fault tolerant cloud data manage-
ment system needs to be able to recover from a failure without losing any data or
updates from recently committed transactions. Moreover, it needs to successfully
commit transactions and make progress on a workload even in the face of worker
node failures. For analytical workloads, a fault tolerant cloud data management
system should not need to restart a query if one of the nodes involved in query
processing fails.

• Ability to run in a heterogeneous environment: On cloud computing platforms,
there is a strong trend towards increasing the number of nodes that participate in
query execution. It is nearly impossible to get homogeneous performance across
hundreds or thousands of compute nodes. Part failures that do not cause complete
node failure, but result in degraded hardware performance become more common
at scale. A cloud data management system should be designed to run in a
heterogeneous environment and must take appropriate measures to prevent
performance degrading due to parallel processing on distributed nodes.

However, deploying data-intensive applications on cloud environment is not a
trivial or straightforward task. Armbrust et al. [68] and Abadi [56] argued a list of
obstacles to the growth of cloud computing applications as follows.

• Availability of a Service: In principle, a distributed system is a system that
operates robustly over a wide network. A particular feature of network com-
puting is that the network links can potentially disappear. Organizations worry
about whether cloud computing services will have adequate availability. High
availability is one of the most challenging goals because even the slightest outage
can have significant financial consequences and impacts customer trust.

• Data Confidentiality: In general, moving data off premises increases the number
of potential security risks and appropriate precautions must be made. Transac-
tional databases typically contain the complete set of operational data needed to
power mission-critical business processes. This data includes detail at the lowest
granularity, and often includes sensitive information such as customer data or
credit card numbers. Therefore, unless such sensitive data is encrypted using a
key that is not located at the host, the data may be accessed by a third party
without the customer’s knowledge.

• Data Lock-In: APIs for cloud computing have not been, yet, subject of active
standardization. Thus, customers cannot easily extract their data and programs
from one site to run on another. The concerns about the difficulties of extracting
data from the cloud is preventing some organizations from adopting cloud
computing. Customer lock-in may be attractive to cloud computing providers but
cloud computing users are vulnerable to price increases, to reliability problems,
or even to providers going out of business.

6 1 Introduction

• Data Transfer Bottlenecks: Cloud users and cloud providers have to think about
the implications of placement and traffic at every level of the system if they want
to minimize costs.

• Application Parallelization: Computing power is elastic but only if workload is
parallelizable. Getting additional computational resources is not as simple as
just upgrading to a bigger and more powerful machine on the fly. However,
the additional resources are typically obtained by allocating additional server
instances to a task.
Performance Unpredictability: Many HPC applications need to ensure that all
the threads of a program are running simultaneously. However, today’s virtual
machines and operating systems do not provide this service.

Throughout the book, we will dive into detail with respect to the requirements,
characteristics an challenges of deploying data-intensive applications in cloud com-
puting platforms. Chapter 2 provides an overview of cloud computing technology
and also discusses the state-of-the-art of a few public cloud platforms. Chapter 3
provides an overview of cloud-hosted data storage systems. It starts with concepts,
challenges, and trade-offs of cloud databases in general, and ends with a broad
survey of the state-of-the-art of public cloud databases in three categorizations. Part
two also pays extra attentions on the NoSQL movement and the stat-of-the-art of
NoSQL database systems.

Chapter 4 addresses the performance evaluation problem on cloud platforms.
There have been a number of research efforts that specifically evaluated the
Amazon cloud platform. However, there has been little in-depth evaluation research
conducted on other cloud platforms, such as Google App Engine and Microsoft
Windows Azure. But more importantly, these work lack a more generic evaluation
method that enables a fair comparison between the various cloud platforms.
Motivated by this, in this book, a novel approach called CARE, Cloud Architecture
Runtime Evaluation, is developed to perform four test set methods with different
load stresses against cloud hosting servers or cloud databases from the perspective
of the end-user or the cloud host. The framework is capable to address performance,
availability, and reliability characteristics of various cloud platforms. The overall
data analysis of faults and errors based on intensive collected data, for deducing
architecture internal insights, is also another contribution.

Chapter 5 investigates the replication evaluation on NoSQL database as a service.
NoSQL database as a service is part of the database as a service offering to comple-
ment traditional database systems by rejecting of general ACID transactions as one
common feature. NoSQL database as a service has been supported by many service
providers that offer various consistency options, from eventual consistency to single-
entity ACID. With different consistency options, the correlated performance gains
are unclear to many customers. Therefore, in this book, a simple benchmark is
proposed for evaluating replication delay of NoSQL database as a service from the
customers’ perspective. The detailed measurements over several NoSQL database
as a services offerings show how frequently, and in what circumstances, different
inconsistency situations are observed, and to what impact the customers sees

1 Introduction 7

on performance characteristics from choosing to operate with weak consistency
mechanisms. The overall methodology of experiments, for measuring consistency
from a customer’s view, is also another contribution.

Chapter 6 describes a solution to replication evaluation on virtualized database
servers. In addition to the two widespread approaches, namely NoSQL database as
a service and relational database as a service, virtualized database servers is the
third approach for deploying data-intensive applications in cloud platforms. It takes
advantages of virtualization technologies by taking an existing application designed
for a conventional data center and then porting it to virtual machines in the public
cloud. Such migration process usually requires minimal changes in the architecture
or the code of the deployed application. In this book, the limits to scaling for an
application that itself manages database replicas in virtualized database servers in
the cloud is explored. A few important limits are characterized in the load on the
master copy, the workload imposed on each slave copy when processing updates
from the master, and also from the increasing staleness of replicas.

Chapter 7 introduces a SLA-driven framework for managing database replica-
tion. Cloud-hosted database systems, such as virtualized database servers, powering
cloud-hosted applications form a critical component in the software stack of these
applications. However, the specifications of existing SLA for cloud services are
not designed to flexibly handle even relatively straightforward performance and
technical requirements of customer applications. Motivated by this, in this book, a
novel adaptive approach for SLA-based management of virtualized database servers
from the customer perspective is presented. The framework is database platform-
agnostic, supports virtualized database servers, and requires zero source code
changes of the cloud-hosted software applications. It facilitates dynamic provision-
ing of the database tier in software stacks based on application-defined policies for
satisfying their own SLA performance requirements, avoiding the cost of any SLA
violation and controlling the monetary cost of the allocated computing resources.
Therefore, the framework is able to keep several virtualized database replica
servers in different data centers to support the different availability, scalability and
performance improvement goals. The experimental results confirm the effectiveness
of the SLA-based framework in providing the customer applications with the
required flexibility for achieving their SLA requirements.

Chapter 8 presents a genetic-algorithm-based service composition approach
cloud computing. In particular, a coherent way to calculate the QoS values of
services in cloud computing is presented. In addition, comparisons between the
proposed approach and other approaches show the effectiveness and efficiency
of the proposed approach. Chapter 9 provides a comprehensive overview for
modern approaches and mechanisms of large scale data processing mechanisms and
systems. Chapter 10 concludes the contents of this books and sheds the lights on
a set of research challenges that have been introduced by the new wave of cloud-
hosted data storage and big data processing systems.

Chapter 2
Cloud Computing

Cloud computing technology represents a new paradigm for the provisioning of
computing resources. This paradigm shifts the location of resources to the network
to reduce the costs associated with the management of hardware and software
resources. It represents the long-held dream of envisioning computing as a utility
[68] where the economy of scale principles help to effectively drive down the cost of
computing resources. Cloud computing simplifies the time-consuming processes of
hardware provisioning, hardware purchasing and software deployment. Therefore, it
promises a number of advantages for the deployment of data-intensive applications,
such as elasticity of resources, pay-per-use cost model, low time to market, and
the perception of unlimited resources and infinite scalability. Hence, it becomes
possible, at least theoretically, to achieve unlimited throughput by continuously
adding computing resources if the workload increases.

To take advantage of cloud-hosted data storage systems, it is important to well
understand the different aspects of the cloud computing technology. This chapter
provides an overview of cloud computing technology from the perspectives of key
definitions (Sect. 2.1), related technologies (Sect. 2.2), service models (Sect. 2.3)
and deployment models (Sect. 2.4), followed by Sect. 2.5 which analyzes state-of-
the-art of current public cloud computing platforms, with focus on their provisioning
capabilities. Section 2.6 summarizes the business benefits for building software
applications using cloud computing technologies.

2.1 Definitions

Cloud computing is an emerging trend that leads to the next step of computing
evolution, building on decades of research in virtualization, autonomic computing,
grid computing, and utility computing, as well as more recent technologies in
networking, web, and software services [227]. Although cloud computing is widely
accepted nowadays, the definition of cloud computing has been arguable, due
to the diversity of technologies composing the overall view of cloud computing.

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__2,
© Springer International Publishing Switzerland 2014

9

10 2 Cloud Computing

From the research perspective, many researchers have proposed their definitions of
cloud computing by extending the scope of their own research domains. From the
view of service-oriented architecture, Dubrovnik [227] implied cloud computing as
“a service-oriented architecture, reduced information technology overhead for the
end-user, greater flexibility, reduced total cost of ownership, on-demand services,
and many other things”. Buyya et al. [91] derived the definition from clusters and
grids, acclaiming for the importance of service-level agreements (SLAs) between
the service provider and customers, describing that cloud computing is “a type of
parallel and distributed system consisting of a collection of interconnected and
virtualized computers that are dynamically provisioned and presented as one or
more unified computing resource(s) based on SLAs”. Armbrust et al. [68] from
Berkeley highlighted three aspects of cloud computing including illusion of infinite
computing resources available on demand, no up-front commitment, and pay-per-
use utility model, arguing that cloud computing “consists of the service applications
delivered over the Internet along with the data center hardware and systems
software that provide those services”. Moreover, from the industry perspective, more
definitions and excerpts by industry experts can be categorized from the perspectives
of scalability, elasticity, business models, and others [225].

It is hard to reach a singular agreement upon the definition of cloud computing,
because of not only a fair amount of skepticism and confusion caused by various
technologies, but also the prevalence of marketing hype. For that reason, National
Institute of Standards and Technology has been working on proposing a guideline
of cloud computing. The definition of cloud computing in the guideline has received
fairly wide acceptance. It is described as [181]:

“a model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction”

According to this definition, cloud computing has the following essential character-
istics:

1. On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without requiring human interaction with each service’s provider.

2. Broad network access. Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, laptops, and PDAs).

3. Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. There is a sense of location independence in that the customer generally
has no control or knowledge over the exact location of the provided resources
but may be able to specify location at a higher level of abstraction (e.g., country,
state, or datacenter). Examples of resources include storage, processing, memory,
network bandwidth, virtual networks and virtual machines.

2.2 Related Technologies for Cloud Computing 11

4. Rapid elasticity. Capabilities can be rapidly and elastically provisioned, in some
cases automatically, to quickly scale out and rapidly released to quickly scale in.
To the consumer, the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

5. Measured Service. Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropriate
to the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported providing
transparency for both the provider and consumer of the utilized service.

2.2 Related Technologies for Cloud Computing

Cloud computing has evolved out of decades of research in different related
technologies from which it has inherited some features and functionalities such
as virtualized environments, autonomic computing, grid computing, and utility
computing. Figure 2.1 illustrates the evolution towards cloud computing in hosting
software applications [214]. In fact, cloud computing is often compared to the
following technologies, each of which shares certain aspects with cloud computing.
Table 2.1 provides a summary of the feature differences between those technologies

Cloud (ISP 5.0)

ASP (ISP 4.0)

SaaS
Colo (ISP 3.0)

ISP 2.0

ISP 1.0

Dynamic, Internet-
optimized infrastructure for

hosting your applications

Hosted (traditionally
designed) applications

on servers at the
Internet access point

Internet-based
applications and

services

Racks for your
equipment at the

Internet access point

Access to servers
at the Internet
access point

Provided access
to the Internet
(dial-up, ISDN,

T1, T3)

Fig. 2.1 The evolution towards cloud computing in hosting software applications

12 2 Cloud Computing

Table 2.1 Feature similarities and differences between related technologies and cloud computing

Technologies Differences Similarities

Virtualization Cloud computing is not only about
virtualizing resources, but also about
intelligently allocating resources for
managing competing resource demands
of the customers.

Both isolate and abstract the
low-level resources for
high-level applications.

Autonomic
computing

The objective of cloud computing is focused
on lowering the resource cost rather than
to reduce system complexity as it is in
autonomic computing.

Both interconnect and integrate
distributed computing
systems.

Grid computing Cloud computing however also leverages
virtualization to achieve on-demand
resource sharing and dynamic resource
provisioning.

Both employ distributed resources
to achieve application-level
objectives.

Utility
computing

Cloud computing is a realization of utility
computing.

Both offer better economic
benefits.

and cloud computing in short, while details of related technologies are discussed as
following [239]:

Virtualization

Virtualization is a technology that isolates and abstracts the low-level resources
and provides virtualized resources for high-level applications. In the context of
hardware virtualization, the details of physical hardware can be abstracted away
with support of hypervisors, such as Linux Kernel-based Virtual Machine [33] and
Xen [48]. A virtualized server managed by the hypervisor is commonly called
a virtual machine. In general, several virtual machines can be abstracted from
a single physical machine. With clusters of physical machines, hypervisors are
capable of abstracting and pooling resources, as well as dynamically assigning
or reassigning resources to virtual machines on-demand. Therefore, virtualization
forms the foundation of cloud computing. Since a virtual machine is isolated from
both the underlying hardware and other virtual machines. Providers can customize
the platform to suit the needs of the customers by either exposing applications
running within virtual machines as services, or providing direct access to virtual
machines thereby allowing customers to build services with their own applications.
Moreover, cloud computing is not only about virtualizing resources, but also about
intelligent allocation of resources for managing competing resource demands of the
customers. Figure 2.2 illustrates a sample exploitation of virtualization technology
in the cloud computing environments [214].

2.2 Related Technologies for Cloud Computing 13

Workload distribution system (grid engine)

Virtual server containers

Commodity hardware infrastructure

Fig. 2.2 Exploitation of virtualization technology in the architecture of cloud computing

Autonomic computing aims at building computing systems capable of self-
management, which means being able to operate under defined general policies and
rules without human intervention. The goal of autonomic computing is to overcome
the rapidly growing complexity of computer system management, while being
able to keep increasing interconnectivity and integration unabated [161]. Although
cloud computing exhibits certain similarities to automatic computing the way that it
interconnects and integrates distributed data centers across continents, its objective
somehow is to lower the resource cost rather than to reduce system complexity.

Grid Computing

Grid computing is a distributed computing paradigm that coordinates networked
resources to achieve a common computational objective. The development of
grid computing was originally driven by scientific applications which are usually
computation-intensive, but applications requiring the transfer and manipulation of a
massive quantity of data was also able to take advantage of the grids [142,143,171].
Cloud computing appears to be similar to grid computing in the way that it also
employs distributed resources to achieve application-level objectives. However,
cloud computing takes one step further by leveraging virtualization technologies
to achieve on-demand resource sharing and dynamic resource provisioning.

14 2 Cloud Computing

Utility Computing

Utility computing represents the business model of packaging resources as a
metered services similar to those provided by traditional public utility companies.
In particular, it allows provisioning resources on demand and charging customers
based on usage rather than a flat rate. The main benefit of utility computing is better
economics. Cloud computing can be perceived as a realization of utility computing.
With on-demand resource provisioning and utility-based pricing, customers are able
to receive more resources to handle unanticipated peaks and only pay for resources
they needed; meanwhile, service providers can maximize resource utilization and
minimize their operating costs.

2.3 Cloud Service Models

The categorization of three cloud service models defined in the guideline are also
widely accepted nowadays. The three service models are namely Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

As shown in Fig. 2.3, the three service models form a stack structure of cloud
computing, with Software as a Service on the top, Platform as a Service in the
middle, and Infrastructure as a Service at the bottom, respectively. While the
inverted triangle shows the possible proportion of providers of each model, it is
worth mentioning that definitions of three service models from the guideline paid
more attentions to the customers’ view. In contrast, Vaquero et al. [225] defined

Software as a Service (SaaS)
• Salesforce.com
• Google Apps (Gmail, Docs, …)
• Zoho

Platform as a Service (PaaS)
• Google App Engine
• Microsoft Azure
• Heroku

Infrastructure as a Service
(IaaS)
• Amazon EC2
• GoGrid

Fig. 2.3 The service models of cloud computing

2.4 Cloud Deployment Models 15

the three service models from the perspective of the providers’ view. The following
definitions of the three models combines the two perspectives [181,225], in the hope
of showing the whole picture.

1. Infrastructure as a Service: Through virtualization, the provider is capable of
splitting, assigning, and dynamically resizing the cloud resources including
processing, storage, networks, and other fundamental computing resources to
build virtualized systems as requested by customers. Therefore, the customer
is able to deploy and run arbitrary operating systems and applications. The
customer does not need to deploy the underlying cloud infrastructure but has
control over which operating systems, storage options, and deployed applications
to deploy with possibly limited control of select networking components. The
typical providers are Amazon Elastic Compute Cloud (EC2) [4] and GoGrid [17].

2. Platform as a Service: The provider offers an additional abstraction level, which
is a software platform on which the system runs. The change of the cloud
resources including network, servers, operating systems, or storage is made in
a transparent manner. The customer does not need to deploy the cloud resources,
but has control over the deployed applications and possibly application hosting
environment configurations. Three platforms are well-known in this domain,
namely Google App Engine [19], Microsoft Windows Azure Platform [37], and
Heroku [28] which is a platform built on top of Amazon EC2. The first one
offers Python, Java, and Go as programming platforms. The second one supports
languages in .NET Framework, Java, PHP, Python, and Node.js. While the third
one is compatible with Ruby, Node.js, Clojure, Java, Python, and Scala.

3. Software as a Service: The provider provides services of potential interest to a
wide variety of customers hosted in its cloud infrastructure. The services are
accessible from various client devices through a thin client interface such as a
web browser. The customer does not need to manage the cloud resources or
even individual application capabilities. The customer could, possibly, be granted
limited user-specific application configuration settings. A variety of services,
operating as Software as a Service, are available in the Internet, including
Salesforce.com [43], Google Apps [21], and Zoho [55].

2.4 Cloud Deployment Models

The guideline also defines four types of cloud deployment models [181], which are
described as follows:

1. Private cloud. A cloud that is used exclusively by one organization. It may be
managed by the organization or a third party and may exist on premise or off
premise. A private cloud offers the highest degree of control over performance,
reliability and security. However, they are often criticized for being similar
to traditional proprietary server farms and do not provide benefits such as no
up-front capital costs.

16 2 Cloud Computing

2. Community cloud. The cloud infrastructure is shared by several organizations and
supports a specific community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations).

3. Public cloud. The cloud infrastructure is made available to the general public or a
large industry group and is owned by an organization selling cloud services (e.g.
Amazon, Google, Microsoft). Since customer requirements of cloud services
are varying, service providers have to ensure that they can be flexible in their
service delivery. Therefore, the quality of the provided services is specified
using Service Level Agreement (SLA) which represents a contract between a
provider and a consumer that specifies consumer requirements and the provider’s
commitment to them. Typically an SLA includes items such as uptime, privacy,
security and backup procedures. In practice, Public clouds offer several key
benefits to service consumers such as: including no initial capital investment on
infrastructure and shifting of risks to infrastructure providers. However, public
clouds lack fine-grained control over data, network and security settings, which
may hamper their effectiveness in many business scenarios.

4. Hybrid cloud. The cloud infrastructure is a composition of two or more clouds
(private, community, or public) that remain unique entities but are bound together
by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between clouds). In particular,
cloud bursting is a technique used by hybrid clouds to provide additional
resources to private clouds on an as-needed basis. If the private cloud has the
processing power to handle its workloads, the hybrid cloud is not used. When
workloads exceed the private cloud’s capacity, the hybrid cloud automatically
allocates additional resources to the private cloud. Therefore, Hybrid clouds offer
more flexibility than both public and private clouds. Specifically, they provide
tighter control and security over application data compared to public clouds,
while still facilitating on-demand service expansion and contraction. On the
down side, designing a hybrid cloud requires carefully determining the best split
between public and private cloud components.

Table 2.2 summarizes the four cloud deployment models in terms of ownership,
customership, location, and security.

2.5 Public Cloud Platforms: State-of-the-Art

Key players in public cloud computing domain including Amazon Web Services,
Microsoft Windows Azure, Google App Engine, Eucalyptus [16], and GoGrid
offer a variety of prepackaged services for monitoring, managing, and provisioning
resources. However, the techniques implemented in each of these clouds do vary.

For Amazon EC2, the three Amazon services, namely Amazon Elastic Load Bal-
ancer [5], Amazon Auto Scaling [2], and Amazon CloudWatch [3], together expose
functionalities which are required for undertaking provisioning of application

2.5 Public Cloud Platforms: State-of-the-Art 17

Ta
bl

e
2.

2
Su

m
m

ar
y

of
cl

ou
d

de
pl

oy
m

en
tm

od
el

s

In
fr

as
tr

uc
tu

re
D

ep
lo

ym
en

t
lo

ca
tio

n
m

od
el

O
w

ne
rs

hi
p

C
us

to
m

er
sh

ip
to

cu
st

om
er

s
Se

cu
ri

ty
E

xa
m

pl
es

Pu
bl

ic
cl

ou
d

O
rg

an
iz

at
io

n(
s)

G
en

er
al

pu
bl

ic
cu

st
om

er
s

O
ff

-p
re

m
is

es
N

o
fin

e-
gr

ai
ne

d
co

nt
ro

l
A

m
az

on
W

eb
Se

rv
ic

es

Pr
iv

at
e

cl
ou

d
A

n
or

ga
ni

za
tio

n/
A

th
ir

d
pa

rt
y

C
us

to
m

er
s

w
ith

in
an

or
ga

ni
za

tio
n

O
n/

O
ff

-
pr

em
is

es
H

ig
he

st
de

gr
ee

of
co

nt
ro

l
In

te
rn

al
cl

ou
d

pl
at

fo
rm

to
su

pp
or

tb
us

in
es

s
un

its
in

a
la

rg
e

or
ga

ni
za

tio
n

C
om

m
un

ity
cl

ou
d

O
rg

an
iz

at
io

n(
s)

in
a

co
m

m
un

ity
/A

th
ir

d
pa

rt
y

C
us

to
m

er
s

fr
om

or
ga

ni
za

tio
ns

th
at

ha
ve

sh
ar

ed
co

nc
er

ns

O
n/

O
ff

-
pr

em
is

es
Sh

ar
ed

co
nt

ro
la

m
on

g
or

ga
ni

za
tio

ns
in

a
co

m
m

un
ity

H
ea

lth
ca

re
cl

ou
d

fo
r

ex
ch

an
gi

ng
he

al
th

in
fo

rm
at

io
n

am
on

g
or

ga
ni

za
tio

ns
H

yb
ri

d
cl

ou
d

C
om

po
si

tio
n

of
tw

o
or

m
or

e
fr

om
ab

ov
e

C
om

po
si

tio
n

of
tw

o
or

m
or

e
fr

om
ab

ov
e

O
n/

O
ff

-
pr

em
is

es
T

ig
ht

er
co

nt
ro

l,
bu

t
re

qu
ir

e
ca

re
fu

ls
pl

it
be

tw
ee

n
di

st
in

ct
m

od
el

s

C
lo

ud
bu

rs
tin

g
fo

r
lo

ad
ba

la
nc

in
g

be
tw

ee
n

cl
ou

d
pl

at
fo

rm
s

18 2 Cloud Computing

services on EC2. The Elastic Load Balancer service automatically provisions
incoming application workload across available EC2 instances while the Auto
Scaling service can be used to dynamically scale-in or scale-out the number of EC2
instances for handling changes in service demand patterns. Finally the CloudWatch
service can be integrated with the above services for strategic decision making based
on collected real-time information.

Eucalyptus is an open source cloud computing platform. It is composed of
three controllers. Among the controllers, the cluster controller is a key component
that supports application service provisioning and load balancing. Each cluster
controller is hosted on the head node of a cluster to interconnect the outer public
networks and inner private networks together. By monitoring the state information
of instances in the pool of server controllers, the cluster controller can select any
available service/server for provisioning incoming requests. However, as compared
to Amazon services, Eucalyptus still lacks some of the critical functionalities, such
as auto scaling for its built-in provisioner.

Fundamentally, Microsoft Windows Azure fabric has a weave-like structure,
which is composed of node including servers and load balancers, and edges
including power and Ethernet. The fabric controller manages a service node through
a built-in service, named Azure Fabric Controller Agent, running in the background,
tracking the state of the server, and reporting these metrics to the controller. If a
fault state is reported, the controller can manage a reboot of the server or a
migration of services from the current server to other healthy servers. Moreover,
the controller also supports service provisioning by matching the VMs that meet
required demands.

GoGrid Cloud Hosting offers developers the F5 Load Balancer [18] for distribut-
ing application service traffic across servers, as long as IPs and specific ports of
these servers are attached. The load balancer provides the round robin algorithm
and least connect algorithm for routing application service requests. Additionally,
the load balancer is able to detect the occurrence of a server crash, redirecting further
requests to other available servers. But currently, GoGrid only gives developers a
programmatic set of APIs to implement their custom auto-scaling service.

Unlike other cloud platforms, Google App Engine offers developers a scalable
platform in which applications can run, rather than providing direct access to a
customized virtual machine. Therefore, access to the underlying operating system
is restricted in App Engine where load-balancing strategies, service provisioning,
and auto scaling are all automatically managed by the system behind the scenes
where the implementation is largely unknown. Chohan et al. [105] have presented
initial efforts of building App Engine-like framework, AppScale, on top of Amazon
EC2 and Eucalyptus. Their offering consists of multiple components that auto-
mate deployment, management, scaling, and fault tolerance of an App Engine
application. In their design and implementation, a single AppLoadBalancer exists
in AppScale for distributing initial requests of users to the AppServers of App
Engine applications. The users initially contact AppLoaderBalancer to request a
login to an App Engine application. The AppLoadBalander then authenticates the
login and redirects request to a randomly selected AppServer. Once the request is

2.6 Business Benefits of Cloud Computing 19

redirected, the user can start contact the AppServer directly without going through
the AppLoaderBalancer during the current session. The AppController sit inside the
AppLoadBalancer is also in charge of monitoring the AppServers for growing and
shrinking as the AppScale deployments happen over the time.

There is no single cloud infrastructure provider has their data centers at all
possible locations throughout the world. As a result, all cloud application providers
currently have difficulty in meeting SLA expectations for all their customers. Hence,
it is logical that each would build bespoke SLA management tools to provide better
support for their specific needs. This kind of requirements often arises in enterprises
with global operations and applications such as Internet service, media hosting, and
Web 2.0 applications. This necessitates building technologies and algorithms for
seamless integration of cloud infrastructure service providers for provisioning of
services across different cloud providers.

2.6 Business Benefits of Cloud Computing

With cloud computing, organizations can consume shared computing and storage
resources rather than building, operating, and improving infrastructure on their
own. The speed of change in markets creates significant pressure on the enterprise
IT infrastructure to adapt and deliver. In principle, cloud computing enables
organizations to obtain a flexible and cost-effective IT infrastructure in much the
same way that national electric grids enable homes and organizations to plug
into a centrally managed, efficient, and cost-effective energy source. When freed
from creating their own electricity, organizations were able to focus on the core
competencies of their business and the needs of their customers. In particular, cloud
computing technologies have provided some clear business benefits for building
software applications. Examples of these benefits are:

1. No upfront infrastructure investment: Building a large-scale system may cost a
fortune to invest in real estate, hardware (racks, machines, routers, backup power
supplies), hardware management (power management, cooling), and operations
personnel. Because of the high upfront costs, it usually takes several rounds
of management approvals before the project could even get started. With cloud
computing, there is no fixed cost or startup cost to start your project.

2. Just-in-time Infrastructure: In the past, if your system got famous and your
infrastructure could not scale well at the right time, your application may became
a victim of its success. On the other hand, if you invested heavily and did not
get famous, your application became a victim of your failure. By deploying
applications in cloud environments, your application can smoothly scale as you
grow.

3. More efficient resource utilization: System administrators usually worry about
hardware procuring (when they run out of capacity) and better infrastructure
utilization (when they have excess and idle capacity). With cloud technology,

20 2 Cloud Computing

they can manage resources more effectively and efficiently by having the
applications request resources only what they need on-demand according to the
pay-as-you-go philosophy.

4. Potential for shrinking the processing time: Parallelization is the one of the well-
known techniques to speed up processing. For example, if you have a compute-
intensive or data-intensive job that can be run in parallel takes 500 h to process
on one machine. Using cloud technology, it would be possible to spawn and
launch 500 instances and process the same job in 1 h. Having available an elastic
infrastructure provides the application with the ability to exploit parallelization
in a cost-effective manner reducing the total processing time.

Chapter 3
Cloud-Hosted Data Storage Systems

Over the past decade, rapidly growing Internet-based services such as e-mail,
blogging, social networking, search and e-commerce have substantially redefined
the way consumers communicate, access contents, share information and purchase
products. Relational database management systems (RDBMS) have been considered
as the one-size-fits-all solution for data persistence and retrieval for decades.
However, ever increasing need for scalability and new application requirements
have created new challenges for traditional RDBMS. Recently, a new generation
of low-cost, high-performance database software, aptly named as NoSQL (Not Only
SQL), has emerged to challenge the dominance of RDBMS. The main features of
these systems include: ability to horizontally scale, supporting weaker consistency
models, using flexible schemas and data models and supporting simple low-level
query interfaces. In this chapter, we explore the recent advancements and the state-
of-the-art of Web scale data management approaches. We discuss the advantages
and the disadvantages of several recently introduced approaches and its suitability
to support certain class of applications and end-users.

3.1 Introduction

The recent advances in the Web technology has made it easy for any user to
provide and consume content of any form. For example, we buy books on Amazon,
sell thing on eBay, stay in contact with friends and colleagues via Facebook and
Linkedin, start a blog using WordPress or LiveJournal, share pictures via Picasa or
Flickr, and share and comment on videos via YouTube. These are just examples to
name a few well-known internet-based services that we use in our everyday life.
Arguably, the main goal of the next wave is to facilitate the job of implementing
every application as a distributed, scalable and widely-accessible service on the
Web like these example services. In practice, common features of these applications
include that they are both data-intensive and very interactive applications. For
example, the Facebook social network has announced that it has more than a

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__3,
© Springer International Publishing Switzerland 2014

21

22 3 Cloud-Hosted Data Storage Systems

Fig. 3.1 Database scalability
options

billion of monthly active users and more than 140 billion friendship relationships.
Moreover, there are about 900 million objects that registered users interact with such
as: pages, groups, events and community pages. Other smaller scale social networks
such as Linkedin which is mainly used for professionals has more than 120 million
registered users. Twitter has also claimed to have over 500 million users. Therefore,
it becomes an ultimate goal to make it easy for every application to achieve such
high scalability and availability goals with minimum efforts.

Nowadays, the most common architecture to build enterprise Web applications
is based on a 3-tier approach: the Web server layer, the application server layer
and the data layer. In practice, data partitioning [189] and data replication [160] are
two well-known strategies to achieve the availability, scalability and performance
improvement goals in the distributed data management world. In particular, when
the application load increases, there are two main options for achieving scalability
at the database tier that enables the applications to cope with more client requests
(Fig. 3.1) as follows:

1. Scaling up: aims at allocating a bigger machine to act as database servers.
2. Scaling out: aims at replicating and partitioning data across more machines.

In fact, the scaling up option has the main drawback that large machines are often
very expensive and eventually a physical limit is reached where a more powerful
machine cannot be purchased at any cost. Alternatively, it is both extensible and
economical—especially in a dynamic workload environment—to scale out by
adding storage space or buying another commodity server which fits well with the
new pay-as-you-go philosophy of cloud computing paradigm.

This chapter explores the recent advancements and the new approaches of the
Web scale data management. We discuss the advantages and the disadvantages
of each approach and its suitability to support certain class of applications and
end-users. Section 3.2 describes the NoSQL systems which are introduced and
used internally in the key players: Google, Yahoo and Amazon respectively.
Section 3.3 provides an overview of a set of open source projects which have
been designed following the main principles of the NoSQL systems. Section 3.4

3.2 NoSQL Key Systems 23

discusses the notion of providing database management as a services and gives
an overview of the main representative systems and their challenges. In Sect. 3.5,
we briefly describe the approach of deploying database servers on cloud-hosted
virtual machine environments. The Web scale data management trade-offs and open
research challenges are discussed in Sect. 3.6 before we conclude the chapter in
Sect. 3.7.

3.2 NoSQL Key Systems

In general, relational database management systems (e.g. MySQL, PostgreSQL,
SQL Server, Oracle) have been considered as the one-size-fits-all solution for data
persistence and retrieval for decades. They have matured after extensive research
and development efforts and very successfully created a large market and solutions
in different business domains. However, ever increasing need for scalability and
new application requirements have created new challenges for traditional RDBMS.
Therefore, recently, there has been some dissatisfaction with this one-size-fits-all
approach in some Web scale applications [216].

Recently, a new generation of low-cost, high-performance database software has
emerged to challenge the dominance of relational database management systems.
A big reason for this movement, named as NoSQL (Not only SQL), is that
different implementations of Web, enterprise, and cloud computing applications
have different database requirements (e.g. not every application requires rigid data
consistency). For example, for high-volume Web sites (e.g. eBay, Amazon, Twitter,
Facebook), scalability and high availability are essential requirements that can
not be compromised. For these applications, even the slightest outage can have
significant financial consequences and impacts customers’ trust.

In general, the CAP theorem [86, 138] and the PACELC model [57] describe
the existence of direct tradeoffs between consistency and availability as well as
consistency and latency. For example, the CAP theorem shows that a distributed
database system can only choose at most two out of three properties: Consistency,
Availability and tolerance to Partitions. Therefore, there is a plethora of
alternative consistency models which have been introduced for offering different
performance trade-offs such as session guarantees, causal consistency [70],
causal+consistency [178] and parallel snapshot isolation [212]. In practice, the
new wave of NoSQL systems decided to compromise on the strict consistency
requirement. In particular, they apply a relaxed consistency policy called eventual
consistency [226] which guarantees that if no new updates are made to a replicated
object, eventually all accesses will return the last updated value. If no failures occur,
the maximum size of the inconsistency window can be determined based on factors
such as communication delays, the load on the system, and the number of replicas
involved in the replication scheme. In particular, these new NoSQL systems have a
number of design features in common:

• The ability to horizontally scale out throughput over many servers.
• A simple call level interface or protocol (in contrast to a SQL binding).

24 3 Cloud-Hosted Data Storage Systems

• Supporting weaker consistency models in contrast to ACID guaranteed properties
for transactions in most traditional RDBMS. These models are usually referred
to as BASE models (Basically Available, Soft state, Eventually consistent) [196].

• Efficient use of distributed indexes and RAM for data storage.
• The ability to dynamically define new attributes or data schema.

These design features are made in order to achieve the following system goals:

• Availability: They must always be accessible even on the situations of having a
network failure or a whole datacenter is went offline.

• Scalability: They must be able to support very large databases with very high
request rates at very low latency.

• Elasticity: They must be able to satisfy changing application requirements in both
directions (scaling up or scaling down). Moreover, the system must be able to
gracefully respond to these changing requirements and quickly recover its steady
state.

• Load Balancing: They must be able to automatically move load between servers
so that most of the hardware resources are effectively utilized and to avoid any
resource overloading situations.

• Fault Tolerance: They must be able to deal with the situation that the rarest
hardware problems go from being freak events to eventualities. While hardware
failure is still a serious concern, this concern needs to be addressed at the archi-
tectural level of the database, rather than requiring developers, administrators and
operations staff to build their own redundant solutions.

• Ability to run in a heterogeneous environment: On scaling out environment, there
is a strong trend towards increasing the number of nodes that participate in
query execution. It is nearly impossible to get homogeneous performance across
hundreds or thousands of compute nodes. Part failures that do not cause complete
node failure, but result in degraded hardware performance become more common
at scale. Hence, the system should be designed to run in a heterogeneous envi-
ronment and must take appropriate measures to prevent performance degradation
that are due to parallel processing on distributed nodes.

In the following subsections, we provide an overview of the main NoSQL
systems which has been introduced and used internally by three of the key players
in the Web scale data management domain: Google, Yahoo and Amazon.

Google: Bigtable

Bigtable is a distributed storage system for managing structured data that is designed
to scale to a very large size (petabytes of data) across thousands of commodity
servers [99]. It has been used by more than sixty Google products and projects
such as: Google search engine, Google Finance, Orkut, Google Docs and Google
Earth. These products use Bigtable for a variety of demanding workloads which

3.2 NoSQL Key Systems 25

Row Id Column Id Timestamp Column Value

com.cnn.www anchor:cnnsi.com t9 CNN

com.cnn.www anchor:my.look.ca t8 CNN.com

Row Id Column Id Timestamp Column Value

com.cnn.www contents: t6 <html>…

com.cnn.www contents: t5 <html>…

com.cnn.www contents: t3 <html>…

Fig. 3.2 Sample BigTable structure

range from throughput-oriented batch-processing jobs to latency-sensitive serving
of data to end users. The Bigtable clusters used by these products span a wide range
of configurations, from a handful to thousands of servers, and store up to several
hundred terabytes of data.

Bigtable does not support a full relational data model. However, it provides
clients with a simple data model that supports dynamic control over data layout and
format. In particular, a Bigtable is a sparse, distributed, persistent multidimensional
sorted map. The map is indexed by a row key, column key, and a timestamp. Each
value in the map is an uninterpreted array of bytes. Thus, clients usually need to
serialize various forms of structured and semi-structured data into these strings.
A concrete example that reflects some of the main design decisions of Bigtable is
the scenario of storing a copy of a large collection of web pages into a single table.
Figure 3.2 illustrates an example of this table where URLs are used as row keys
and various aspects of web pages as column names. The contents of the web pages
are stored in a single column which stores multiple versions of the page under the
timestamps when they were fetched.

The row keys in a table are arbitrary strings where every read or write of data
under a single row key is atomic. Bigtable maintains the data in lexicographic order
by row key where the row range for a table is dynamically partitioned. Each row
range is called a tablet which represents the unit of distribution and load balancing.
Thus, reads of short row ranges are efficient and typically require communication
with only a small number of machines. BigTables can have an unbounded number of
columns which are grouped into sets called column families. These column families
represent the basic unit of access control. Each cell in a Bigtable can contain
multiple versions of the same data which are indexed by their timestamps. Each
client can flexibly decide the number of n versions of a cell that need to be kept.
These versions are stored in decreasing timestamp order so that the most recent
versions can be always read first.

26 3 Cloud-Hosted Data Storage Systems

The Bigtable API provides functions for creating and deleting tables and column
families. It also provides functions for changing cluster, table, and column family
metadata, such as access control rights. Client applications can write or delete values
in Bigtable, look up values from individual rows, or iterate over a subset of the data
in a table. At the transaction level, Bigtable supports only single-row transactions
which can be used to perform atomic read-modify-write sequences on data stored
under a single row key (i.e. no general transactions across row keys).

At the physical level, Bigtable uses the distributed Google File System
(GFS) [137] to store log and data files. The Google SSTable file format is used
internally to store Bigtable data. An SSTable provides a persistent, ordered
immutable map from keys to values, where both keys and values are arbitrary
byte strings. Bigtable relies on a distributed lock service called Chubby [90] which
consists of five active replicas, one of which is elected to be the master and actively
serve requests. The service is live when a majority of the replicas are running and
can communicate with each other. Bigtable uses Chubby for a variety of tasks
such as: (1) ensuring that there is at most one active master at any time. (2) storing
the bootstrap location of Bigtable data. (3) storing Bigtable schema information
and to the access control lists. The main limitation of this design is that if Chubby
becomes unavailable for an extended period of time, the whole Bigtable becomes
unavailable. At the runtime, each Bigtable is allocated to one master server and
many tablet servers which can be dynamically added (or removed) from a cluster
based on the changes in workloads. The master server is responsible for assigning
tablets to tablet servers, balancing tablet-server load, and garbage collection of files
in GFS. In addition, it handles schema changes such as table and column family
creations. Each tablet server manages a set of tablets. The tablet server handles read
and write requests to the tablets that it has loaded, and also splits tablets that have
grown too large.

Yahoo: PNUTS

The PNUTS system (renamed later to Sherpa) is a massive-scale hosted database
system which is designed to support Yahoo!’s web applications [111,209]. The main
focus of the system is on data serving for web applications, rather than complex
queries. It relies on a simple relational model where data is organized into tables
of records with attributes. In addition to typical data types, blob is a main valid
data type which allows arbitrary structures to be stored inside a record, but not
necessarily large binary objects like images or audio. The PNUTS system does not
enforce constraints such as referential integrity on the underlying data. Therefore,
the schema of these tables are flexible where new attributes can be added at any time
without halting any query or update activity. In addition, it is not required that each
record have values for all attributes.

Figure 3.3 illustrates the system architecture of PNUTS. The system is divided
into regions where each region contains a full complement of system components

3.2 NoSQL Key Systems 27

Tablet
controller

Region 1

Message
broker

RoutersRouters

Region 2

Storage units Storage units

Fig. 3.3 PNUTS system architecture

and a complete copy of each table. Regions are typically, but not necessarily,
geographically distributed. Therefore, at the physical level, data tables are horizon-
tally partitioned into groups of records called tablets. These tablets are scattered
across many servers where each server might have hundreds or thousands of tablets.
The assignment of tablets to servers is flexible in a way that allows balancing the
workloads by moving a few tablets from an overloaded server to an under-loaded
server.

The query language of PNUTS supports selection and projection from a single
table. Operations for updating or deleting existing record must specify the primary
key. The system is designed primarily for online serving workloads that consist
mostly of queries that read and write single records or small groups of records.
Thus, it provides a multiget operation which supports retrieving multiple records
in parallel by specifying a set of primary keys and an optional predicate. The
router component (Fig. 3.3) is responsible of determining which storage unit need
to be accessed for a given record to be read or written by the client. Therefore,
the primary-key space of a table is divided into intervals where each interval
corresponds to one tablet. The router stores an interval mapping which defines the
boundaries of each tablet and maps each tablet to a storage unit. The query model of
PNUTS does not support join operations which are too expensive in such massive
scale systems.

The PNUTS system does not have a traditional database log or archive data.
However, it relies on a pub/sub mechanism that act as a redo log for replaying
updates that are lost before being applied to disk due to failure. In particular,
PNUTS provides a consistency model that is between the two extremes of general
serializability and eventual consistency [226]. The design of this model is derived
from the observation that web applications typically manipulate one record at a time
while different records may have activity with different geographic locality. Thus, it
provides per-record timeline consistency where all replicas of a given record apply
all updates to the record in the same order. In particular, for each record, one of the
replicas (independently) is designated as the master where all updates to that record
are forwarded to the master. The master replica for a record is adaptively changed
to suit the workload where the replica receiving the majority of write requests

28 3 Cloud-Hosted Data Storage Systems

for a particular record is selected to be the master for that record. Relying on the
per-record timeline consistency model, the PNUTS system supports the following
range of API calls with varying levels of consistency guarantees:

• Read-any: This call has a lower latency as it returns a possibly stale version of
the record.

• Read-critical (required version): This call returns a version of the record that is
strictly newer than, or the same as the required version.

• Read-latest: This call returns the latest copy of the record that reflects all writes
that have succeeded. It is expected that the read-critical and read-latest can have
a higher latency than read-any if the local copy is too stale and the system needs
to locate a newer version at a remote replica.

• Write: This call gives the same ACID guarantees as a transaction with a single
write operation in it (e.g. blind writes).

• Test-and-set-write (required version): This call performs the requested write to
the record if and only if the present version of the record is the same as required
version. This call can be used to implement transactions that first read a record,
and then do a write to the record based on the read, e.g. incrementing the value
of a counter.

Since the system is designed to scale to cover several worldwide replicas,
automated failover and load balancing is the only way to manage the operations
load. Therefore, for any failed server, the system automatically recover by copying
data from a replica to other live servers.

Amazon: Dynamo

Amazon runs a world-wide e-commerce platform that serves tens of millions
customers at peak times using tens of thousands of servers located in many data
centers around the world. In this environment, there are strict operational require-
ments on Amazon’s platform in terms of performance, reliability and efficiency, and
to support Amazon’s continuous growth the platform needs to be highly scalable.
Reliability is one of the most important requirements because even the slightest
outage has significant financial consequences and impacts customer trust.

The Dynamo system [121] is a highly available and scalable distributed key/value
based datastore built for supporting internal Amazon’s applications. Dynamo is
used to manage the state of services that have very high reliability requirements
and need tight control over the tradeoffs between availability, consistency, cost-
effectiveness and performance. There are many services on Amazons platform
that only need primary-key access to a data store. The common pattern of using
a relational database would lead to inefficiencies and limit the ability to scale
and provide high availability. Thus, Dynamo provides a simple primary-key only
interface to meet the requirements of these applications. The query model of the

3.3 NoSQL Open Source Projects 29

A

B

C

DE

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)
including

K.

Fig. 3.4 Partitioning and
replication of keys in
dynamo ring

Dynamo system relies on simple read and write operations to a data item that is
uniquely identified by a key. State is stored as binary objects (blobs) identified by
unique keys. No operations span multiple data items.

Dynamo’s partitioning scheme relies on a variant of consistent hashing mecha-
nism [158] to distribute the load across multiple storage hosts. In this mechanism,
the output range of a hash function is treated as a fixed circular space or “ring”
(i.e. the largest hash value wraps around to the smallest hash value). Each node
in the system is assigned a random value within this space which represents its
“position” on the ring. Each data item identified by a key is assigned to a node by
hashing the data item’s key to yield its position on the ring, and then walking the
ring clockwise to find the first node with a position larger than the item’s position.
Thus, each node becomes responsible for the region in the ring between it and its
predecessor node on the ring. The principle advantage of consistent hashing is that
departure or arrival of a node only affects its immediate neighbors and other nodes
remain unaffected.

In the Dynamo system, each data item is replicated at N hosts where N is a
parameter configured “per-instance”. Each key k is assigned to a coordinator node.
The coordinator is in charge of the replication of the data items that fall within
its range. In addition to locally storing each key within its range, the coordinator
replicates these keys at the .N � 1/ clockwise successor nodes in the ring. This
results in a system where each node is responsible for the region of the ring between
it and its N th predecessor. As illustrated in Fig. 3.4, node B replicates the key k at
nodes C and D in addition to storing it locally. Node D will store the keys that fall
in the ranges .A; B�, .B; C �, and .C; D�. The list of nodes that is responsible for
storing a particular key is called the preference list. The system is designed so that
every node in the system can determine which nodes should be in this list for any
particular key.

3.3 NoSQL Open Source Projects

In practice, most NoSQL data management systems which are introduced by the
key players (e.g. BigTable, Dynamo, PNUTS) are meant for their internal use only
and are thus, not available for public users. Therefore, many open source projects

30 3 Cloud-Hosted Data Storage Systems

have been built to implement the concepts of these systems and make it available
for public users [94, 205]. Due to the ease in which they can be downloaded and
installed, these systems have attracted a lot of interest from the research community.
There are not much details that have been published about the implementation of
most of these systems. In general, the NoSQL open source projects can be broadly
classified into the following categories:

• Key-value stores: These systems use the simplest data model which is a collection
of objects where each object has a unique key and a set of attribute/value pairs.

• Document stores: These systems have the data models that consists of objects
with a variable number of attributes with a possibility of having nested objects.

• Extensible record stores: They provide variable-width tables (Column Families)
that can be partitioned vertically and horizontally across multiple nodes.

Here, we give a brief introduction about some of these projects. For the full list,
we refer the reader to the NoSQL database website [34].

Cassandra [7] is presented as a highly scalable, eventually consistent, distributed,
structured key-value store [167,168]. It has been open sourced by Facebook in 2008.
It is designed by Avinash Lakshman (one of the authors of Amazon’s Dynamo)
and Prashant Malik (Facebook Engineer). Cassandra brings together the distributed
systems technologies from Dynamo and the data model from Google’s BigTable.
Like Dynamo, Cassandra is eventually consistent. Like BigTable, Cassandra pro-
vides a ColumnFamily-based data model richer than typical key/value systems.
In Cassandra’s data model, column is the lowest/smallest increment of data. It is
a tuple (triplet) that contains a name, a value and a timestamp. A column family is
a container for columns, analogous to the table in a relational system. It contains
multiple columns, each of which has a name, value, and a timestamp, and are
referenced by row keys. A keyspace is the first dimension of the Cassandra hash, and
is the container for column families. Keyspaces are of roughly the same granularity
as a schema or database (i.e. a logical collection of tables) in RDBMS. They can
be seen as a namespace for ColumnFamilies and is typically allocated as one per
application. SuperColumns represent columns that themselves have subcolumns
(e.g. Maps). Like Dynamo, Cassandra provides a tunable consistency models which
allows the ability to choose the consistency level that is suitable for a specific
application. For example, it allows to choose how many acknowledgments are
required to be receive from different replicas before considering a WRITE operation
to be successful. Similarly, the application can choose how many successful
response need to be received in the case of READ before return the result to
the client. In particular, every write operation can choose one of the following
consistency level:

(a) ZERO: It ensures nothing. The write operation will be executed asynchronously
in the system background.

(b) ANY: It ensures that the write operation has been executed in at least one node.
(c) ONE: It ensures that the write operation has been committed to at least 1 replica

before responding to the client.

3.3 NoSQL Open Source Projects 31

(d) QUORUM: It ensures that the write has been executed on (N=2 C 1) replicas
before responding to the client where N is the total number of system replicas.

(e) ALL: It ensures that the write operation has been committed to all N replicas
before responding to the client.

On the other hand, every read operation can choose on of the following available
consistency levels:

(a) ONE: It will return the record of the first responding replica.
(b) QUORUM: It will query all replicas and return the record with the most recent

timestamp once it has at least a majority of replicas (N=2 C 1) reported.
(c) ALL: It will query all replicas and return the record with the most recent

timestamp once all replicas have replied.

Therefore, any unresponsive replicas will fail the read operation. For read
operations, in the ONE and QUORUM consistency levels, a consistency check is
always done with the remaining replicas in the system background in order to fix
any consistency issues.

HBase [10] is another project is based on the ideas of BigTable system. It uses
the Hadoop distributed filesystem (HDFS) [26] as its data storage engine. The
advantage of this approach is that HBase does not need to worry about data
replication, data consistency and resiliency because HDFS already considers and
deals with them. However, the downside is that it becomes constrained by the
characteristics of HDFS, which is that it is not optimized for random read access.
In the HBase architecture, data is stored in a farm of Region Servers. A key-to-
server mapping is used to locate the corresponding server. The in-memory data
storage is implemented using a distributed memory object caching system called
Memcache [35] while the on-disk data storage is implemented as a HDFS file
residing in the Hadoop data node server.

HyperTable [30] project is designed to achieve a high performance, scalable,
distributed storage and processing system for structured and unstructured data. It is
designed to manage the storage and processing of information on a large cluster of
commodity servers, providing resilience to machine and component failures. Like
HBase, Hypertable also runs over HDFS to leverage the automatic data replication
and fault tolerance that it provides. In HyperTable, data is represented in the system
as a multi-dimensional table of information. The HyperTable systems provides a
low-level API and Hypertable Query Language (HQL) that provides the ability
to create, modify, and query the underlying tables. The data in a table can be
transformed and organized at high speed by performing computations in parallel,
pushing them to where the data is physically stored.

CouchDB [8] is a document-oriented database that is written in Erlang can
be queried and indexed in a MapReduce fashion using JavaScript. In CouchDB,
documents are the primary unit of data. A CouchDB document is an object that
consists of named fields. Field values may be strings, numbers, dates, or even
ordered lists and associative maps. Hence, a CouchDB database is a flat collection
of documents where each document is identified by a unique ID. CouchDB provides

32 3 Cloud-Hosted Data Storage Systems

a RESTful HTTP API for reading and updating (add, edit, delete) database
documents. The CouchDB document update model is lockless and optimistic.
Document edits are made by client applications. If another client was editing the
same document at the same time, the client gets an edit conflict error on save.
To resolve the update conflict, the latest document version can be opened, the edits
reapplied and the update retried again. Document updates are all or nothing, either
succeeding entirely or failing completely. The database never contains partially
saved or edited documents.

MongoDB [38] is another example of distributed schema-free document-oriented
database which is created at 10gen.1 It is implemented in CCC but provides
drivers for a number of programming languages including C, CCC, Erlang.
Haskell, Java, JavaScript, Perl, PHP, Python, Ruby, and Scala. It also provides a
JavaScript command-line interface. MongoDB stores documents as BSON (Binary
JSON) which are binary encoded JSON like objects. BSON supports nested object
structures with embedded objects and arrays. At the heart of MongoDB is the
concept of a document which is represented as an ordered set of keys with associated
values. A collection is a group of documents. If a document is the MongoDB analog
of a row in a relational database, then a collection can be thought of as the analog to
a table. Collections are schema-free. This means that the documents within a single
collection can have any number of different shapes. MongoDB groups collections
into databases. A single instance of MongoDB can host several databases, each of
which can be thought of as completely independent. It provides eventual consistency
guarantees in a way that a process could read an old version of a document even
if another process has already performed an update operation on it. In addition,
it provides no transaction management so that if a process reads a document and
writes a modified version back to the database, there is a possibility that another
process may write a new version of the same document between the read and
write operation of the first process. MongoDB supports indexing the documents
on multiple fields. In addition, it provides a very rich API interface that supports
different batch operations and aggregate functions.

Many other variant projects [34] have followed the NoSQL movement and
support different types of data stores such as: key-value stores (e.g. Voldemort [52],
Dynomite [15], document stores (e.g. Riak [41]) and graph stores (e.g. Neo4j [39],
DEX [14].

3.4 Database-as-a-Service

Multi-tenancy, a technique which is pioneered by salesforce.com [43], is an
optimization mechanism for hosted services in which multiple customers are
consolidated onto the same operational system and thus the economy of scale

1http://www.10gen.com/.

http://www.10gen.com/.

3.4 Database-as-a-Service 33

principles help to effectively drive down the cost of computing infrastructure.
In particular, multi-tenancy allows pooling of resources which improves utilization
by eliminating the need to provision each tenant for their maximum load. Therefore,
multi-tenancy is an attractive mechanism for both of the service providers who are
able to serve more customers with a smaller set of machines, and also to customers
of these services who do not need to pay the price of renting the full capacity of
a server. Database-as-a-service (DaaS) is a new paradigm for data management in
which a third party service provider hosts a database as a service [62, 144]. The
service provides data management for its customers and thus alleviates the need for
the service user to purchase expensive hardware and software, deal with software
upgrades and hire professionals for administrative and maintenance tasks. Since
using an external database service promises reliable data storage at a low cost, it
represents a very attractive solution for companies especially that of startups. In this
section, we give an overview of the-state-of-the-art of different options of DaaS
from the key players Google, Amazon and Microsoft.

Google Datastore

Google has released the Google AppEngine datastore [20] which provides a scalable
schemaless object data storage for web application. It performs queries over data
objects, known as entities. An entity has one or more properties where one property
can be a reference to another entity. Datastore entities are schemaless where two
entities of the same kind are not obligated to have the same properties, or use the
same value types for the same properties. Each entity also has a key that uniquely
identifies the entity. The simplest key has a kind and a unique numeric ID provided
by the datastore. An application can fetch an entity from the datastore by using its
key or by performing a query that matches the entity’s properties. A query can return
zero or more entities and can return the results sorted by property values. A query
does not allow the number of results returned by the datastore to be very large in
order to conserve memory and run time.

With the AppEngine datastore, every attempt to create, update or delete an entity
happens in a transaction. A transaction ensures that every change made to the entity
is saved to the datastore. However, in the case of failure, none of the changes
are made. This ensures consistency of data within an entity. The datastore uses
optimistic concurrency to manage transactions. The datastore replicates all data
to multiple storage locations, so if one storage location fails, the datastore can
switch to another and still access the data. To ensure that the view of the data stays
consistent as it is being updated, an application uses one location as its primary
location and changes to the data on the primary are replicated to the other locations
in parallel. An application switches to an alternate location only for large failures.
For small failures in primary storage, such as a single machine becoming unavailable
temporarily, the datastore waits for primary storage to become available again
to complete an interrupted operation. This is necessary to give the application a

34 3 Cloud-Hosted Data Storage Systems

Fig. 3.5 Basic GQL syntax

reasonably consistent view of the data, since alternate locations may not yet have all
of the changes made to the primary. In general, an application can choose between
two read policies: (1) a read policy of strong consistency which always reads from
the primary storage location. (2) a policy of eventual consistency [226] which will
read from an alternate location when the primary location is unavailable.

The AppEngine datastore provides a Python interface which includes a rich
data modeling API and a SQL-like query language called GQL [24]. Figure 3.5
depicts the basic syntax of GQL. A GQL query returns zero or more entities or
Keys of the requested kind. In principle, a GQL query cannot perform a SQL-like
“join” query. Every GQL query always begins with either SELECT * FROM or
SELECT (key) FROM followed by the name of the kind. The optional WHERE
clause filters the result set to those entities that meet one or more conditions.
Each condition compares a property of the entity with a value using a comparison
operator. GQL does not have an OR operator. However, it does have an IN operator
which provides a limited form of OR. The optional ORDER BY clause indicates
that results should be returned are sorted by the given properties in either ascending
(ASC) or descending (DESC) order. An optional LIMIT clause causes the query
to stop returning results after the first count entities. The LIMIT can also include
an offset to skip the specified number of results in order to find the first result to
be returned. An optional OFFSET clause can specify an offset if the no LIMIT
clause is present. Chohan et al. [105] have presented AppScale as an open source
extension to the Google AppEngine that facilitates distributed execution of its
applications over virtualized cluster resources, including Infrastructure-as-a-Service
(IaaS) cloud systems such as Amazon EC2 and Eucalyptus [16]. They have used
AppScale to empirically evaluate and compare how well different NoSQL systems
(e.g. Cassandra, HBase, Hypertable, MemcacheDB, MongoDB, Voldemort) map to
the GAE Datastore API [89].

Google Cloud SQL [23] is another Google service that provide the capabilities
and functionality of MySQL database servers which are hosted in Google’s cloud.
Although there is tight integration of the services with Google App Engine, it allows
the software applications to easily move their data in and out of Google’s cloud
without any obstacles. In addition, it offers some automatic administrative tasks,
such as scheduling backups, patching management, and replicating databases.

3.4 Database-as-a-Service 35

Amazon: S3/SimpleDB/Amazon RDS

Amazon Simple Storage Service (S3) is an online public storage web service offered
by Amazon Web Services. Conceptually, S3 is an infinite store for objects of
variable sizes. An object is simply a byte container which is identified by a URI.
Clients can read and update S3 objects remotely using a simple web services
(SOAP or REST-based) interface. For example, get.uri/ returns an object and
put.uri; bytestream/ writes a new version of the object. In principle, S3 can be
considered as an online backup solution or for archiving large objects which are
not frequently updated.

Amazon has not published details on the implementation of S3. However,
Brantner et al. [85] have presented initial efforts of building Web-based database
applications on top of S3. They described various protocols for storing, reading and
updating objects and indexes using S3. For example, the record manager component
is designed to manages records where each record is composed of a key and payload
data. Both key and payload are bytestreams of arbitrary length where the only
constraint is that the size of the whole record must be smaller than the page size.
Physically, each record is stored in exactly one page which in turn is stored as a
single object in S3. Logically, each record is part of a collection (e.g., a table).
The record manager provides functions to create new objects, read objects, update
objects, and scan collections. The page manager component implements a buffer
pool for S3 pages. It supports reading pages from S3, pinning the pages in the buffer
pool, updating the pages in the buffer pool, and marking the pages as updated. All
these functionalities are implemented in straightforward way just as in any standard
database system. Furthermore, the page manager implements the commit and abort
methods where it is assumed that the write set of a transaction (i.e. the set of updated
and newly created pages) fits into the client’s main memory or secondary storage
(flash or disk). If an application commits, all the updates are propagated to S3
and all the affected pages are marked as unmodified in the client’s buffer pool.
Moreover, they implemented standard B-tree indexes on top of the page manager
and basic redo log records. On the other hand, there are many database-specific
issues that has not been addressed, yet, by this work. For example, DB-style strict
consistency and transactions mechanisms are not provided. Furthermore, query
processing techniques (e.g., join algorithms and query optimization techniques) and
traditional database functionalities such as: bulkload a database, create indexes and
drop a whole collection still need to be devised.

SimpleDB is another Amazon service which is designed for providing structured
data storage in the cloud and backed by clusters of Amazon-managed database
servers. It is a highly available and flexible non-relational data store that offloads
the work of database administration. Storing data in SimpleDB does not require
any pre-defined schema information. Developers simply store and query data items
via web services requests and Amazon SimpleDB does the rest. There is no rule
that forces every data item (data record) to have the same fields. However, the lack
of schema means also that there are no data types as all data values are treated as

36 3 Cloud-Hosted Data Storage Systems

variable length character data. Hence, the drawbacks of a schema-less data storage
also include the lack of automatic integrity checking in the database (no foreign
keys) and an increased burden on the application to handle formatting and type
conversions. Following the AWS’ pay-as-you-go pricing philosophy, SimpleDB has
a pricing structure that includes charges for data storage, data transfer, and processor
usage. There are no base fees and there are no minimums. Similar to most AWS
services, SimpleDB provides a simple API interface which follows the rules and
the principles for both of REST and SOAP protocols where the user sends a message
with a request to carry out a specific operation. The SimpleDB server completes
the operations, unless there is an error, and responds with a success code and
response data. The response data is an HTTP response packet, which has headers,
storing metadata, and some payload, which is in XML format.

The top level abstract element of data storage in SimpleDB is the domain.
A domain is roughly analogous to a database table where the user can create and
delete domains as needed. There are no design or configuration options to create a
domain. The only parameter you can set is the domain name. All the data stored in
a SimpleDB domain takes the form of key-value attribute pairs. Each attribute pair
is associated with an item which plays the role of a table row. The attribute name
is similar to a database column name. However different items (rows) can contain
different attribute names which give you the freedom to store different attributes
in some items without changing the layout of other items that do not have the
same attributes. This flexibility allows the painless addition of new data fields in
the most common situations of schema changing or schema evolution. In addition,
it is possible for each attribute to have not just one value (multi-valued attributes)
but an array of values. In this case, all the user needs to do is add another attribute
to an item and use the same attribute name but with a different value. Each value
is automatically indexed as it is added. However, there are no explicit indexes to
maintain. Therefore, the user has no index maintenance work of any kind to do.
On the other side, the user do not have any direct control over the created indices.
SimpleDB provides a small group of API calls that enables the core functionality for
building client applications such as: CreateDomain, DeleteDomain, PutAttributes,
DeleteAttributes and GetAttributes. The SimpleDB API also provides a query
language that is similar to the SQL Select statement. Hence, this query language
makes SimpleDB Selects very familiar to the typical Database user which ensures a
gentle learning curve. However, it should be noted that the language supports issuing
queries only over the scope of a single domain (no joins, multi-domain or sub-select
queries).

SimpleDB is implemented with complex replication and failover mechanisms
behind the scenes. Therefore, it can provide a high availability guarantee with the
stored data replicated to different locations automatically. Hence, a user does not
need to do any extra effort or become an expert on high availability or the details of
replication techniques to achieve the high availability goal. SimpleDB supports two
options of for each user read request: eventual consistency or strong consistency.
In general, using the option of a consistent read eliminates the consistency window
for the request. The results of a consistent read are guaranteed to return the most

3.4 Database-as-a-Service 37

up-to-date values. In most cases, a consistent read is no slower than an eventually
consistent read. However, it is possible for consistent read requests to show higher
latency and lower bandwidth on some occasions (e.g. high workloads). SimpleDB
does not offer any guarantees about the eventual consistency window but it is
frequently less than 1 s. There are quite a few limitations which a user needs to
consider while using the simpleDB service such as: the maximum storage size
per domain is 10 GB, the maximum attribute values per domain is 1 billion, the
maximum attribute values per item is 256, the maximum length of item name,
attribute name, or value is 1024 bytes, the maximum query execution time is 5 s,
the max query results is 2500 and the maximum query response size is 1 MB.

Amazon Relational Database Service (RDS) is another Amazon service which
gives access to the full capabilities of the familiar MySQL, Oracle and SQL Server
relational database systems. Hence, the code, applications, and tools which are
already designed on existing databases of these system can work seamlessly with
Amazon RDS. Once the database instance is running, Amazon RDS can automate
common administrative tasks such as performing backups or patching the database
software. Amazon RDS can also provide data replication synchronization and
automatic failover management services.

Microsoft SQL Azure

Microsoft has recently released the Microsoft SQL Azure Database system [44]
which has been announced as a cloud-based relational database service that has been
built on Microsoft SQL Server technologies [79]. It provides a highly available,
scalable, multi-tenant database service hosted by Microsoft in the Cloud. So,
applications can create, access and manipulate tables, views, indexes, referential
constraints, roles, stored procedures, triggers, and functions. It can execute complex
queries, joins across multiple tables, supports aggregation and full-text queries.
It also supports Transact-SQL (T-SQL), native ODBC and ADO.NET data access.2

In particular, the SQL Azure service can be seen as running an instance of SQL
server in a cloud hosted server which is automatically managed by Microsoft instead
of running on-premise managed server.

In SQL Azure, a logical database is called a table group which can be keyless
or keyed. A keyless table group is an ordinary SQL server database where there
are no restrictions on the choices of keys for the tables. On the other hand, if a
table group is keyed, then all of its tables must have a common column called the
partitioning key which does not need not to be a unique key for each relation. A row
group is a set of all rows in a table group that have the same partition key value.
SQL Azure requires that each transaction executes on one table group. If the table
group is keyed, then the transaction can read and write rows of only one row group.

2http://msdn.microsoft.com/en-us/library/h43ks021(VS.71).aspx.

http://msdn.microsoft.com/en-us/library/h43ks021(VS.71).aspx.

38 3 Cloud-Hosted Data Storage Systems

Based on these principles, there are two options for building transaction application
that can scale out using SQL Azure. The first option is to store the data in multiple
groups where each table group can fit comfortably on a single machine. In this
scenario, the application takes the responsibility for scaling out by partitioning the
data into separate table groups. The second option is to design the database as keyed
table group so that the SQL Azure can perform the scale out process automatically.

In SQL Azure, the consistency unit of an object is the set of data that can
be read and written by an ACID transaction. Therefore, the consistency unit of a
keyed table group is the row group while the consistency unit of a keyless table
group is the whole table group. Each replica of a consistency unit is always fully
contained in a single instance of SQL server running one machine. Hence, using
the two-phase commit protocol is never required. A query can execute on multiple
partitions of a keyed table group with an isolation level of read-committed. Thus,
data that the query read from different partitions may reflect the execution of
different transactions. Transactionally consistent reads beyond a consistency unit
are not supported.

At the physical level, a keyed table group is split into partitions based on ranges
of its partitioning key. The ranges must cover all values of the partitioning key
and must not overlap. This ensures that each row group resides in exactly one
partition and hence that each row of a table has a well-defined home partition.
Partitions are replicated for high availability. Therefore, a partition is considered
to be the failover unit. Each replica is stored on one server. Since a row group is
wholly contained in one replica of each partition that is scattered across servers
such that no two copies reside in the same failure domain. To attain high availability
on unreliable commodity hardware, the system replicates data. The transaction
commitment protocol requires that only a quorum of the replicas be up. A Paxos-
like consensus algorithm is used to maintain a set of replicas to deal with replica
failures and recoveries. Dynamic quorums are used to improve availability in the
face of multiple failures. In particular, for each partition, at each point in time one
replica is designated to be the primary. A transaction executes using the primary
replica of the partition that contains its row group and thus is non-distributed. The
primary replica processes all query, update, and data definition language operations.
The primary replica is also responsible for shipping the updates and data definition
language operations to the secondary replicas.

Since some partitions may experience higher load than others, the simple tech-
nique of balancing the number of primary and secondary partitions per node might
not balance the loads. The system can rebalance dynamically using the failover
mechanism to tell a secondary on a lightly loaded server to become the primary
by either demoting the former primary to secondary or moving the former primary
to another server. A keyed table group can be partitioned dynamically. If a partition
exceeds the maximum allowable partition size (either in bytes or the amount of
operational load it receives), it is split into two partitions. In general, the size of
each hosted SQL Azure database can not exceed the limit of 50 GB.

3.6 Web Scale Data Management: Trade-Offs 39

3.5 Virtualized Database Servers

NoSQL database as a service and relational database as a service offered by cloud
providers both come with their own strengths. Firstly, the customers do not have
to trouble themselves with administrative work, as the providers deal with software
upgrades and maintenance tasks. Secondly, the cloud providers also implemented
automatic replication failover and management. But there are obvious shortcomings
as well. Firstly, customers may require extra migration efforts on modifying code
and converting data. Secondly, customers have limited choices, if customers use
PostgreSQL or DB2 as their database, there is no simple alternative for both
solutions. And thirdly, customers have no full control on achieving the elasticity
and scalability benefits.

Therefore, an approach like virtualized database servers is necessary sometimes.
For this approach, customers simply port everything designed for a conventional
data center into cloud, including database servers, and run in virtual machines. It is
worth mentioning that there is no unique approach of deploying virtualized database
servers. Therefore, no specific projects and examples will be discussed in this
subsection. The virtualized database servers are considered as being good enough,
as long as the deployment meets the application requirements.

With such a deployment, there would be minimum changes to existing applica-
tion code. The customers have full control in configuring the required elasticity of
allocated resources [96, 211]. And the customers can also build low cost solutions
for geographic replication by taking advantage of cloud providers’ multiple data
centers across continents. However, achieving these goals requires the existence of
control components [207] which are responsible for monitoring the system state and
taking the corresponding actions, such as allocating more/less computing resources,
according to the defined application requirements and strategies. Several approaches
have been proposed for building control components which are based on the
efficiency of utilization of the allocated resources [96, 211]. In Chap. 7, we present
our proposed approach that focuses on building an SLA-based admission control
component that provides a customer-centric view for achieving the requirements of
their applications.

3.6 Web Scale Data Management: Trade-Offs

An important issue in designing large scale data management applications is to
avoid the mistake of trying to be “everything for everyone”. As with many types of
computer systems, no one system can be best for all workloads and different systems
make different tradeoffs in order to optimize for different applications. Therefore,
the most challenging aspects in these application is to identify the most important
features of the target application domain and to decide about the various design
trade-offs which immediately lead to performance trade-offs. To tackle this problem,

40 3 Cloud-Hosted Data Storage Systems

Jim Gray came up with the heuristic rule of “20 queries” [151]. The main idea of
this heuristic is that on each project, we need to identify the 20 most important
questions the user wanted the data system to answer. He argued that five questions
are not enough to see a broader pattern and a hundred questions would result in a
shortage of focus.

In general, it is hard to maintain ACID guarantees in the face of data replication
over large geographic distances. The CAP theorem [86, 138] shows that a shared-
data system can only choose at most two out of three properties: Consistency (all
records are the same in all replicas), Availability (a replica failure does not prevent
the system from continuing to operate), and tolerance to Partitions (the system
still functions when distributed replicas cannot talk to each other). When data is
replicated over a wide area, this essentially leaves just consistency and availability
for a system to choose between. Thus, the “C” (consistency) part of ACID is
typically compromised to yield reasonable system availability [56]. Therefore, most
of the cloud data management overcome the difficulties of distributed replication
by relaxing the ACID guarantees of the system. In particular, they implement
various forms of weaker consistency models (e.g. eventual consistency, timeline
consistency, session consistency [219]) so that all replicas do not have to agree on
the same value of a data item at every moment of time. Hence, NoSQL systems can
be classified based on their support of the properties of the CAP theorem into three
categories:

• CA systems: Consistent and highly available, but not partition-tolerant.
• CP systems: Consistent and partition-tolerant, but not highly available.
• AP systems: Highly available and partition-tolerant, but not consistent.

In principle, choosing the adequate NoSQL system (from the very wide available
spectrum of choices) with design decisions that best fit with the requirements of
a software application is not a trivial task and requires a careful consideration.
Table 3.1 provides an overview of different design decision for sample NoSQL
systems.

In practice, transactional data management applications (e.g. banking, stock
trading, supply chain management) which rely on the ACID guarantees that
databases provide, tend to be fairly write-intensive or require microsecond precision
and are less obvious candidates for the cloud environment until the cost and latency
of wide-area data transfer decreases. Cooper et al. [112] discussed the tradeoffs
facing cloud data management systems as follows:

• Read performance versus write performance: Log-structured systems that only
store update deltas can be very inefficient for reads if the data is modified over
time. On the other hand, writing the complete record to the log on each update
avoids the cost of reconstruction at read time but there is a correspondingly higher
cost on update. Unless all data fits in memory, random I/O to the disk is needed
to serve reads (e.g., as opposed to scans). However, for write operations, much
higher throughput can be achieved by appending all updates to a sequential disk-
based log.

3.6 Web Scale Data Management: Trade-Offs 41

Table 3.1 Design decisions of various web scale data management systems

System Data model Query interface Consistency CAP options License

Dynamo Key-value API Eventual AP Inter@AMZN
PNUTS Key-value API Timeline AP Inter@YHOO
Bigtable Column families API Strict CP Inter@GOOG
Cassandra Column families API Tunable AP Apache
HBase Column families API Strict CP Apache
Hypertable Mul-dim. Tab API/HQL Eventual AP GNU
CouchDB Document API Eventual AP Apache
SimpleDB Key-value API Multiple AP Commercial
S3 Large obj. API Eventual AP Commercial
Table storage Key-value API/LINQ Strict AP/CP Commercial
Blob storage Large obj. API Strict AP/CP Commercial
Datastore Column families API/GQL Strict CP Commercial
RDS Relational SQL Strict CA Commercial
Azure SQL Relational SQL Strict CA Commercial
Cloud SQL Relational SQL Strict CA Commercial

• Latency versus durability: Writes may be synched to disk before the system
returns success to the user or they may be stored in memory at write time
and synched later. The advantages of the latter approach are that avoiding
disk access greatly improves write latency, and potentially improves throughput
The disadvantage is the greater risk of data loss if a server crashes and loses
unsynched updates.

• Synchronous versus asynchronous replication: Synchronous replication ensures
all copies are up to date but potentially incurs high latency on updates. Further-
more, availability may be impacted if synchronously replicated updates cannot
complete while some replicas are offline. Asynchronous replication avoids high
write latency but allows replicas to be stale. Furthermore, data loss may occur if
an update is lost due to failure before it can be replicated.

• Data partitioning: Systems may be strictly row-based or allow for column
storage. Row-based storage supports efficient access to an entire record and is
ideal if we typically access a few records in their entirety. Column-based storage
is more efficient for accessing a subset of the columns, particularly when multiple
records are accessed.

Florescu and Kossmann [133] argued that in a cloud environment, the main
metric that needs to be optimized is the cost as measured in dollars. Therefore, the
big challenge of data management applications is no longer on how fast a database
workload can be executed or whether a particular throughput can be achieved;
instead, the challenge is how many machines are necessary to meet the performance
requirements of a particular workload. This argument fits well with a rule of thumb
calculation which has been proposed by Jim Gray regarding the opportunity costs
of distributed computing in the Internet as opposed to local computations [139].
Gray reasons that except for highly processing-intensive applications outsourcing

42 3 Cloud-Hosted Data Storage Systems

computing tasks into a distributed environment does not pay off because network
traffic fees outnumber savings in processing power. In principle, calculating the
tradeoff between basic computing services can be useful to get a general idea of
the economies involved. This method can easily be applied to the pricing schemes
of cloud computing providers (e.g Amazon, Google). Florescu and Kossmann [133]
have also argued in the new large scale web applications, the requirement to provide
100 % read and write availability for all users has overshadowed the importance of
the ACID paradigm as the gold standard for data consistency. In these applications,
no user is ever allowed to be blocked. Hence, consistency has turned to be an
optimization goal in modern data management systems in order to minimize the cost
of resolving inconsistencies and not a constraint as in traditional database systems.
Therefore, it is better to design a system that it deals with resolving inconsistencies
rather than having a system that prevents inconsistencies under all circumstances.

Kossmann et al. [162] conducted an end-to-end experimental evaluation for the
performance and cost of running enterprise web applications with OLTP workloads
on alternative cloud services (e.g. RDS, SimpleDB, S3, Google AppEngine, Azure).
The results of the experiments showed that the alternative services varied greatly
both in cost and performance. Most services had significant scalability issues. They
confirmed the observation that public clouds lack of support for uploading large data
volumes. It was difficult for them to upload 1 TB or more of raw data through the
APIs provided by the providers. With regard to cost, they concluded that Google
seems to be more interested in small applications with light workloads whereas
Azure is currently the most affordable service for medium to large services.

With the goal of facilitating performance comparisons of the trade-offs cloud data
management systems, the Yahoo! Cloud Serving Benchmarks, YCSB [54, 112] and
YCSBCC [53,192], have been presented as frameworks and core set of benchmarks
for NoSQL systems. The benchmarking tools have been made available via open
source in order to allow extensible development of additional cloud benchmark
suites that represent different classes of applications and to facilitate the evaluation
of different cloud data management systems.

3.7 Discussion and Conclusions

For more than a quarter of a century, the relational database management systems
(RDBMS) have been the dominant model for database management. They provide
an extremely attractive interface for managing and accessing data, and have proven
to be wildly successful in many financial, business and Internet applications.
However, with the new trends of Web scale data management, they started to suffer
from some serious limitations [116]:

• Database systems are difficult to scale. Most database systems have hard limits
beyond which they do not easily scale. Once users reach these scalability limits,
time consuming and expensive manual partitioning, data migration, and load
balancing are the only recourse.

3.7 Discussion and Conclusions 43

• Database systems are difficult to configure and maintain. Administrative costs
can easily account for a significant fraction of the total cost of ownership of a
database system. Furthermore, it is extremely difficult for untrained professionals
to get good performance out of most commercial systems

• Diversification in available systems complicates its selection. The rise of spe-
cialized database systems for specific markets (e.g. main memory systems for
OLTP or column-stores for OLAP) complicates system selection, especially for
customers whose workloads do not neatly fall into one category.

• Peak provisioning leads to unnecessary costs. Web scale workloads are often
bursty in nature, and thus, provisioning for the peak often results in excess of
resources during off-peak phases, and thus unnecessary costs.

Recently, the new wave of NoSQL systems have started to gain some mindshares
as an alternative model for database management. In principle, some of the main
advantages of NoSQL systems can be summarized as follows:

• Elastic Scaling: For years, database administrators have relied on the scale
up approach rather than the scale out approach. However, with the current
increase in the transaction rates and high availability requirements, the economic
advantages of the scaling out approach on commodity hardware has become very
attractive. RDBMS might not scale out easily on commodity clusters but NoSQL
systems are initially designed with the ability to expand transparently in order to
take advantage of the addition of any new nodes.

• Less Administration: Despite the many manageability improvements introduced
by RDBMS vendors over the years, high-end RDBMS systems cannot be
maintained without the assistance of expensive, highly trained DBAs. DBAs
are intimately involved in the design, installation, and ongoing tuning of high-
end RDBMS systems. On the contrary, NoSQL databases are generally designed
from the ground up to require less management. For example, automatic repair
and the simpler data model features should lead to lower administration and
tuning requirements.

• Better Economics: While RDBMS tends to rely on expensive proprietary servers
and storage systems, NoSQL databases typically use clusters of cheap commod-
ity servers to manage the exploding data and transaction volumes. Therefore,
the cost per gigabyte or transactions per second for NoSQL can be many times
less than the cost for RDBMS which allows a NoSQL setup to store and process
more data at a much lower price. Moreover, when an application uses data that
is distributed across hundreds or even thousands of servers, simple economics
points to the benefit of using no-cost server software as opposed to that of paying
per-processor license fees. Once freed from license fees, an application can safely
scale horizontally with complete avoidance of the capital expenses.

• Flexible Data Models: Even minor changes to the data model of a large
production RDBMS have to be carefully managed and may necessitate downtime
or reduced service levels. NoSQL databases have more relaxed (if any) data
model restrictions. Therefore, application changes and database schema changes
can be changed more softly.

44 3 Cloud-Hosted Data Storage Systems

These advantages have given NoSQL systems a lot of attractions. However, there
are many obstacles that still need to be overcome before theses systems can appeal
to mainstream enterprises such as3:

• Programming Model: NoSQL databases offer few facilities for ad-hoc query
and analysis. Even a simple query requires significant programming expertise.
Missing the support of declaratively expressing the important join operation has
been always considered one of the main limitations of these systems.

• Transaction Support: Transaction management is one of the powerful features
of RDBMS. The current limited support (if any) of the transaction notion from
NoSQL database systems is considered as a big obstacle towards their acceptance
in implementing mission critical systems.

• Maturity: RDBMS systems are well-know with their high stability and rich
functionalities. In comparison, most NoSQL alternatives are in pre-production
versions with many key features either being not stable enough or yet to be
implemented. Therefore, enterprises are still approaching this new wave with
extreme caution.

• Support: Enterprises look for the assurance that if a the system fails, they will
be able to get timely and competent support. All RDBMS vendors go to great
lengths to provide a high level of enterprise support. In contrast, most NoSQL
systems are open source projects. Although there are few firms offering support
for each NoSQL database, these companies often are small start-ups without the
global reach, support resources, or credibility of the key market players such as
Oracle, Microsoft or IBM.

• Expertise: There are millions of developers throughout the world, and in every
business segment, who are familiar with RDBMS concepts and programming.
In contrast, almost every NoSQL developer is in a learning mode. This situation
will be addressed naturally over time. However, currently, it is far easier to find
experienced RDBMS programmers or administrators than a NoSQL expert.

Currently, there is a big debate between the NoSQL and RDBMS campuses
which is centered around the right choice for implementing online transaction
processing systems. RDBMS proponents think that the NoSQL camp has not spent
sufficient time to understand the theoretical foundation of the transaction processing
model. For example, the eventual consistency model is still not well-defined and
different implementations may differs significantly with each other. This means
figuring out all these inconsistent behavior lands on the application developer’s
responsibilities and make their life very much harder. On the other side, the NoSQL
camp argues that this is actually a benefit because it gives the domain-specific
optimization opportunities back to the application developers who now is no longer
constrained by a one-size-fits-all model. However, they admit that making such
optimization decision requires a lot of experience and can be very error-prone and
dangerous if the decisions are not made by experts.

3http://blogs.techrepublic.com.com/10things/?p=1772.

http://blogs.techrepublic.com.com/10things/?p=1772.

3.7 Discussion and Conclusions 45

MySQL HBase

MongoDB Amazon S3

Application

Fig. 3.6 Coexistence of
multiple data management
solution in one application

In principle, it is not expected that the new wave of NoSQL data management
systems will provide a complete replacement of the relational data management
systems. Moreover, there will be not be a single winner (one-size-fits-all) solution.
However, it is more expected that different data management solutions will coexist
in the same time for a single application (Fig. 3.6). For example, we can imagine an
application which uses different datastores for different purposes as follows:

• MySQL for low-volume, high-value data like user profiles and billing informa-
tion.

• A key value store (e.g. Hbase) for high-volume, low-value data like hit counts
and logs.

• Amazon S3 for user-uploaded assets like photos, sound files and big binary files.
• MongoDB for storing the application documents (e.g. bills).

Finally, we believe that there is still huge required research and development
efforts for improving the current state-of-the-art in order to tackle the current limi-
tations in both of all campuses: NoSQL database systems, data management service
providers and traditional relational database management systems.

Chapter 4
Performance Evaluation Framework
of Cloud Platforms

Amazon, Microsoft and Google are investing billions of dollars in building
distributed data centers across different continents around the world providing
cloud computing resources to their customers. In practice, a typical cloud platform
includes a cloud application hosting server in addition to a cloud-hosted data
storage service. Many cloud service provides also offer additional services such as
customizable load balancing and monitoring tools. In this chapter, we focus on the
following three cloud platforms:

• Amazon offers a collection of services, called Amazon Web Services, which
includes Amazon Elastic Compute Cloud (EC2) as cloud hosting server, offering
infrastructure as a service, Amazon SimpleDB and Simple Storage Service (S3)
as cloud databases.

• Microsoft Azure is recognized as a combination of infrastructure as a service and
platform as a service. It features web role and worker role for web hosting tasks
and computing tasks, respectively. It also offers a variety of database options
including Windows Azure Table Storage and Windows Azure Blob Storage as the
NoSQL database options, and Azure SQL Database as the relational database
option.

• Google App Engine supports a platform as a service model, supporting program-
ming languages including Python and Java, and Google App Engine Datastore
as a Bigtable-based [99], non-relational and highly shardable cloud database.

There have been a number of research efforts that specifically evaluate the
Amazon cloud platform [130, 152]. However, there has been little in-depth eval-
uation research conducted on other cloud platforms, such as Google App Engine
and Microsoft Windows Azure. More importantly, these work lack a more generic
evaluation method that enables a fair comparison between various cloud platforms.

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__4,
© Springer International Publishing Switzerland 2014

47

48 4 Performance Evaluation Framework of Cloud Platforms

In this chapter, we present the CARE framework (Cloud Architecture Runtime
Evaluation) [241] that has been developed as an attempt to address the following
research questions:

• What are the performance characteristics of different cloud platforms, including
cloud hosting servers and cloud databases?

• What availability and reliability characteristics do cloud platforms typically
exhibit? What sort of faults and errors may be encountered when services are
running on different cloud platforms under high request volume or high stress
situations?

• What are some of the reasons behind the faults and errors? What are the
architecture internal insights that may be deduced from these observations?

• What are the software engineering challenges that developers and architects
could face when using cloud platforms as their production environment for
service delivery?

An empirical experiment has been carried out by applying the CARE framework
against three different cloud platforms. The result facilitates an in-depth analysis
of the major runtime performance differences under various simulated conditions,
providing useful information for decision makers on the adoption of different cloud
computing technologies.

This chapter presents the CARE evaluation framework in Sect. 4.1, followed
by discussions on the empirical experiment set up and its execution in Sect. 4.2.
Section 4.3 presents the experimental results of all test sets and error analysis
captured during the tests. Section 4.4 discusses the application experience of CARE
and evaluates the CARE approach.

4.1 The CARE Framework

The CARE framework is a performance evaluation approach specifically tailored
for evaluating across a range of cloud platform technologies. The CARE framework
exhibits the following design principles and features:

• Common and consistent test interfaces across all test targets by employing
web services and RESTful APIs. This is to ensure that, as much as possible,
commonality across the tests against different platforms is maintained, hence
resulting in a fairer comparison.

• Minimal business logic code is placed in the test harness, in order to minimize
variations in results caused by business logic code. This is to ensure that
performance results can be better attributed to the performance characteristics
of the underlying cloud platform as opposed to the test application itself.

• Use of canonical test operations, such as read, write, update, delete. The principle
enables simulating a wide range of cloud application workloads using composites
of these canonical operations. This approach provides a precise way of describing
the application profile.

4.1 The CARE Framework 49

Fig. 4.1 Time measurement terminologies

• Configurable end-user simulation component for producing stepped request
volume simulations for evaluating the platform under varying load conditions.

• Reusable test components including test harness, result compilation, and error
logging.

• Consistent measurement terminology and metric that can be used across all test
case scenarios and against all test cloud platforms.

Measurement Terminology

CARE employs a set of measurement terminology that is used across all tests to
ensure consistency in the performance instrumentation, analysis and comparison
of the results. It considers major variables of interest in the evaluation of cloud
platforms, including response time based on those observed by the end-user side,
and from the cloud host server side.

Figure 4.1 illustrates the time measurement terminologies in a typical end-
user request and round-trip response. From an end-user’s perspective, a cloud
hosting server and a cloud database provides the following three time-relevant
terminologies:

• Response time is the total round-trip time, including time taken at the networking
layer, as seen by the end-user, starting from sending the request, through to
receiving the corresponding response.

• Processing time is the amount of time spent on processing the request on the
server side.

• Database processing time is the amount of time a cloud database takes to
process a database request. However, it is practically impossible to measure

50 4 Performance Evaluation Framework of Cloud Platforms

accurately, due to the absence of a timer process in the cloud database. The CARE
framework thus equates this measurement to time taken to process the database
request as seen by the cloud hosting server by measuring the processing time of
the database API as the database processing time as the latency between the
hosting servers and cloud databases within the same cloud platform is negligible.

Additional terminologies used refer to different response types that are based on
the request:

• Incomplete request is a type of request where an end-user fails to send or receive.
• Completed request refers to a request where an end-user successfully sends and

receives a confirmation response from the cloud platform at completion time.

Subsequently, depending on the response, the completed request can be further
classified as:

• Failed request that contains an error message in the response.
• Successful request which completes the transaction without an error.

Test Scenarios

The CARE framework provides three key test scenarios to differentiate the can-
didate cloud platforms. While there are potentially other more sophisticated test
scenarios, the three test scenarios provided by CARE cover most of the usage
scenarios of typical cloud applications. Hence, the CARE framework provides a
set of test scenarios that strikes a good balance between simplicity and coverage.

• End-user-cloud host represents the scenario that an end-user accesses a web
service application hosted on the cloud platform from a client side application.
The response time would be the end-user’s primary concern in terms of the cloud
application performance.

• Cloud host-cloud database represents the scenario that an end-user operates on
a form or an article hosted in the cloud database through the cloud hosting server.
The time taken to send the request from the end-user to the cloud host server is
excluded as the focus is on the impact of different data sizes on the database
processing time. It is especially interesting to be able to measure the database
processing time of concurrent request that have been simultaneously generated
by thousands of end-users. The database contention due to concurrent requests
will be a key-determining factor in the overall scalability of the cloud platform
in this type of scenario. Besides identifying different performance characteristics
across cloud databases, a local database (LocalDB) is also provided by the CARE
framework in a cloud hosting server as a reference point for comparison to other
cloud databases.

• End-user-cloud database illustrates a large file transfer scenario. It is conceiv-
able that data-intensive computing would be increasingly pervasive in the cloud
where a large variety of new media content, such as video, music, medical

4.1 The CARE Framework 51

Start
Round = 6

ConcurrentThreads = 100
Init concurrent

threads

ConcurrentThreads += 200 or
Zero

Fire all the threads,
3 request will be sent continuously

within every thread

Wait for all the
threads finish

(Round--) > 0

Read all the records from memory,
export to CSV file

End

False

True

Fig. 4.2 The flow chart of evaluation strategies

images, and etc, would be stored and retrieved from the cloud. Understanding
the characteristics of cloud and associated network behavior in handling big data
is an important contribution towards improving the ability to better utilize cloud
computing to handle such data.

Load Test Strategies

The CARE framework supports two types of load test strategies: high stress test
strategy and low stress test strategy. The different load test strategies are applied
across the various test scenarios listed in Sect. 4.1, in order to provide a more
comprehensive evaluation and comparison.

The low stress test strategy sends multiple requests from the end-user side in a
sequential manner. This is appropriate for simulating systems where there is a single
or small number of end-users. It also provides a reference point for comparison to
the high stress test strategy and also for obtaining base network latency benchmarks.

The high stress test strategy provides simulated concurrent requests to cloud
platforms in order to obtain key insights on the cloud architecture, particularly for
observing performance behavior under load.

Figure 4.2 illustrates the workflow of the high stress test strategy. The config-
urable parameter called repeating rounds is set to 6 by default. This represents
the warm-up period, where there is typically a large performance variation due
to certain phenomena such as cloud connection time. The performance results
arising from the warm-up time stage are discarded by the performance results
compilation framework, in order to produce more repeatable and stable testing
results. Another configurable parameter concurrent threads is set to start at 100

52 4 Performance Evaluation Framework of Cloud Platforms

by default. It is then incremented by another configurable parameter increment after
every round of testing, the CARE framework currently sets the default value to 200
for the high stress test strategy, and 0 for the low stress test strategy. For example,
for the high stress test strategy, after the initial 6 rounds, the number of concurrent
threads fired by one end-user would go from 100 to 300, 500, 700, 900 and 1,100
in successive rounds. Therefore, a maximum of 3,300 concurrent threads can be
achieved since 3 end-users are applied in the evaluation.

For the high stress test strategy, a number of continuous requests are sent within
every thread to maintain its stress on the cloud platform over a period of time. If
only a single request is sent to the cloud in each thread, our observation is that the
expected concurrent stress cannot always be reached, and due to network latency
and variability, the arrival time and order of packets at the cloud platform can vary
widely. Hence in the CARE framework, another configurable parameter continuous
request is provided with a default value of 3, striking a balance of providing a more
sustained and even workload to the cloud and enabling the test to be conducted
across different concurrent clients.

Lastly, as cloud computing is essentially a large-scale shared system, where
the typical cloud end-user would be using a publicly shared network in order to
access cloud services, it must be that there can be variations in network capacity,
bandwidth, and latency issues, that fluctuates over time. The CARE framework
thus provides a scheduler that support scheduled cron1 jobs to be automatically and
repeatedly activated to retrieved testing samples across different times over a 24 h
period.

The flow chart of the low stress test strategy for requests is essentially a simplified
version of the high stress strategy shown in Fig. 4.2, with the difference being that
the multi-threaded functions are deactivated.

Building a Test Set with CARE

By using the CARE framework, it is possible to combine the various test scenarios
with the various load test strategies to produce a comprehensive test set.

While the test set can be designed and created using the CARE framework
depending on the precise test requirement, the CARE framework also comes with
a reusable test set that aims to provide the test coverage of a large number of
commonly found cloud application types. Table 4.1 illustrates a view of all test sets.

Firstly, there are five Contract-First Web Service based test methods, namely high
stress round-trip, low stress database read and write, and high stress database read
and write. There are also three RESTful Web Service based methods, low stress
large file read, write and delete, respectively. The four key methods in the test set
are listed in Table 4.1.

1http://linux.die.net/man/8/cron.

http://linux.die.net/man/8/cron.

4.1 The CARE Framework 53

Table 4.1 Building a test set

Test set method Test scenario Load test

High stress round-trip End-user-cloud host High stress test strategy
Low stress database read and write Cloud host-cloud database Low stress test strategy
High stress database read and write Cloud host-cloud database High stress test strategy
Low stress large file read, write, and delete End-user-cloud database Low stress test strategy

• High stress round-trip: The end-users concurrently send message requests to
cloud hosting servers. For each request received, the servers immediately echo
back to the end-users with the received messages. The response time is recorded
in this test. This is the base test that provides a good benchmark for a total round
trip cloud application usage experience as the response time as experienced by
the average end-user will be affected by the various variable network conditions.
This is a useful test to indicate the likely end-user experience in an end-to-end
system testing scenario.

• Low stress database read and write uses the cloud host-cloud database scenario.
It starts with the low stress test strategy, which provides an initial reference result
set for subsequent high stress load tests. This test is performed with varying data
sizes, representing different cloud application data types. The data types provided
by the CARE framework are: a single character of 1 byte, a message of 100
bytes, an article of 1 KB, and a small file of 1 MB. These data types are sent
along with the read or write requests, one after another to the cloud databases
via the cloud hosting servers. The database processing time will be recorded and
then returned to the end-user within the response. In terms of request size the
CARE framework follows the conventional cloud application design principle
of storing data that are no larger than 1 kB in structured data oriented storage,
namely Amazon SimpleDB and Microsoft Windows Azure Table Storage. Data
that are larger than 1 KB will be put into binary data oriented databases, including
Amazon S3 and Microsoft Windows Azure Blob Storage. In addition, Google
App Engine Datastore supports both structured data and binary data in the same
cloud database.

• High stress database read and write are based on the high stress test strategy.
It simulates multiple read/write actions concurrently. The number of concurrent
requests range is configurable, as described in Sect. 4.1. Due to some common
cloud platform quota limitations, for example Google App Engine by default
limits incoming bandwidth to a maximum of 56 MB/min, this test uses a default
test data size of 1 kB. This test data size can be configured to use alternative
test data sizes if the target testing cloud platform does not have those quota
limitations. Lastly, a cron job is scheduled to perform the stress database test
repeatedly over different time periods across the 24 h period.

54 4 Performance Evaluation Framework of Cloud Platforms

• Low stress large file read, write, and delete are tests designed to evaluate large
data transfer in the end-user-cloud database scenario. The throughput measure is
as observed by the end-user. Once again, this test aims to characterize the total
end-to-end large data handling capability by the cloud platform, taking into
consideration the various network variations. The CARE framework provides
some default test data: ranging from 1 MB, 5 MB, 10 MB, and through to 15 MB.
A RESTful Web Service based end-user is implemented for a set of target cloud
databases, including Amazon S3 and Microsoft Windows Azure Blob Storage.
Note that the CARE framework does not provide a test for the Google App
Engine, as Google App Engine Datastore does not support an interface for direct
external connection for large file access.

4.2 Application of CARE to Cloud Platform Evaluation

Providing a common reusable test framework across a number of different clouds is
a very challenging research problem. This is primarily due to the large variations in
architecture, service delivery mode, and functionality provided across various cloud
platforms, including Amazon Web Services, Google App Engine, and Microsoft
Windows Azure. Firstly, the service models of cloud hosting servers are different:
Amazon EC2 uses the infrastructure as a service model; Google App Engine uses
the platform as a service model; while Microsoft Windows Azure combines both
the infrastructure as a service and platform as a service models. Different service
models have different levels of system privileges and different system architectures.
Moreover, the connections among cloud hosting servers, cloud databases and client
applications tend to utilize different protocols, frameworks, design patterns and
programming languages which all add to the complexities to the task of providing a
common reusable evaluation method and framework.

Therefore, we proposed a unified and reusable evaluation interface based on
Contract-First Web Services and RESTful Web Services, for the purpose of keeping
as much commonality as possible. As illustrated in Fig. 4.3, for the Contract-First
Web Services: a WSDL file is firstly built; then, the cloud hosting servers implement
the functions defined in this WSDL file; lastly, a unified client interface is created
from the WSDL file which allows communication via the same protocol, despite of
existing variants. While for RESTful Web Services, direct access to cloud databases
is made without passing the cloud hosting servers. The CARE framework currently
provides the reusable common client components, and the cloud server components
for Microsoft Windows Azure, Google App Engine and Amazon EC2.

The evaluation interface maximizes reusability of client application on the end-
user side. The Contract-First Web Service based client application is able to talk
to different cloud hosting servers via the same WSDL whereas a RESTful Web
Service based client application can talk to cloud databases directly without passing
the cloud hosting servers via the standard HTTP protocol.

4.3 Experiment Results and Exception Analysis 55

Client Testing Application

WSDL

public Result InstantResponse(String value) {
// Echo the receiving value back to client
// Test net response time

}
public Result Read(String value) {

// Retrieve data from DB based on the given value
// Test DB read performance

}
public Result Create(String content) {

// Persist given content into DB
// Test DB write performance

}
...

WSDL WSDL WSDL

Interface design

Amazon Web
Services

Google App
Engine

Windows Azure

SOAP/REST

HTTP

SOAP/REST

Fig. 4.3 Contract-First Web Service based client application

The evaluation interface hides variations on the cloud side. In practice, the
underline design of the three cloud platforms are different from each other. The
Contract-First Web Services hide heterogeneous implementation of each cloud
platform: Tomcat 6.0, Apache CXF, and a local PostgreSQL database are used
on a small Ubuntu-based instance in Amazon EC2; Windows Communication
Foundation (WCF) and C# codes are used on Microsoft Windows Azure; while
Python-based ZSI and Zope Interface frameworks are used in Google App Engine.
However, it is noted that potential performance difference is inevitable due to differ-
ent programming languages. Thus, the CARE framework cloud server components
follow the design principle of always using the native/primary supported language
of the cloud platform in order to build the most optimal and efficient test components
for each cloud platform.

4.3 Experiment Results and Exception Analysis

In this section, quantitative results of four test set methods will be examined.
Moreover, exceptions and errors captured during the evaluation will be analyzed
by considering the results as an average over all test results. Some environmental
information for the conducted tests are noted here:

• The client environment executing the CARE evaluation strategy runs on 3 Debian
machines with Linux kernel 2.6.21.6-ati. Each evaluation machine is a standard

56 4 Performance Evaluation Framework of Cloud Platforms

Dell Optiplex GX620, equipped with Intel Pentium D CPU 3.00 GHz, 2 GB
memory, and 10/100/1000 Base-T Ethernet.

• Both Amazon EC2 and Microsoft Windows Azure instances use the default type,
small instance with single core.

Qualitative Experience of Development Utilities

In Amazon EC2, an administration role will be granted to developers when a virtual
machine instance is created. This allows the developers to install whatever they
want in the instance. In other words, there is no restriction on selecting development
environments for Amazon EC2. But on the other hand, being able to select different
work needs to be done, such as uploading and installing the required runtime
environments for the application.

The key highlights of the Microsoft Windows Azure platform are its heavily
equipped frameworks and environments. Almost all existing Microsoft web devel-
opment frameworks and runtime environments are supported in Microsoft Windows
Azure. As a result of this, developers can simply focus on the business logic
implementation with C# or PHP. But the key downside is that they have to stick
with Microsoft development environments, Microsoft Visual Studio.

In contrast to Microsoft Windows Azure which offers fully functioned frame-
works, and Amazon EC2 which provides highly configurable environment, Google
App Engine re-implements programming languages to suit the different devel-
opment approaches. Google has currently enabled Python and JVM-supported
languages on its cloud platform where developers are free to choose frameworks
based on Python and JVM-supported languages to improve their productivity. But,
in practice, there are some limitations on the Google App Engine which restrict the
range of choices, such as no multiple threads, no local I/O access, and 30 s timeout
a request handler. Additionally, Google also offers other Google APIs to integrate
Google App Engine with other Google services.

Quantitative Results of Test Sets

High Stress Round-Trip

Figures 4.4–4.6 indicate the cumulative distribution function of response time under
varying amount of concurrent stress requests, which range from 300, 900, 1,500,
2,100, 2,700, up to 3,300 requests respectively.

The observation of three cumulative distribution functions confirms that the
larger the requests, the longer the response time will be. But the incremental step
of response time varies from one group of requests to another, depending on the
cloud hosting servers. For 80 % of cumulative distribution functions, the response

4.3 Experiment Results and Exception Analysis 57

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connection Time on Client Side (Milliseconds)

F
(x

)

300 requests
900 requests
1500 requests
2100 requests
2700 requests
3300 requests

Fig. 4.4 The cumulative distribution function of high stress round-trip between the end-user and
the Amazon EC2 cloud hosting servers

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connection Time on Client Side (Milliseconds)

F
(x

)

300 requests
900 requests
1500 requests
2100 requests
2700 requests
3300 requests

Fig. 4.5 The cumulative distribution function of high stress round-trip between the end-user and
the Microsoft Windows Azure cloud hosting servers

time of Amazon EC2 in Fig. 4.4 and Microsoft Windows Azure in Fig. 4.5 are
dramatically increased at 1,500 requests and 900 requests respectively. For Google
App Engine in Fig. 4.6, although the response time shows an increasing trend, there
is no significant leap between neighboring groups of requests.

The reason for these observations could be explained from the scalability aspect.
If response time increases steadily and linearly under stress in Google App Engine,
there is certainly some good scalability capability as its cloud hosting server is
thread based, allowing more threads to be created for additional requests. Never-
theless, the cloud hosting servers of Amazon EC2 and Microsoft Windows Azure
are instance based. The computing resources for one instance are preconfigured and
more resources for additional requests cannot be obtained unless extra instances are
deployed.

58 4 Performance Evaluation Framework of Cloud Platforms

102 103 104 105 106
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Connection Time on Client Side (Milliseconds)

F
(x

)

300 requests
900 requests
1500 requests
2100 requests
2700 requests
3300 requests

Fig. 4.6 The cumulative distribution function of high stress round-trip between the end-user and
the Google App Engine cloud hosting servers

0

50

100

150

200

250

300

1 Byte 100 Bytes 1 KB 1 MB

M
ill

is
ec

on
ds

Data Size

App Engine Datastore
Azure Table Storage

Amazon Blob Storage
Amazon LocalDB

Amazon SimpleDB
Amazon S3

Fig. 4.7 The average read time in cloud databases with low stress database read test set

Low Stress Database Read and Write

In Fig. 4.7, the average database processing time of reading 1 byte, 100 bytes, and
1 kB are within 50 ms, while the database processing time of writing small size data
in Fig. 4.8 varies from 10 ms to 120 ms. From this, it is obvious that for each cloud
database, the reading performance is faster than the writing performance for the
same amount of data. The two figures also state that the local database in Amazon
EC2 instance shows its strength for message sizes that ranges from 1 byte to 1 kB.

4.3 Experiment Results and Exception Analysis 59

0

20

40

60

80

100

120

140

160

180

200

1 Byte 100 Bytes 1 KB 1 MB

M
ill

is
ec

on
ds

Data Size

App Engine Datastore
Azure Table Storage

Amazon Blob Storage
Amazon LocalDB

Amazon SimpleDB
Amazon S3

Fig. 4.8 The average write time in cloud databases with low stress database write test set

As the evaluation environment is low stress, and as such, the cloud host is not under
load, so it is consistent that the local database without any optimizations can handle
requests effectively. The latency from the cloud hosting server to the local database
is also smaller, since they are in the same Amazon EC2 instance.

When the size of request reaches 1 MB, Amazon S3, shown as orange dots in
figures, almost has the same write performance as Google App Engine Datastore,
but the former is almost three times slower than the latter in reading. Microsoft
Windows Azure Blob Storage, shown as green triangles in figures, takes less time
than the others in both reading and writing.

The cumulative distribution functions of read and write throughput in cloud
databases demonstrated similar behavior as in Figs. 4.9 and 4.10. Moreover, for
the 1 MB database reading and writing test, the cumulative distribution functions
also show that approximately 80 % of requests are processed at 10 MB/s.

High Stress Database Read and Write

In this test, the number of concurrent requests in the evaluation varies from 300
to 3,300 with step increments of 300. The collection of database processing time
of each cloud database under 2,100 concurrent requests are shown in Fig. 4.11.
From 2,100 concurrent requests onwards, cloud host servers started to produce
errors, these are listed in detail in Tables 4.3 and 4.4 in Sect. 4.3. Instead of being
the best performer as in low stress database read and write, the local database

60 4 Performance Evaluation Framework of Cloud Platforms

10−2 10−1 100 101 102 103 104 105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speed (Byte/Second)

F
(x

)

App Engine Datastore 1 Byte
App Engine Datastore 100 Byte
App Engine Datastore 1KByte
App Engine Datastore 1MByte
Azure Table Storage 1 Byte
Azure Table Storage 100 Byte
Azure Table Storage 1KByte
Azure Blob Storage 1MByte
Amazon LocalDB 1 Byte
Amazon LocalDB 100 Byte
Amazon LocalDB 1KByte
Amazon SimpleDB 1 Byte
Amazon SimpleDB 100 Byte
Amazon SimpleDB 1KByte
Amazon S3 1MByte

Fig. 4.9 The cumulative distribution function of read throughput in cloud databases with low
stress database read test set

10−2 10−1 100 101 102 103 104 105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speed (Byte/Second)

F
(x

)

App Engine Datastore 1 Byte
App Engine Datastore 100 Byte
App Engine Datastore 1KByte
App Engine Datastore 1MByte

Azure Table Storage 1 Byte
Azure Table Storage 100 Byte
Azure Table Storage 1KByte
Azure Blob Storage 1MByte
Amazon LocalDB 1 Byte
Amazon LocalDB 100 Byte
Amazon LocalDB 1KByte
Amazon SimpleDB 1 Byte
Amazon SimpleDB 100 Byte
Amazon SimpleDB 1KByte
Amazon S3 1MByte

Fig. 4.10 The cumulative distribution function of write throughput in cloud databases with low
stress database write test set

101 102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speed (Byte/Second)

F
(x

)

Amazon Local DB Read
Amazon Simple DB Read
Azure Storage Read
App Engine Datastore Read
Amazon Local DB Write
Amazon Simple DB Write
Azure Storage Write
App Engine Datastore Write

Fig. 4.11 The cumulative distribution function of read and write throughput in cloud databases
with high stress database read and write test sets

4.3 Experiment Results and Exception Analysis 61

100

1000

10000

100000

1 MB 10 MB 15 MB

M
ill

is
ec

on
ds

Data Size

Write to Azure Blob Storage
Write to Amazon S3

Read from Azure Blob Storage
Read from Amazon S3

Delete from Azure Blob Storage
Delete from Amazon S3

Fig. 4.12 The database processing time of read, write, and delete in cloud databases with low
stress large file read, write, and delete test sets

in Amazon EC2 now performs the worst among all platforms. It implies the
poor capability of handling concurrent requests within the same instance as the
compute capability. Moreover, Google App Engine Datastore, Amazon SimpleDB
and Microsoft Windows Azure Storage all continue to show faster speeds in read
operations than write operations.

Low Stress Large File Read, Write, and Delete

Figure 4.12 shows the average database processing time of reading, writing and
deleting binary files in the cloud databases directly. It can be seen that reading,
shown in the left figure, is faster than writing, shown in the middle figure, in general.
Both database processing time of read and write for Amazon S3 and Microsoft
Windows Azure Blob Storage are linearly increasing with increasing proportion of
data size. It is likely the limitation of the local network environment will come
before getting insights of the cloud databases. This is why the CARE framework
provides a range of scenarios, for example, end-user-cloud database, as well as cloud
host-cloud database, so that the performance characteristics can be evaluated with
and without the network variations and effects in place.

The average database processing time of the delete operation, shown in the right
figure, is interesting as the observation shows a constant result regardless of data
sizes. It is confirmed that neither Amazon S3 nor Microsoft Windows Azure Blob

62 4 Performance Evaluation Framework of Cloud Platforms

Storage will delete data entries on the fly. Both of them mark the entity and reply
with successful request message at the first instant where the actual delete operation
will be completed afterwards.

Exception Analysis and Error Details

Overall Error Details

All error messages and exceptions were logged and captured by the CARE frame-
work. This is a useful feature for carrying out offline analysis. The observations
show that all errors occurred during the high stress database read and write tests. The
CARE framework also logs the errors/exceptions according to various categories:

• Database error happens during the period of processing in cloud databases.
• Server error occurs within cloud hosting servers, for instance, not being able to

allocate resources.
• Connection error is encountered if a request does not reach cloud hosting servers

due to network connection problems, such as package loss and proxy being
unavailable.

In general, a response with connection error is classified as an incomplete
request; and a request to server error or database error is classified as a failed request.
The error details of each category are listed in Table 4.2.

Average Errors Over Different Time Periods

The CARE framework is also able to produce unavailability information based on
error and exceptions logs over a long period of time. Tables 4.3 and 4.4 show
different average error rates of high stress database read and write methods over
different time periods. As shown in the table, both read and write connection error
rates of the local database in Amazon EC2 and Google App Engine Database vary
in a range from 15 % to 20%. This figure is highly variable over the 24-hour period
especially as it is subjected to network conditions, as well as the health status of the
cloud server. Amazon SimpleDB achieves the lowest error rates for both reading
and writing operations with an error average of less than 10%, with average reading
error rate that approaches 0%. On the contrary, Microsoft Windows Azure Table
Storage has the highest reading error rate of more than 30%.

In spite of read and write connection error rates, average successful read request
rates are high at almost 99:99% of completed request. Although Google Datastore
and Amazon SimpleDB responded with write database error for 31:67 and 111:17
times respectively, the successful write request rates are generally high, with the
worst one logging at more than 99:67% of completed request.

4.3 Experiment Results and Exception Analysis 63

Table 4.2 Total error detail analysis

Category Error messages Reasons Locations

Database
error

datastore_errors: Timeout Multiple action perform at
the same entry, one
will be processed
others will fail due to
contention

Google Datastore

Request takes too much
time to process

Google Datastore

datastore_errors:
TransactionFailedError

An error occurred for the
API request datas-
tore_v3.RunQuery()

Google Datastore

apiproxy_errors: Error Too much contention on
datastore entities

Google Datastore

Amazon SimpleDB is
currently unavailable

Too many concurrent
requests

Amazon simpleDB

Server
error

Unable to read data from
the transport
connection

WCF failed to open
connection

Microsoft Windows Azure

500 Server Error HTTP 500 ERROR :
Internal Error

Google App Engine

Zero sized reply Amazon EC2
Connection

error
Read timed out HTTP time out Microsoft Windows Azure/

Amazon EC2
Access denied HTTP 401 ERROR Microsoft Windows Azure/

Google App Engine/
Amazon EC2

Unknown host exception Microsoft Windows Azure
Network Error (tcp_error) Local proxy connection

error
Microsoft Windows Azure/

Google App Engine

Among all cloud hosting servers, Google App Engine exhibits the most number
of server errors where most errors were 500 Server Error messages. The largest
group of server errors happened after May 20 23:30:00 PST 2009. Meanwhile, some
significant latency started appearing in the Google App Engine’s overall system
status dashboard around one or half an hour earlier than the given time. It is likely
that the significant latency of the overall Google App Engine system could be a
cause of the server errors in the experiment. However, there is no direct evidence to
prove such a causality.

Average Connection Error Rates Under Different Loads

In high stress database read and write tests, as expected, the trend of the average
connection error rates raises as the number of concurrent requests increases. Google
Datastore via Google App Engine and Amazon SimpleDB via Amazon EC2 have a

64 4 Performance Evaluation Framework of Cloud Platforms

Table 4.3 Average error (rates) of high stress database read over different time periods

Cloud Database Server Connection error Successful
databases error (%) error (%) error (%) request (%)

Amazon simpleDB 0:00 (0:000) 0:00 (0:000) 41:00 (0:127) 32;359:00
(99:873)

Amazon localDB 0:00 (0:000) 16:40 (0:051) 6368:40 (19:656) 26;015:20
(80:294)

Microsoft windows azure
table storage

0:00 (0:000) 0:00 (0:000) 11;593:80 (35:783) 20;806:20
(64:217)

Google datastore 2:25 (0:007) 4:75 (0:015) 5462:75 (16:860) 26;930:25
(83:118)

Table 4.4 Average error (rates) of high stress database write over different time periods

Cloud Database Server Connection Successful
databases error (%) error (%) error (%) request (%)

Amazon simpleDB 111:17 (0:343) 9:50 (0:029) 2470:83
(7:626)

29;808:50
(92:002)

Amazon localDB 0:00 (0:000) 25:20 (0:075) 5262:60
(16:243)

27;112:20
(83:680)

Microsoft windows azure
table storage

0:00 (0:000) 0:17 (0:001) 4810:33
(14:847)

27;589:50
(85:153)

Google datastore 31:67 (0:098) 3037:37 (9:374) 4787:50
(14:776)

24;543:66
(75:752)

smaller percentage trend in reading than writing, while Microsoft Windows Azure
Table Storage and the local database in Amazon EC2 on the contrary, display higher
rates in read operations than write operations.

Amazon SimpleDB via Amazon EC2 maintains the lowest error rates in both
reading and writing, almost approaching 0% in read tests. While the local database
via Amazon EC2, which shares the same instance with the web application of
Amazon SimpleDB via Amazon EC2, started receiving a high percentage of
connection errors from 1,500 concurrent requests. The reason of this phenomenon
could be explained by that the local database causes additional resource contention
by virtually being inside the same instance as the host server instance. This leads
to a less scalable architecture, as a trade-off to smaller latency from host server to
cloud database.

For Microsoft Windows Azure, the connection error percentage begins to leap,
from less than 1% at 1,500 requests, to more than 50% and 30% in reading and
writing separately at 3,300 concurrent requests. This indicates that a limit in terms
of what this Azure server instance can handle has been hit.

For Google App Engine, a large number of connection errors under high load
has been observed. Most connection errors from Google App Engine contain the
access denied message, which is a standard HTTP 401 error message. Through
cross checking the server side, there is no record of HTTP 401 at all in the Google
App Engine. This means that these requests are blocked before getting into the

4.4 Discussion 65

web application. The assumption can be made that the access is restricted due to
a firewall in Google App Engine. When thousands of requests go into Google App
Engine concurrently from the same IP, the firewall may be triggered. Upon some
analysis of how App Engine manages incoming requests by using a HTTP traffic
monitor, it is reasonable to conclude that this may be a security feature around to
prevent denial of service attacks. There seems no way to get around of it, except
reducing the number of requests.

4.4 Discussion

An empirical experiment was carried out to examine the effectiveness of CARE
when applied to testing different cloud platforms. Results indicate CARE is a
feasible approach by directly comparing three major cloud platforms, including
cloud hosting servers and cloud databases. Analysis revealed the importance of
acknowledging different service models, and that the scalability of cloud hosting
servers is achieved in different ways. Horizontal scalability is available to some
extent in Google App Engine, but is always restricted by the quota limitation.
On the contrary, Amazon EC2 and Microsoft Windows Azure can only scale
through manual work in which developers can specify rules and conditions for when
instances should be added. This leads the classic trading off issue of complexity
against scalability. Vertical scalability is not possible in Google App Engine since
every process has to be finished within 30 s, and that it is beyond the control over
the type of machines used for our application in the Google cloud. Where on the
other hand, Amazon EC2 and Microsoft Windows Azure allow you to choose and
deploy instances with varying sizes of memory and CPUs.

The unpredictable unavailability of cloud is of a greater issue, particularly
for enterprise organizations with mission critical application requirements. Whilst
bursts of unavailability are noticed, during the tests which are caused by a range of
environmental factors, including variable network conditions. It is also observed that
the cloud providers sometimes experience challenges in maintaining uninterrupted
service availability. Despite sophisticated replication strategies, there is still a
potential risk of data center breakdown even in the cloud, which may in turn affect
the performance and availability of hosted applications. It is also noticed that at the
time of writing, most cloud vendors provide an SLA availability of 99:9%, which is
still some way away from the typical enterprise requirement of 99:999%.

The network condition makes a significant impact on the total performance
and end-user experience for cloud computing. The performance of the end-to-end
cloud experience highly relies on the network condition. If an end-user accesses
cloud services through a poor network environment, it is not possible to take full
advantage of the cloud platforms.

Chapter 5
Database Replication of NoSQL
Database-as-a-Service

NoSQL database as a service is part of the database as a service offering to
complement traditional database systems often by removing the requirement ACID
transactions as one common feature. NoSQL database as a service has been
supported by many service providers that offer various consistency options, from
eventual consistency to single-entity ACID. For the service provider, weaker
consistency is related to a longer replication delay, and therefore should allow better
availability and lower read latency.

This chapter investigates the replication delay of NoSQL databases by observing
the consistency and performance characteristics of various offerings from the
customers’ perspective. In this chapter, we present a detailed measurements over
several NoSQL databases, that show how frequently, and in what circumstances,
different inconsistency situations are observed, and what impact the customers sees
on performance characteristics from choosing to operate with weak consistency
mechanisms. In addition, we describe the development of the overall methodology
of experiments for measuring consistency from the customer’s view. The chap-
ter first presents an architecture for benchmarking various NoSQL databases in
Sect. 5.1. Then, Sect. 5.2 reports on the experiments that investigate how often a read
sees a stale value. For several platforms, data is always, or nearly always, up-to-date.
For one platform, specifically Amazon SimpleDB, stale data is frequently observed.
Thus, in Sect. 5.3, the performance and cost trade-offs of different consistency
options are explored. Section 5.4 discusses some limitations of generalizing results
and gives some conclusions.

5.1 Architecture of Benchmark Application

Figure 5.1 illustrates the architecture of the benchmark applications in this study.
There are three roles composed: the NoSQL database, the writer, and the reader.
A writer repeatedly writes 14 bytes of string data into a particular data element
where the value written is the current time, so that it is easy to check which write

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__5,
© Springer International Publishing Switzerland 2014

67

68 5 Database Replication of NoSQL Database-as-a-Service

Fig. 5.1 The architecture of NoSQL database as a service benchmark applications

is observed in a read. In most of the experiments that are reported, writing happens
once every 3 s. A reader role repeatedly reads the contents from the data element and
also notes the time at which the read occurs; in most experiments reading happens
50 times every second. Comparing read values reveals the probability of reading
stale values over time. Assume a writer invokes a write operation at time t and a
reader invokes a read operation at time t C x. “A period of time” to make replicas
consistent is obtained by finding x when no stale value is observed.

In some experiments, the writer and reader roles are deployed as a single thread
for the writer role, and single or multiple threads for the reader role, while in other
experiments, a single thread takes both roles. For one experiment measurement,
the writing and reading operations are run for 5 min, doing 100 writes and 15:000
reads. The measurement is repeated once every hour, for at least 1 week, in October
and November 2010. It must be noted that each measurement includes not only
the processing time on NoSQL databases but also that of applications and network
latency. In all measurement studies, it is confirmed that benchmark applications and
networks are not performance bottlenecks.

In a post-processing data analysis phase, each read is determined to be either
fresh or stale, depending on whether the value observed has a timestamp from
the closest preceding write operation, based on the times of occurrence; also each
read is placed in a bucket based on how much clock-time has elapsed since the
most recent write operation. By examining all the reads within a bucket, from a
single measurement run, or indeed aggregating over many runs, the probability
of observing the freshest value by a read is calculated. Repeating the experiment
through a week ensures that we will notice any daily or weekly variation in behavior.

5.2 Staleness of Data on Different Cloud Platforms 69

5.2 Staleness of Data on Different Cloud Platforms

Amazon SimpleDB

Amazon SimpleDB is a distributed key-value store offered by Amazon. Each key
has an associated collection of attributes, each with a value. For these experiments,
a data element is taken to be a particular attribute kept for a particular key, which
identifies, in SimpleDB terms, an item. SimpleDB supports a write operation call via
PutAttributes and two types of read operations, distinguished by a parameter in the
call to GetAttributes: eventual consistent read and consistent read. The consistent
read is supposed to ensure that the value returned always comes from the most
recently completed write operation, while an eventually consistent read does not
give this guarantee. This study investigates how these differences appear to the
customers who consume data.

Amazon SimpleDB is currently operated in several independent geographic
regions and each of them offers a distinct URL as its access point. For example,
https://sdb.us-west-1.amazonaws.com is the URL of SimpleDB operated in us-west
region. It is used as the testbed in all experiments. The benchmark application for
Amazon SimpleDB is implemented in Java and runs in Amazon EC2. It accesses
SimpleDB through its REST interface. The writer writes timestamps, each of which
is 14 bytes of string data, in a key-value pair. The reader reads a value from the same
key-value pair using eventual consistent read or consistent read option. The study
of Amazon SimpleDB comprises of both parts based on the access patterns. The
access patterns determine the location options of EC2 instances that the writer and
the reader could reside, including options of being in the same region or in different
regions.

Access Patterns

In the first pattern, the writer and reader run in the same single thread on an m1.small
instance provided by Amazon EC2 with Ubuntu 9.10. The instance is deployed
in the same region of SimpleDB, in the hope of minimizing the network latency.
Although, it is not guaranteed that data items from SimpleDB will be in the same
physical data center as the thread in EC2, using the same geographic region is the
best mechanism to the customer to reduce network latency. For this access pattern,
two consistency options, read-your-write and monotonic read are examined.

While in the second pattern, the writer and the reader are deliberately separated
to multiple threads, with the following configurations:

1. A writer and a reader run in different threads but in the same process. In this case,
read and write requests originate from the same IP address.

https://sdb.us-west-1.amazonaws.com

70 5 Database Replication of NoSQL Database-as-a-Service

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000

P
ro

b.
 to

 r
ea

d
fr

es
he

st
 v

al
ue

s

Time elapsed from completing write until starting read (ms)

Consistent Read Eventual Consistent Read

Fig. 5.2 Probability of reading freshest value

2. A writer and a reader run in different processes but in the same instance that is
also in the same geographic domain as the data storage in us-west region. In this
case, read and write requests still have the same IP address.

3. A writer and a reader run on different instances but both are still in the same
region. In this case, requests originate from different IP addresses but from the
same geographical region.

4. A writer and a reader run on different instances and different regions, one in
us-west region and one in eu-west region. In this case, requests originate from
different IP addresses in different regions.

The measurement is executed once every hour for 11 days from October 21,
2010. In total 26;500 writes and 3;975;000 reads were performed for accessing
from a single thread. Since only one thread is used in the first study, the average
throughput of reading and writing are 39:52 per second and 0:26 per second,
respectively, where each measurement runs at least for 5 min. The same set of
measurements was performed with eventual consistent read and with consistent
read.

In the study of accessing from multiple threads and processes, each experiment
was run for 11 days as well. In all four cases the probability of reading updated
values shows a similar distribution as in Fig. 5.2. Therefore, it is concluded that
customers of Amazon SimpleDB see the same data consistency model regardless
of where and how clients are placed. Hence, this section will focus on reporting
observations of accessing from single thread with regards to two consistency
options, read-your-write consistency and monotonic read consistency respectively.

5.2 Staleness of Data on Different Cloud Platforms 71

Table 5.1 Probability of reading freshest value

Time elapsed from
starting write until starting read Eventual consistent read Consistent read

Œ0; 450/ 33:40% (168;908/505;821) 100:00% (482;717/482;717)
Œ500; 1000/ 99:78% (1192/541;062) 100:00% (509;426/509;426)

Read-Your-Write Consistency

Figure 5.2 shows the probability of reading the fresh value plotted against the
time interval that elapsed from the time when the write begins, to the time when
the read is submitted. Each data point in the graph is an aggregation over all the
measurements for a particular bucket containing all time intervals that conform to
millisecond granularity. With eventual consistent read the probability of reading the
freshest data stays about 33% from 0 ms to 450 ms. It surges sharply between 450 ms
and 500 ms, and finally reaches 98% at 507 ms. A spike and a valley in the first 10 ms
are perhaps random fluctuations due to a small number of data points. While with
consistent read, the probability is 100% from about 0 ms onwards. To summarize
further, Table 5.1 places all buckets whose time is in a broad interval together and
shows actual numbers as well as percentages.

A type of relevant consistency is read-your-writes, which says that when the
most recent write is from the same thread as the reader, then the value seen should
be fresh. As stale eventual consistent reads are possible with Amazon SimpleDB
within a single thread, so it is concluded that eventual consistent reads do not satisfy
read-your-writes; however, consistent reads do achieve such level of consistency.

Moreover, the variability of the time is also examined when freshness is possible
or highly likely, among different measurement runs. For eventual consistent reads,
Fig. 5.3 shows the first time when a bucket has the freshness probability of over
99%, and the last time when the probability is less than 100%. Each data point
is obtained from a 5 min measurement run, so there are 258 data points in each
time series. The median of the time to exceed 99% is 516:17 ms and coefficient of
variance is 0:0258. There does not seem to be any regular daily or weekly variation,
rather the outliers seem randomly placed. Out of the 258 measurement runs, second
and twenty-first runs show a non-zero probability of stale read after 4,000 ms and
1,000 ms respectively. Those outliers are considered to be generated by network
jitter and other similar effects.

Monotonic Read Consistency

Monotonic read is an important consistency option [226]. It is defined as a condition
where subsequent operations see data that is at least as fresh as what was seen
before. This property can be examined across multiple data elements or for a single
element as is considered here. The consistent read meets monotonic as it should

72 5 Database Replication of NoSQL Database-as-a-Service

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Thu, O
ct 21

Fri, O
ct 22

Sat, O
ct 23

Sun, O
ct 24

M
on, O

ct 25
Tue, O

ct 26
W

ed, O
ct 27

Thu, O
ct 28

Fri, O
ct 29

Sat, O
ct 30

Sun, O
ct 31

T
im

e
el

ap
se

d
fr

om
 s

ta
rt

in
g

w
rit

e
(m

s)

First Time P >= 99% Last Time P < 100%

Fig. 5.3 Time to see freshness with eventual consistent read

Table 5.2 Successive eventual consistent reads

First read/Second read Stale Fresh

Stale 39:94% (189, 926) 21:08% (100, 1949)
Fresh 23:36% (111, 118) 15:63% (74, 337)

be, since each read should always see the most recent value. However, eventual
consistent read is not monotonic and indeed the freshness of a successive operation
seems essentially independent of what was seen before. Thus, eventual consistent
read also does not meet stronger consistency options such as causal consistency.

Table 5.2 shows the probability of observing fresh or stale values in each pair
of successive eventual consistent reads performed during the range from 0 ms
to 450 ms after the time of a write. The table also shows the actual number of
observations out of 475;575 of two subsequent reads performed in this measurement
study. The monotonic read condition is violated, that is the first read returns a fresh
value but the second read returns a stale value, in 23:36% of the pairs. This is
reasonably close to what one would expect of independent operations, since the
probability of seeing a fresh value in the first read is about 33% and the probability
of seeing a stale value in the second read is about 67%. The Pearson correlation
between the outcomes of two successive reads is 0:0281, which is very low, and it
is concluded that eventual consistent reads are independent from each other.

5.2 Staleness of Data on Different Cloud Platforms 73

Amazon S3

A similar measurement study was conducted on Amazon Simple Storage Service
(S3) for 11 days. In S3, storage consists of objects within buckets, so our writer
updates an object in a bucket with the current timestamp as its new value, and
each reader reads the object. In this experiment, measurements for the same five
configurations as SimpleDB’s case are conduced, including a writer and a reader
run in a single thread, different threads, different processes, different instances,
and different regions. Amazon S3 supports two types of write operations, namely
standard and reduced redundancy. A standard write operation stores an object so that
its probability of durability is at least 99:999;999;999%, while a reduced redundancy
write aims to provide at least 99:99% probability of durability. The same set of
measurements was performed with both standard write and reduced redundancy
write.

Documentation states that Amazon S3 buckets provide eventual consistency for
overwrite PUTS operations. However, no stale data was ever observed in this study
regardless of write redundancy options. It seems that staleness and inconsistency
might be visible to a customer of Amazon S3 only in executions in the event of a
failure in the particular nodes of the platform where the data is stored, during the
time of their access; this is a very low probability event.

Microsoft Windows Azure Table Storage and Blob Storage

The experiment was also conducted on Microsoft Windows Azure Table Storage
and Blob Storages for 8 days. Since it is not possible to start more than one process
on a single instance, specifically for a web role in this experiment, measurements
for four configurations are conducted: a write and a reader run in a single thread,
different threads, different instances or different regions. On Azure Table Storage a
writer updates a property of a table and a reader reads the same property. On Azure
Blob Storage a write updates a blob and a reader reads it.

The measurement study observed no stale data at all. It is known that all types of
Microsoft Windows Azure Storages support strong data consistency [165] and this
experiment confirms it.

Google App Engine Datastore

Similar to Amazon SimpleDB, Google App Engine Datastore keeps key-accessed
entities with properties and it offers two options for reading: strong consistent read
and eventual consistent read. However, the observed behavior for eventual consistent
read in the Datastore is completely different from that of Amazon SimpleDB.

74 5 Database Replication of NoSQL Database-as-a-Service

It is known that the eventual consistent read of Datastore reads from a secondary
replica only when a primary replica is unavailable. Therefore, it is expected that
customers see consistent data in most reads, regardless of the consistency option
they choose.

The benchmark application for Google App Engine Datastore is coded in Java
and deployed in Google App Engine. Applications deployed in App Engine are not
allowed to create threads; a thread automatically starts upon an HTTP request and
it can run for no more than 30 s. Therefore, each measurement on App Engine runs
for 27 s and measurements are executed every 10 min for 12 days. The same set of
measurements was performed with strong consistent read and eventual consistent
read. App Engine also offers no option to control the geographical location of
applications. Therefore, only two configurations are examined: a writer and a reader
are run in the same application, and a writer and a reader are run in different
applications. Each measurement consists of 9:4 writes and 2787:9 reads on average,
and in total 3;727;798 reads and 12;791 writes are recorded on average for each
configuration.

With strong consistent read no stale value was observed. With eventual consistent
read and both roles in the same application, no stale value was observed. However
11 out of 3;311;081 readings, approximately 3:3 � 10�4%, observed stale values
when a writer and an eventual consistent reader are run in different applications.
It is hard to conclude for certain whether stale values might sometimes be observed
when a writer and a reader are run in the same application. However, it suggests
the possibility that Google App Engine offers read-your-writes level of eventual
consistency. In any case, it is also clear that consistency errors are very rare.

5.3 Trade-Off Analysis of Amazon SimpleDB

In the hope of assisting the customer to make a well-informed decision about
consistency options for reading data, the trade-off analysis could be made by
considering consistency levels against response time and throughput, monetary cost,
and implementation ideas, respectively. The benchmark architecture described in
Sect. 5.1 is reused for the analysis. The measurement ran between 1 and 25 instances
in us-west region to read and write one attribute, which is a 14 bytes string data,
from an item in Amazon SimpleDB. Each instance runs 100 threads, acting as
emulated end-users, each of which executes one read or write request every second
in a synchronous manner. Thus, if all requests’ response time is below 1:000 ms,
the throughput of SimpleDB can be reported as 100% of the potential load. Three
different read/write ratios were studied, including 99/1, 75/25, and 50/50 cases. Each
measurement runs for 5 min with a set number of virtual machines, once every hour
for 1 day.

5.3 Trade-Off Analysis of Amazon SimpleDB 75

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 500 1000 1500 2000 2500

R
ea

d
R

T
T

 (
se

c)

Number of Emulated Clients (Threads)

Average

95.0 percentile

99.9 percentile

Consistent Read Eventual Consistent Read

Fig. 5.4 The average, 95 percentile, and 99:9 percentile response time of reads at various levels
of load

Response Time and Throughput

As advised in Amazon SimpleDB FAQs,1 the benefits of eventual consistent read
can be summarized as minimizing response time and maximizing throughput.
To verify this advice, the difference in response time, throughput, and availability of
the two consistency options is investigated, as the load is increased. Figure 5.4 shows
the average, 95 percentile, and 99:9 percentile response time of eventual consistent
reads and consistent reads at various levels of load. The result is obtained from
the case of 99% read ratio and all failed requests are excluded. The result shows
no visible difference in average response time. However, consistent read slightly
outperforms eventual consistent read in 95 percentile and 99:9 percentile response
time.

Figures 5.5 and 5.6 show the average response time of reads and writes at various
read/write ratios, plotted against the number of emulated end-users. A conclusion
could be drawn that changing the level of replication intensity has a negligible
impact on the read and write response times. Intuitively, it would be surprised that
eventual consistent read does not outperform the consistent read as expected, but it
is still reasonable if the possible implementation ideas are taken into consideration.
Figure 5.7 shows the absolute throughput, the average number of processed requests
per second. Whiskers are plotted surrounding each average with the corresponding
minimum and maximum throughput. Similar to the response time, consistent read
results slightly outperforms that of eventual consistent read, though the difference is
not significant. Figure 5.8 shows the throughput as a percentage of what is possible

1http://aws.amazon.com/simpledb/faqs/.

http://aws.amazon.com/simpledb/faqs/.

76 5 Database Replication of NoSQL Database-as-a-Service

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 500 1000 1500 2000 2500

A
ve

ra
ge

 R
ea

d
R

T
T

 (
se

c)

Number of Emulated Clients (Threads)

Consistent - 99% read
Consistent - 75% read
Consistent - 50% read

Eventual Consistent - 99% read
Eventual Consistent - 75% read
Eventual Consistent - 50% read

Fig. 5.5 Response time of reads at various read/write ratios on Amazon SimpleDB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 500 1000 1500 2000 2500

A
ve

ra
ge

 W
rit

e
R

T
T

 (
se

c)

Number of Emulated Clients (Threads)

Consistent - 99% read
Consistent - 75% read
Consistent - 50% read

Eventual Consistent - 99% read
Eventual Consistent - 75% read
Eventual Consistent - 50% read

Fig. 5.6 Response time of writes at various read/write ratios on Amazon SimpleDB

with this number of end-users. As the response time increased, each end-user
sent less than one request every second and, therefore, the throughput percentage
decreased.

It must be noted that Amazon SimpleDB often returns exceptions with status
code 503, representing “Service is currently unavailable”, under heavy load.
Figure 5.9 shows the average failure rates of eventual consistent reads and consistent
reads, with each data point being marked with whiskers to highlight the correspond-
ing maximum and minimum failure rates. Clearly the failure rate increased as the
load increased, but again the observation is that eventual consistent read does less
well than consistent read, although the difference is not significant.

5.3 Trade-Off Analysis of Amazon SimpleDB 77

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

0 500 1000 1500 2000 2500

A
bs

ol
ut

e
T

hr
ou

gh
pu

t (
re

q/
se

c)

Number of Emulated Clients (Threads)

Consistent Read

Eventual Consistent Read

Fig. 5.7 Processed requests of Amazon SimpleDB

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 500 1000 1500 2000 2500

T
hr

ou
gh

pu
t P

er
ce

nt
ag

e
(%

)

Number of Emulated Clients (Threads)

Consistent Read

Eventual Consistent Read

Fig. 5.8 Throughput percentage of Amazon SimpleDB

Monetary Cost

A new perspective on which customers are usually concerned in the context of
cloud computing is the trade-off against monetary cost. In us-west region, Amazon
SimpleDB charges $0:154 per SimpleDB machine hour, which is the amount of
cost for using SimpleDB server capacity to complete requests, and therefore can
vary depending on factors such as operation types and the amount of data to access.
The monetary costs of two read consistency options for the runs described above
are compared based on reported SimpleDB machine hour usage. Because the read
operations of all runs constantly read 14 bytes string data from SimpleDB, the cost
of read is constant, at $1:436 per one million requests, regardless of the consistency

78 5 Database Replication of NoSQL Database-as-a-Service

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 500 1000 1500 2000 2500

Fa
ilu

re
 R

at
e

(%
)

Number of Emulated Clients (Threads)

Consistent Read

Eventual Consistent Read

Fig. 5.9 Request failure rate of Amazon SimpleDB

options or workload. Also, the cost of write operations is constant at $3:387 per
one million requests as well, because the write operations of all runs always update
SimpleDB with 14 bytes string data.

Although there is no published details about the implementation of Amazon
SimpleDB, based on experiments, a few implementation ideas of SimpleDB can still
be extracted. It seems feasible that Amazon SimpleDB maintains each item stored
in three replicas, one primary and two secondaries. It is suspected that an eventually
consistent read chooses one replica at random, and returns the value found there,
while a consistent read will return the value from the primary. This aligns with
previous experiment results showing the same latency and computational effort for
the two kinds of read.

5.4 Discussion

This chapter reports on the performance and consistency of various cloud-based
NoSQL storage platforms, as observed during some experiments. However, it is
hard to say whether results can be extrapolated to predict expected experience for
customers when using one of the platforms as all the usual caveats of benchmarks
measurements still apply. For example, the workload may not be representative of
the customers’ needs, the size of the writes in the experiments is too small, and
the number of data elements is small. Similarly, the metrics quoted may not be
what matters to the customer as well, for example, the customer may be more or
less skilled in operating the system; the experiments were not run for sufficiently
long periods and the figures might reflect chance occurrences rather than system
fundamentals.

5.4 Discussion 79

Additionally, there are other particular issues when measuring cloud computing
platforms. The cloud service provider moves on quickly and might change any
aspect of hardware or software without providing sufficient advance notice to
the customers. For example, even if the algorithm used by a platform currently
provides read-your-writes, the cloud service provider could shift to a different
implementation that does not provide the current guarantee. As another example,
a cloud service provider that currently places all replicas within a single data
center might implement geographical distribution, with replicas stored across data
centers for better reliability. Such a change could happen without awareness of the
customers, but it might lead to a situation where eventual consistent reads have
observably better performance than consistent reads. Similarly, the background
load on the cloud computing platforms might have a large impact, on latency or
availability or consistency, but the customer cannot control or even measure what
that load is at any time [208]. For all these reasons, our current observations that
eventual consistent reads are no better for the customer, might not hold true in the
future.

Also taking the observations reported in this chapter as an example, The reported
results are mainly obtained during October and November in 2011. Before that a
similar experiments were conducted in May 2011 as well. By doing the comparison,
most aspects were similar between the two sets of experiments, in particular the
500 ms latency till Amazon SimpleDB reached 99% chance for a fresh response
to a read, the high chance of fresh data in eventual consistent reads in Amazon
S3, Microsoft Windows Azure Blob Storage, and Google App Engine Datastore,
and the lack of performance difference between SimpleDB for reads with different
consistency. Other aspects had changed, for example in the earlier measurements
there was less variation in the response time seen by reads on SimpleDB.

In order to achieve high availability and low latency, many NoSQL storage
platforms drop the guarantee of strong consistency, by avoiding two-phase commit
or synchronous access to a quorum of sites. Therefore, it is commonly said that
developers should work around this by designing applications that can work with
eventual consistency or similar weaker models. This chapter also examined the
experience of the customer of NoSQL storage, in regard to weak consistency
and possible performance trade-offs to justify its use, specifically by focusing on
Amazon SimpleDB. This information should help a developer who is seeking to
understand the new NoSQL storage platforms, and who needs to make sensible
choices about choosing the right storage platform.

This chapter found that platforms differed widely in how much weak consistency
is seen by customers. On some platforms, the customer is not able to observe any
inconsistency or staleness in the data, over several million reads through a week.
It seems that inconsistency is presumably possible, but are very rare. It might only
happen if there is a failure of the NoSQL storage platforms. Therefore, the risk
of inconsistency seems less important when compared to other sources of data
corruption, such as bad data entry, operator error, customers repeating input, fraud
by insiders, and etc. Any system design needs to have recourse to manual processes
to fix the mistakes and errors from these other sources, and the same processes

80 5 Database Replication of NoSQL Database-as-a-Service

should be able to cover rare inconsistency-induced difficulties. On these platforms,
it might be an option for the developer to sensibly treat eventual consistent reads
as if they are consistent, accepting the rare errors as being unavoidable and thus its
impact needs to be carefully managed.

On Amazon SimpleDB, the customer who requests eventual consistent reads
experiences frequent stale reads. Also, this choice does not provide other desirable
options like read-your-writes and monotonic reads. Thus the developer who uses
eventual consistent reads must take great care in application design, to code around
the potential dangers. However, in regard to no incentive in reducing latency,
observed availability, and monetary cost, there is, in fact, no compensating benefit
for the developer from choosing eventual consistent reads instead of using consistent
reads. There may be benefits to the service provider when eventual consistent reads
are done, but at present these gains have not been passed on to the customer. Thus
on this platform in its current implementation, there is no significant monetary and
performance benefits for a developer to code with eventual consistent reads.

Chapter 6
Replicating Virtualized Database Servers

In general, virtualization technology is increasingly being used to improve the
manageability of software systems and lower their total cost of ownership.
Resource virtualization technologies add a flexible and programmable layer of
software between applications and the resources used by these applications. One
among several approaches for deploying data-intensive applications in cloud
platforms, called the virtualized database servers approach, takes advantage
of virtualization technologies by taking an existing application designed for a
conventional data center, and then porting it to run on virtual machines in the public
cloud. Such migration process usually requires minimal changes in the architecture
or the code of the deployed application. In this approach, database servers, like any
other software components, are migrated to run in virtual machines. One of the
main advantages of this approach is that the application can have full control in
dynamically allocating and configuring the physical resources of the database tier
as needed. Hence, software applications can fully utilize the elasticity feature of
the cloud environment to achieve their defined and customized scalability or cost
reduction goals. In addition, this approach enables the software applications to build
their geographically distributed database clusters. Without the cloud, building such
in-house cluster would require self-owned infrastructure which represent an option
that can be only afforded by big enterprises.

A common feature to the different cloud offerings of the NoSQL database as
a service and the relational database as a service is the creation and manage-
ment of multiple replicas of the stored data while a replication architecture is
running behind-the-scenes to enable automatic failover management and ensure
high availability of the service. In the previous chapter, experimental investigation
of customer-based observations of the consistency, data staleness and performance
properties of various cloud NoSQL databases have been carried out. In this chapter,
virtualized database servers are the main target for exploration. The aim is to set a
first yard stone in evaluating the performance characteristics of virtualized database

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__6,
© Springer International Publishing Switzerland 2014

81

82 6 Replicating Virtualized Database Servers

servers in cloud environment. In particular, this chapter focuses on addressing the
following questions with regards to the master-slave database replication strategy
on Amazon EC2:

• How well does the master-slave replication strategy scale with an increasing
workload and an increasing number of virtualized database replica servers in
cloud? In principle, we try to understand what factors act as limits on achievable
scale.

• What is the average replication delay or window of data staleness that could exist
with an increasing number of virtualized database replica servers and different
configurations to the geographical locations of the slave databases?

The remainder of this chapter is structured as follows. In Sect. 6.1, a few design
decisions that are related to the benchmark application are explained, including
customizing Cloudstone implementing fine-grained time/date function in MySQL,
and applying clock synchronization in cloud. Meanwhile, Sect. 6.2 details the
implementation of the experimental framework and the experimental environment.
While the results of our experiments are presented in Sect. 6.3. Finally, the
conclusion of the experiments are discussed Sect. 6.4.

6.1 Design of Benchmark Application

Figure 6.1 shows the overall architecture of relational database as a service
benchmark application. In general, it is a three-layer implementation. The first
layer is a customized Cloudstone benchmark [1] which controls the read/write
ratio and the workload. The second layer includes a master database that receives
write operations from the benchmark and is responsible for propagating writesets to
slaves. The third layer is a group of slaves which are responsible for processing read
operations and updating writesets.

The design of the benchmark tool is relational-database-focused and replication-
precision-driven [242]. Therefore, there are several issues need to be addressed
during the design of the benchmark application. Such as enforcing Cloudstone
to benchmark database tier only, enabling the ability of benchmarking replication
delay, tweaking time/date function in MySQL for precious resolution to calculate
a replication delay, and enforcing clock synchronizations. All the detailed design
decisions are discussed as following.

Customized Cloudstone

The Cloudstone benchmark has been designed as a performance measurement tool
for Web 2.0 applications. The benchmark mimics a Web 2.0 social events calendar
that allows users to perform individual operations such as browsing, searching,

6.1 Design of Benchmark Application 83

us-west eu-west ap-southeast ap-northeast

L2

us-east-1a
us-east-1bL3

Cloudstone benchmark

Master

Slave1 Slavek Slavek+1 Slaven

Slave1 Slavek Slavek+1 Slaven

M write
operations

N
 read operations (distributed)

Replication within the same region and the same availability zone

Replication within the same region but across availability zones

Slave1 Slaven

Replication across regions

us-east

M / N satisfies pre-defined read/write ratioL1

Slave1 Slaven Slave1 Slaven Slave1 Slaven

Fig. 6.1 The architecture of relational database as a service benchmark application

and creating events, as well as, social operations such as joining and tagging
events [210]. Unlike Web 1.0 applications, Web 2.0 applications impose many
different behavioral demands on the database. One of the differences is on the write
pattern. As contents of Web 2.0 applications depend on user contributions via blogs,
photos, videos and tags. More write transactions are expected to be processed.
Another difference is on the tolerance with data consistency. In general, Web 2.0
applications are more acceptable to data staleness. For example, it might not be a
mission-critical goal for a social network application like Facebook to immediately
have a user’s new status available to his friends. However, a consistency window
of some seconds or even some minutes would be still acceptable. Therefore, it is
believed that the design and workload characteristics of the Cloudstone benchmark
is more suitable to the purpose of the study rather than other benchmarks such
as TPC-W [49] or RUBiS [42] which are more representative of Web 1.0-like
applications.

The original software stack of Cloudstone consists of three components: web
application, database, and load generator. Throughout the benchmark, the load
generator generates load against the web application which in turn makes use of
the database. The benchmark has been designed for benchmarking the performance
of each tier for Web 2.0 applications. However, the original design of the benchmark
limits the purpose of the experiments by mainly focusing on the database tier

84 6 Replicating Virtualized Database Servers

of the software stack where it is hard to push the database to its performance
limit. In general, a user’s operation which is sent by a load generator has to be
interpreted as database transactions in the web tier based on a predefined business
logic before passing the request to the database tier. Thus the saturation on the web
tier usually happens earlier than the saturation on the database tier. To prevent
this from happening, the design of the original software stack is modified by
removing the web server tier. In particular, the business logic of the application
is re-implemented in a way that an end-user’s operation can be processed directly
at the database tier without any intermediate interpretation at the web server
tier. Meanwhile, on top of Cloudstone, a DBCP1 connection pool and a MySQL
Connector/J2 are implemented. The pool component enables the application users
to reuse the connections that have been released by other users who have completed
their operations in order to save the overhead of creating a new connection for
each operation. The proxy component works as a load balancer among the available
virtualized database replica servers where all write operations are sent to the master
while all read operations are distributed among slaves.

MySQL Replication with a Fine-Grained Time/Date Function

Multiple MySQL replication are deployed to compose the database tier. Two
components are implemented to monitor replication delay in MySQL, including
a Heartbeats database and a time/date function for each virtualized database replica
server. The Heartbeats database, synchronized in the form of an SQL statement
across replica servers, maintains a heartbeat table which records an id and a
timestamp in each row. A heartbeat plug-in for Cloudstone is implemented to
periodically insert a new row with a global id and a local timestamp to the master
during the experiment. Once the insert query is replicated to slaves, every slave
re-executes the query by committing the global id and its own local timestamp. The
replication delay from the master to slaves is then calculated as the difference of two
timestamps between the master and each slave. In practice, there are two challenges
with respect to achieving a fine-grained measurement of replication delay: the
resolution of the time/date function and the clock synchronization between the
master and slaves. The time/date function offered by MySQL has a resolution of
a second which represents an unacceptable solution because accurate measuring
of the replication delay requires a higher precision. Thus, a user defined time/date
function with a microsecond resolution is implemented based on a proposed solution
to MySQL Bug #85233. The clock synchronizations between the master and slaves

1http://commons.apache.org/dbcp/
2http://www.mysql.com/products/connector/
3http://bugs.mysql.com/bug.php?id=8523

http://commons.apache.org/dbcp/
http://www.mysql.com/products/connector/
http://bugs.mysql.com/bug.php?id=8523

6.1 Design of Benchmark Application 85

are maintained by Network Time Protocol (NTP)4 on Amazon EC2. The system
clock is set to synchronize with multiple time servers every second to have a better
resolution. More details in dealing with the clock synchronization issue in the cloud
will be discussed in Sect. 6.1.

With the customized Cloudstone5 and the heartbeat plug-in, it is possible
to achieve the goal of measuring the end-to-end database throughput and the
replication delay. In particular, two configurations of the read/write ratios, 50/50
and 80/20 are defined. More over, three configurations of the geographical locations
based on availability zones and regions are also defined and listed as follows where
availability zones are defined as distinct locations within a region and zones are
separated into geographic areas or countries:

• Same zone: all slaves are deployed in the same availability zone of a region of
the master database.

• Different zones: all slaves are in the same region as the master database, but in
different availability zones.

• Different regions: all slaves are geographically distributed in a different region
from where the master database is located.

The workload and the number of virtualized database replica servers start with a
small number and gradually increase at a fixed step. Both numbers stop increasing
if there are no throughput gained.

Clock Synchronization in Cloud

The clock synchronization issue refers to the fact that internal clocks of physical
machines may differ due to the initial clock setting and subsequent clock drift.
It results in time differences between two machines even though both machines
perform the read operation at the same time. This issue could also happen to
instances in the cloud environment, if two instances are deployed in distinct physical
machines where the clock is not shared. As a matter of fact, it has been observed
by [199] that all instances launched by a single Amazon EC2 account never run in
the same physical node. Hence, all running instances that belong to a single account
will exhibit the clock synchronization issue.

The replication delay in experiments is measured based on committed local
timestamps on two or more virtualized database replica servers. Thus, the clock
synchronization issue also exists in the replication delay. As the study is more
interested in the changes of replication delay, rather than that of accuracy, an
average relative replication delay is adopted to eliminate the time differences
introduced by the clock synchronization issue. The average relative replication

4http://www.ntp.org/
5http://code.google.com/p/clouddb-replication/

http://www.ntp.org/
http://code.google.com/p/clouddb-replication/

86 6 Replicating Virtualized Database Servers

delay is represented as the difference between two average replication delays on the
same slave. One average replication delay represents the average of delays without
running workloads while another represents the average of delays under a number
of concurrent users. Both average is sampled with the top 5% and the bottom 5%
data removed as outliers, because of network fluctuation. As both average delays
come with stable time differences with NTP protocol enabled every second, the
time difference can then be eliminated subtracting the difference. In experiments,
the NTP is set to synchronize with multiple time servers every second for a more
stable time difference.

6.2 Implementation of Benchmark Application

As the Fig. 6.1 illustrated, the replication experiments are conducted in
Amazon EC2. The experiment setup is a three-layer implementation. The
Cloudstone benchmark in the first layer controls the read/write ratio and
the workload by separately adjusting the number of read and write operations and
the number of concurrent users. As a large number of concurrent users emulated by
the benchmark could be very resource-consuming, the benchmark is deployed in a
large instance to avoid any overload on the application tier. The master database in
the second layer receives the write operations from the benchmark and is responsible
for propagating the writesets to the slaves. The master database runs in a small
instance so that saturation is expected to be observed early. Both the master database
server and the application benchmark are deployed in location of us-east-1a. The
slaves in the third layer are responsible for processing read operations and updating
writesets. The number of slaves in a group varies from one to the number where
throughput limitation is hit. Several options for the deployment locations of the
slaves have been used, namely, the same zone as the master in us-east-1a, different
zones in us-east-1b and four possible different regions, ranging among us-west,
eu-west, ap-southeast and ap-northeast. All slaves run in small instances for the
same reason of provisioning the master instance.

Several sets of experiments have been implemented in order to investigate the
end-to-end throughput and the replication delay. Each of these sets is designed
to target a specific configuration regarding the geographical locations of the
slave databases and the read/write ratio. Multiple runs are conducted by compound-
ing different workloads and numbers of slaves. The benchmark is able to push the
database system to a limit where no more throughput can be obtained by increasing
the workload and the number of virtualized database replica servers. Every run lasts
35 m, including 10 m for ramp-up, 20 m for steady stage and 5 m for ramp-down.
Moreover, for each run, both the master and slaves should start with a preloaded,
fully-synchronized database.

6.3 Trade-Off Analysis of Virtualized Database Servers 87

6.3 Trade-Off Analysis of Virtualized Database Servers

End-to-End Throughput

Figure 6.2 to 6.7 show the throughput trends for up to 4 and 11 slaves with mixed
configurations of three locations and two read/write ratios. Both experiment results
indicate that MySQL with asynchronous master-slave replication is limited to scale
due to the saturation that happened to the master database.

In particular, the throughput trends react to saturation movement and transition
in virtualized database replica servers in regard to an increasing workload and
an increasing number of replica servers. In general, the observed saturation point
(the point right after the observed maximum throughput of a number of slaves),
appearing in slaves at the beginning, moves along with an increasing workload
when more slaves are synchronized to the master. But eventually, the saturation will
transit from slaves to the master where the scalability limit is achieved. Taking the
Fig. 6.5 of throughput trends with configurations of same zone and 50/50 ratio as an
example, the saturation point of 1 slave is initially observed under 100 workloads
due to the full utilization of the slave’s CPU. When a 2nd slave is attached, the
saturation point shifts to 175 workloads where both slaves reach their maximum
CPU utilization while the master’s CPU usage rate is also approaching its limit.
Thus, ever since the 3rd slave is added, 175 workloads remain as the saturation
point, but with the master being saturated instead of the slaves. Once the master

50 75 100 125 150 175 200
0

5

10

15

20

25

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
(o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Number of concurrent users

1 slave
2 slaves
3 slaves
4 slaves

Fig. 6.2 End-to-end throughput with 50/50 read/write ratio and 300 initial data size in the same
zone

88 6 Replicating Virtualized Database Servers

50 75 100 125 150 175 200
0

5

10

15

20

25

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
(o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Number of concurrent users

1 slave
2 slaves
3 slaves
4 slaves

Fig. 6.3 End-to-end throughput with 50/50 read/write ratio and 300 initial data size in different
zones

50 75 100 125 150 175 200
0

5

10

15

20

25

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
(o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Number of concurrent users

1 slave
2 slaves
3 slaves
4 slaves

Fig. 6.4 End-to-end throughput with 50/50 read/write ratio and 300 initial data size in different
regions

6.3 Trade-Off Analysis of Virtualized Database Servers 89

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
(o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Number of concurrent users

1 slave 2 slaves
3 slaves 4 slaves
5 slaves 6 slaves
7 slaves 8 slaves
9 slaves 10 slaves
11 slaves

Fig. 6.5 End-to-end throughput with 80/20 read/write ratio and 600 initial data size in the same
zone

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
(o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Number of concurrent users

1 slave 2 slaves
3 slaves 4 slaves
5 slaves 6 slaves
7 slaves 8 slaves
9 slaves 10 slaves
11 slaves

Fig. 6.6 End-to-end throughput with 80/20 read/write ratio and 600 initial data size in different
zones

90 6 Replicating Virtualized Database Servers

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
(o

pe
ra

tio
ns

 p
er

 s
ec

on
d)

Number of concurrent users

1 slave 2 slaves
3 slaves 4 slaves
5 slaves 6 slaves
7 slaves 8 slaves
9 slaves 10 slaves
11 slaves

Fig. 6.7 End-to-end throughput with 80/20 read/write ratio and 600 initial data size in different
regions

is in the saturation status, adding more slaves does not help with improving the
scalability because the overloaded master fails to offer extra capacity for improving
write throughput to maintain the read/write ratio that corresponds to the increment
of the read throughput. Hence, the read throughput is constrained by the benchmark,
for the purpose of maintaining the predefined read/write ratio at 50/50. The slaves
are over provisioned in the case of 3 and 4 slaves, as the suppressed read throughput
prevents slaves from being fully utilized. The similar saturation transition also
happens to 3 slaves at 50/50 ratio in different zones and different regions in Figs. 6.3
and 6.4 respectively, 10 slaves at 80/20 ratio in the same zone and different zones
in Figs. 6.5 and 6.6 respectively, and also 9 slaves at 80/20 ratio in different regions
in 6.7.

The configuration of the geographic locations is a factor that affects the end-to-
end throughput, in the context of locations of users. In the case of our experiments,
since all users emulated by Cloudstone send read operations from us-east-1a,
distances between the users and the slaves increase by following in the order of
same zone, different zones and different regions. Normally, a long distance incurs
a slow round-trip time, which results in a small throughput for the same workload.
Therefore, it is expected that a decrease of maximum throughput can be observed
when configurations of locations follow the order of same zone, different zones
and different regions. Moreover, the throughput degradation is also related to
read percentages, the higher percentage the larger degradation. It explains why
degradation of maximum throughput is more significant with the configuration of

6.3 Trade-Off Analysis of Virtualized Database Servers 91

80/20 read/write ratio as shown in Figs. 6.5–6.7. Hence, it is a good strategy to
distribute replicated slaves to places that are close to users to improve end-to-end
throughput.

The performance variation of instances is another factor that needs to be
considered when deploying a database in the cloud. For throughput trends of 1 slave
at 50/50 read/write ratio with configurations of different zones and different regions,
respectively, if the configuration of locations is the only factor, it is expected that the
maximum throughput in different zones in Fig. 6.3 would be larger than the one in
different regions in Fig. 6.4. However, the main reason of throughput difference here
is caused by the performance variation of instances rather than the configuration of
the locations. The 1st slave from the same zone runs on top of a physical machine
with an Intel Xeon E5430 2.66 GHz CPU. While another 1st slave from different
zones is deployed in a physical machine powered by an Intel Xeon E5507 2.27 GHz
CPU. Because of the performance differences between physical CPUs, the slave
from the same zone performs better than the one from different zones. Previous
research indicated that the coefficient of variation of CPU of small instances is
21% [208]. Therefore, it is a good strategy to validate the instance performance
before deploying applications into the cloud, as poor-performing instances are
launched randomly and can largely affect application performance.

Replication Delay

Figure 6.8–6.13 show the trends of the average relative replication delay for up to
4 and 11 slaves with mixed configurations of three locations and two read/write
ratios. The results of both figures imply that the impact of the configurations of
the geographical locations on replication delay is less important than that from
the workload characteristics. The trends of the average relative replication delay
respond to an increasing workload and an increasing number of virtualized database
replica servers. For most cases, with the number of virtualized database replica
servers being kept constant, the average relative replication delay surges along
with an increasing workload. Because an increasing workload leads to more read
and write operations sent to the slaves and the master database, respectively, the
increasing read operations result in a higher resource demand on every slave, while
the increasing write operations on the master database leads to, indirectly, increasing
resource demand on slaves as more writesets are propagated to be committed on
slaves. The two increasing demands push resource contention higher, resulting in
the delay of committing writesets which subsequently increasing replication delay.
Similarly, the average relative replication delay decreases along with an increasing
number of replica servers as adding a new slave leads to a reduction in the resource
contention and hence decreasing the replication delay. The configuration of the
geographic location of the slaves play a less significant role in affecting replication
delay, in comparison to the change of the workload characteristics. We measured
the 1/2 round-trip time between the master in us-west-1a and the slave that uses

92 6 Replicating Virtualized Database Servers

50 75 100 125 150 175 200
100

101

102

103

104

105

106

A
ve

ra
ge

 r
el

at
iv

e
re

pl
ic

at
io

n
de

la
y

(m
ill

is
ec

on
d)

Number of concurrent users

1 slave
2 slaves
3 slaves
4 slaves

Fig. 6.8 Average relative replication delay with 50/50 read/write ratio and 300 initial data size in
the same zone

50 75 100 125 150 175 200
100

101

102

103

104

105

106

A
ve

ra
ge

 r
el

at
iv

e
re

pl
ic

at
io

n
de

la
y

(m
ill

is
ec

on
d)

Number of concurrent users

1 slave
2 slaves
3 slaves
4 slaves

Fig. 6.9 Average relative replication delay with 50/50 read/write ratio and 300 initial data size in
different zones

6.3 Trade-Off Analysis of Virtualized Database Servers 93

50 75 100 125 150 175 200
100

101

102

103

104

105

106

A
ve

ra
ge

 r
el

at
iv

e
re

pl
ic

at
io

n
de

la
y

(m
ill

is
ec

on
d)

Number of concurrent users

1 slave
2 slaves
3 slaves
4 slaves

Fig. 6.10 Average relative replication delay with 50/50 read/write ratio and 300 initial data size
in different regions

50 100 150 200 250 300 350 400 450
10-1

100

101

102

103

104

105

A
ve

ra
ge

 r
el

at
iv

e
re

pl
ic

at
io

n
de

la
y

(m
ill

is
ec

on
d)

Number of concurrent users

1 slave 2 slaves
3 slaves 4 slaves
5 slaves 6 slaves
7 slaves 8 slaves
9 slaves 10 slaves
11 slaves

Fig. 6.11 Average relative replication delay with 80/20 read/write ratio and 600 initial data size
in the same zone

94 6 Replicating Virtualized Database Servers

50 100 150 200 250 300 350 400 450
10-1

100

101

102

103

104

105

A
ve

ra
ge

 r
el

at
iv

e
re

pl
ic

at
io

n
de

la
y

(m
ill

is
ec

on
d)

Number of concurrent users

1 slave 2 slaves
3 slaves 4 slaves
5 slaves 6 slaves
7 slaves 8 slaves
9 slaves 10 slaves
11 slaves

Fig. 6.12 Average relative replication delay with 80/20 read/write ratio and 600 initial data size
in different zones

50 100 150 200 250 300 350 400 450
10-1

100

101

102

103

104

105

A
ve

ra
ge

 r
el

at
iv

e
re

pl
ic

at
io

n
de

la
y

(m
ill

is
ec

on
d)

Number of concurrent users

1 slave 2 slaves
3 slaves 4 slaves
5 slaves 6 slaves
7 slaves 8 slaves
9 slaves 10 slaves
11 slaves

Fig. 6.13 Average relative replication delay with 80/20 read/write ratio and 600 initial data size
in different regions

6.4 Discussion 95

different configurations of geographic locations by running ping6 command every
second for a 20-minute period. The results suggest an average of 16, 21, and 173 ms
for the 1/2 round-trip time for the same zone in Figs. 6.8 and 6.11, different zones
in Figs. 6.9 and 6.12, and different regions in Figs. 6.10 and 6.13, respectively.
However, the trends of the average relative replication delay can usually go up to
two to four orders of magnitude as shown from Figs. 6.8–6.10, or one to three orders
of magnitude as shown in Figs. 6.11–6.13. Therefore, it could be suggested that
the geographic replication would be applicable in the cloud as long as workload
characteristics can be well managed, such as having a smart load balancer which is
able to balance the operations based on the estimated processing time.

6.4 Discussion

In practice, there are different approaches for deploying data-intensive applications
in cloud platforms. In this chapter, the study is focused on the virtualized database
servers approach where the resources of the database tiers are migrated to virtual
machines in the public cloud. The behavior of the master-slave database replication
strategy on Amazon EC2 has been experimentally evaluated using the Cloudstone
benchmark and MySQL databases. The experiments involved two configurations
of different workload read/write ratios, namely 50/50 and 80/20, and different
configuration of the geographical locations of the virtualized database replica
servers.

The results of the study show that the performance variation of the dynamically
allocated virtual machines is an inevitable issue that needs to be considered when
deploying database in the cloud. Clearly, it affects the end-to-end throughput. Addi-
tionally, different configurations of geographic locations can also noticeably affect
the end-to-end throughput. For most cases, as the number of workload increases,
the replication delay increases. However, as the number of slaves increases, the
replication delay is found decreases. The effect of the configurations of geographic
location is not as significant as increasing workloads in affecting the replication
delay.

6http://linux.die.net/man/8/ping

http://linux.die.net/man/8/ping

Chapter 7
SLA-Driven Database Replication
on Virtualized Database Servers

One of the main advantages of the cloud computing paradigm is that it simplifies the
time-consuming processes of hardware provisioning, hardware purchasing and soft-
ware deployment. Currently, the increasing numbers of cloud-hosted applications
are generating and consuming increasing volumes of data at an unprecedented scale.
Cloud-hosted database systems, such as virtualized database servers, powering these
applications form a critical component in the software stack of these applications.
Service level agreements (SLAs) represent the contract which captures the agreed
upon guarantees between a service provider and its customers. The specifications of
existing SLA for cloud services are not designed to flexibly handle even relatively
straightforward performance and technical requirements of customer applications.

In this chapter, the problem of adaptive customer-centric management for
replicated virtualized database servers in single or multiple data centers is tackled.
A novel adaptive approach for SLA-based management of virtualized database
servers from the customer perspective is presented. The framework is database
platform-agnostic, supports virtualized database servers, and requires zero source
code changes of the cloud-hosted software applications. It facilitates dynamic
provisioning of the database tier in software stacks based on application-defined
policies for satisfying their own SLA performance requirements, avoiding the cost
of any SLA violation and controlling the monetary cost of the allocated computing
resources. In this framework, the SLA of the customer applications are declaratively
defined in terms of goals which are subjected to a number of constraints that are
specific to the application requirements. The framework continuously monitors
the application-defined SLA and automatically triggers the execution of necessary
corrective actions, such as scaling out the database tier, when required. Therefore,
the framework is able to keep several virtualized database replica servers in different
data centers to support the different availability, scalability and performance
improvement goals. The experimental results demonstrate the effectiveness of the
SLA-based framework in providing the customer applications with the required
flexibility for achieving their SLA requirements.

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__7,
© Springer International Publishing Switzerland 2014

97

98 7 SLA-Driven Database Replication on Virtualized Database Servers

The remainder of this chapter is structured as follows. Section 7.2 introduces the
architecture of the adaptive framework. Details of the experiment implementation
of the different components of the framework are discussed on Sect. 7.3. Then,
the results of the experimental evaluation for the performance of the approach are
presented in Sect. 7.4, followed by discussions and conclusions in Sect. 7.7.

7.1 SLA Management for Virtualized Database Servers

Cloud-based data management poses several challenges which go beyond traditional
database technologies. In principle, outsourcing the operation of database applica-
tions to a cloud provider who, on the one hand, takes responsibility for providing the
infrastructure and maintaining the system but, on the other hand, this cloud provider
need to pool resources and operate them in a cost-efficient and dynamic way promise
cost savings and elasticity in usage. In practice, most customers of cloud services
will be willing to move their on premise setup to a cloud-hosted environment only
if they can guarantee that their data are kept securely and privately as well as non-
functional properties such as availability or performance are can be maintained.

An SLA is a contract between a service provider and its customers. SLAs capture
the agreed upon guarantees between a service provider and its customer. They define
the characteristics of the provided service including service level objectives (SLOs),
such as maximum response times, minimum throughput rates, and data freshness,
and define penalties if these objectives are not met by the service provider. In
general, SLA management is a common general problem for the different types
of software systems which are hosted in cloud environments for different reasons
such as the unpredictable and bursty workloads from various users in addition to the
performance variability in the underlying cloud resources. In particular, there are
three typical parties in the cloud. To keep a consistent terminology through out the
rest of this chapter, these parties are defined as follows:

• Cloud service providers: They offer the client provisioned and metered com-
puting resources, such as CPU, storage, memory, and network, for rent within
flexible time durations. In particular, they include: infrastructure as a service
providers and platform as a service providers. The platform as a service providers
can be further broken into several subcategories of which database as a service
provider is one of them.

• Cloud customers: They represent the cloud-hosted software applications that
utilize the services of cloud service providers and are financially responsible
for their resource consumptions. Most of software as a service providers can
be categorized into this party.

• End-users: They represent the legitimate users for the services or applications
that are offered by cloud customers.

While cloud service providers charge cloud customers for renting computing
resources to deploy their applications, cloud customers may or may not charge their

7.1 SLA Management for Virtualized Database Servers 99

Fig. 7.1 SLA parties in cloud environments

end-users for processing their workloads, depending on the customers’ business
model. In both cases, the cloud customers need to guarantee their users’ SLA.
Otherwise, penalties are applied, in the form of lost revenue or reputation. For
example, Amazon found that every 100 ms of latency costs them 1 % in sales and
Google found that an extra 500 ms in search page generation time dropped traffic
by 20 %.1 In addition, large scale Web applications, such as eBay and Facebook,
need to provide high assurances in terms of SLA metrics such as response times and
service availability to their end-users. Without such assurances, service providers of
these applications stand to lose their end-user base, and hence their revenues.

In practice, resource management and SLA guarantee falls into two layers: the
cloud service providers and the cloud customers. In particular, the cloud service
provider is responsible for the efficient utilization of the physical resources and
guarantee their availability for their customers. The cloud customers are responsible
for the efficient utilization of their allocated resources in order to satisfy the SLA of
their end-users and achieve their business goals. Therefore, there are two types of
service level agreements (SLAs):

• Cloud infrastructure SLA (I-SLA): These SLA are offered by cloud providers to
cloud customers to assure the quality levels of their cloud computing resources,
including server performance, network speed, resources availability, and storage
capacity.

• Cloud application SLA (A-SLA): These guarantees relate to the levels of quality
for the software applications which are deployed on a cloud infrastructure. In
particular, cloud customers often offer such guarantees to their application’s
end users in order to assure the quality of services that are offered such as the
application’s response time and data freshness.

Figure 7.1 illustrates the relationship between I-SLA and A-SLA in the software
stack of cloud-hosted applications. In practice, traditional cloud monitoring tech-
nologies, such as Amazon CloudWatch, focus on low-level computing resources.
However, translating the SLAs of applications’ transactions to the thresholds of
utilization for low-level computing resources is a very challenging task and is

1http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html.

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

100 7 SLA-Driven Database Replication on Virtualized Database Servers

usually done in an ad-hoc manner due to the complexity and dynamism inherent
in the interaction between the different tiers and components of the system. In
particular, meeting SLAs which are agreed with end-users by cloud customers’
applications using the traditional techniques for resource provisioning is a very
challenging task due to many reasons such as:

• Highly dynamic workload: An application service can be used by large numbers
of end-users and highly variable load spikes in demand can occur depending on
the day and the time of year, and the popularity of the application. In addition,
the characteristic of workload could vary significantly from one application
type to another and possible fluctuations on the workload characteristics which
could be of several orders of magnitude on the same business day may occur
[83]. Therefore, predicting the workload behavior and consequently devising
an accurate plan to manage of the computing resource requirements are very
challenging tasks.

• Performance variability of cloud resources: Several studies have reported that the
variation of the performance of cloud computing resources is high [112,172,208].
As a result, currently, cloud service providers do not provide adequate SLAs
for their service offerings. Particularly, most providers guarantee only the
availability, rather than the performance, of their services [68, 124].

• Uncertain behavior: One complexity that arises with the virtualization tech-
nology is that it becomes harder to provide performance guarantees and to
reason about a particular application’s performance because the performance of
an application hosted on a virtual machine becomes a function of applications
running in other virtual machines hosted on the same physical machine. In
addition, it may be challenging to harness the full performance of the underlying
hardware, given the additional layers of indirection in virtualized resource
management [199].

Several approaches have been proposed for dynamic provisioning of computing
resources based on their effective utilization [115, 190, 232]. These approaches are
mainly geared towards the perspective of cloud providers. Wood et al. [232] have
presented an approach for dynamic provisioning of virtual machines. It defines
a unique metric based on the data consumption of the three physical computing
resources, including CPU, network, and memory to make the provisioning decision.
Padala et al. [190] carried out black-box profiling of the applications and built
an approximated model which relates performance attributes such as the response
time to the fraction of processor allocated to the virtual machine on which
the application is running. Dolly [96] is a virtual machine cloning technique to
spawn database replicas and provisioning shared-nothing replicated databases in
the cloud. The technique proposes database provisioning cost models to adapt
the provisioning policy to the low-level cloud resources according to application
requirements. Rogers et al. [200] proposed two approaches for managing the
resource provisioning challenge for cloud databases. The black-box provisioning
uses end-to-end performance results of sample query executions, whereas white-
box provisioning uses a finer grained approach that relies on the DBMS optimizer

7.2 Architecture of SLA Management Framework 101

to predict the physical resource consumption, such as disk I/O, memory, and CPU,
for each query. Floratou et al. [131] have studied the performance and associated
costs in the relational database as a service environments. The results show that
given a range of pricing models and the flexibility of the allocation of resources in
cloud-based environments, it is hard for a user to figure out their actual monthly
cost upfront. Soror et al. [211] introduced a virtualization design advisor that uses
information about the database workloads to provide offline recommendations of
workload-specific virtual machines configurations.

In practice, it is a very challenging goal to delegate the management of the SLA
requirements of the customer applications to the cloud service provider due to the
wide heterogeneity in the workload characteristics, details and granularity of SLA
requirements, and cost management objectives of the very large number of customer
applications that can be simultaneously running in a cloud environment. Therefore,
it becomes a significant issue for the cloud customers to be able to monitor and
adjust the deployment of their systems if they intend to offer viable SLAs to their
customers. Failing to achieve these goals will jeopardize the sustainable growth of
cloud computing in the future and may result in valuable applications being moved
away from the cloud. In the following sections, we present our customer-centric
approach for managing the SLA requirements of virtualized database servers.

7.2 Architecture of SLA Management Framework

Figure 7.2 shows an overview of the framework architecture which consists of three
main modules: the monitor module, the control module and the action module.
In this architecture, the monitor module is responsible for continuously tracking
the replication delay of each virtualized database replica server and feeding the
control module with the collected information. The control module is responsible
for continuously checking the replication delay of each replica server against its
associated application-defined SLA of data freshness and triggers the action module
to scale out the database tier with a new virtualized database replica server when it
detects any SLA-violation in any current replica server.

The key design principles of the framework architecture are to be application-
independent and to require no code modification on the customer software applica-
tions that the framework will support. In order to achieve these goals, the framework
relies on a database proxying mechanism which forwards database requests to
the underlying databases and returns the results to the client transparently using
an intermediate piece of software, the proxy, without the need of having any
database drivers installed [203]. In particular, a database proxy software is a simple
program that sits between the client application and the database server that can
monitor, analyze or transform their communications. Such flexibility allows for a
wide variety of uses such as load balancing, query analysis and query filtering.
The implementation details for each of the three main modules of the framework
architecture will be discussed in the remaining part of the section.

102 7 SLA-Driven Database Replication on Virtualized Database Servers

Action
Module

Load balancer actions

Data base actions

...

Control Module

Fe
ed

Monitor Module

Tr
ig
ge
r

Slave1

Slave...

Slavek

Database
Proxy

Master

Define

Configurations

Application

Fig. 7.2 The SLA management framework architecture

As mentioned before, the design of the framework follows two main principles,
function-extensible and application-independent. Any new objectives, such as
throughput, can be easily added with pairs of implementations in both monitor and
control modules. Actions, such as starting a new virtualized database replica server,
for new objectives can be reused from a list of available actions in the action module,
or can be added when no satisfied actions is found. It is worth bearing in mind that
all objectives are added with no code modification to existing application that is
managed by the framework. However, some tools, databases, or plug-ins need to be
enabled at the system level to enable the objectives to be monitored properly, for
example, recording all queries to be bypassed in the load balancer.

In general, there exist many forms of SLAs with different metrics. In this chapter,
we focus on the following two main consumer-centric SLA metrics:

• Data freshness: which represents the tolerated window of data staleness for each
database replica. In other words, it represents the time between a committed
update operation on the master database and the time when the operation is
propagated and committed to the database replica.

• Transaction response time: which represents the time between a transaction is
presented to the database system and the time when the transaction execution is
completed.

7.2 Architecture of SLA Management Framework 103

Monitor Module

The monitor module is responsible for tracking the replication delay between the
virtualized database master server and each virtualized database replica server.
The replication delay for each replica server is computed by measuring the time
difference of two associated local timestamps committed on the master and the
replica server. Therefore, a Heartbeats database is created in the master and each
synchronized slave database server. Each Heartbeats database maintains a heartbeat
table with two fields: an id and a timestamp. A database request to insert a new
record with a global id and a local timestamp is periodically sent to the master.
Once the insert record request is replicated to the slaves, every slave re-executes the
request by committing the same global id and its own local timestamp. The update
frequency of a record in the master is configurable, named as heartbeat interval in
millisecond unit. The default configuration of the heartbeat interval is set to be 1 s in
the experiments. While records are updated in the master database and propagated
over all slaves periodically, the monitor module maintains a pool of threads that
are run frequently to read up-to-date records from the master and slaves. The read
frequency is also a configurable parameter in millisecond unit, known as monitor
interval. In order to reduce the burden of repetitive read requests on the virtualized
database replica servers, all records are only fetched once, and all local timestamps
extracted from records are kept locally in the monitor module for further calculation.

The replication delay calculation between the master and a slave is initiated
by the corresponding thread of the slave every time after fetching the records.
In the general case of assuming that there are n and k local timestamps in total
in the master array, timestampsm, and the slave array, timestampss , the slave’s ith

replication delay delayŒi � is computed as follows:

delayŒi � D t imestampssŒi � � t imestampsmŒi � (7.1)

where i � k D n and the master and the slave databases are fully synchronized. In
the case of k < n where there is partial synchronization between the master and the
slave databases which composes of both a consistent part and an inconsistent part,
the computation of the delayŒi � of the slave can be broken into two parts: The delay
of the consistent part with i � k is computed using Eq. 7.1.

The delay of the inconsistent part with k < i � n is computed as follows:

delayŒi � D t imestampssŒk� � t imestampsmŒk�

Ct imestampsmŒi � � t imestampsmŒk� (7.2)

In the case of n < k where indeterminacy could happen due to the missing of kC1th

local timestamp and beyond (this situation could happen when a recent fetch of the
slave occurs later than the fetch of the master), the delayŒi � of the slave uses Eq. 7.1
for i � n and the delayŒi � of the slave for n < i � k will be neglected as there is
no appropriate local timestamps of the master that can be used for calculating the
replication delay. The neglected calculations will be carried out later after the array
of the master is updated.

104 7 SLA-Driven Database Replication on Virtualized Database Servers

Control Module

The control module maintains the configuration information about:

• The configurations of the load balancer, including proxy address and proxy script.
• The configurations of the monitor module, such as heartbeat interval and monitor

interval.
• The access information of each virtualized database replica server, namely host

address, port number, user name, and password.
• The location information of each virtualized database replica server, such as us-

east, us-west, eu-west.
• And in addition to the application-defined SLA, the tolerated replication delay of

each virtualized database replica server for this study.

In practice, the SLA of the replication delay for each virtualized database replica
server, delaysla, is defined as an integer value in the unit of millisecond which
represents two main components:

delaysla D delayrt t C delaytolerance (7.3)

where the round-trip time component of the SLA replication delay, delayrt t , is the
average round-trip time from the virtualized database master server to the virtualized
database replica server. In particular, it represents the minimum delay cost for
replicating data from the master to the associated slave. The tolerance component of
the replication delay, delaytolerance, is defined by a constant value which represents
the tolerance limit of the period of the time for the replica server to be inconsistent.
This tolerance component can vary from one replica server to another depending on
many factors such as the application requirements, the geographic location of the
replica server, and the workload characteristics and the load balancing strategy of
each application.

One of the main responsibilities of the control module is to trigger the action
module for adding a new virtualized database replica server, when necessary, in
order to avoid any violation in the application-defined SLA of data freshness for the
active replicas. In framework implementation, an intuitive strategy is followed to
trigger the action module for adding a new replica server when it detects a number
of continuous up-to-date monitored replication delays of a replica server which
exceeds its application-defined threshold, T , of SLA violation of data freshness.
In other words, for a running replica server, if the latest T monitored replication
delays are violating its SLA of data freshness, the control module will trigger the
action module to activate the geographically closest replica server according to
the location of the violating replica server. It is worthy to note that the strategy
of the control module in making the decisions regarding the addition a new replica
server in order to avoid any violence of the application-defined SLA can play an
important role in determining the overall performance of the framework. However,

7.3 Implementation of SLA Management Framework 105

it is not the main focus of this chapter to investigate different strategies for making
these decisions. This aspect will be left for future work.

In the last chapter, it has been noted that the effect of the configurations of
geographic location of the virtualized database replica server is not as significant
as the effect of the overloading workloads in increasing the staleness window of the
replica servers. Therefore, the control module can decide to stop an active replica
server when it detects a decreasing workload that can be served by less number of
replica servers without violating the application-defined SLAs in order to reduce the
monetary cost of the running application.

Action Module

The action module is responsible for adding a new virtualized database replica
server when it is triggered by the action module. In general, adding a new replica
server involves extracting database content from an existing replica server and
copying that content to a new replica server. In practice, the time of executing
these operations mainly depends on the database size. To provision virtualized
database replica servers in a timely fashion, it is necessary to periodically snapshot
the database state in order to minimize the database extraction and copying
time to that of only the snapshot synchronization time. There is a trade-off
between the time to snapshot the database, the size of the transactional log
and the amount of update transactions in the workload. This trade-off can be
further optimized by applying recently proposed live database migration techniques
[96, 128].

In order to keep the experiments focused on the main concerns of the framework,
a set of hot backups, which are originally not used for serving the application
requests but kept synchronized, are used and then can be made active and used
by the load balancer for serving the application requests when the action module is
triggered for adding a new virtualized database replica server. The study of the cost
and effect of the live database migration activities will also be left as future work.

7.3 Implementation of SLA Management Framework

Figure 7.3 illustrates the setup of experiments for the SLA management framework
in the Amazon EC2 platform. Besides the SLA management framework, the
experiment setup also adopts the customized Cloudstone benchmark, MySQL
replication with a fine-grained time/date function, and MySQL Proxy,2 as necessary,
components.

2https://launchpad.net/mysql-proxy.

https://launchpad.net/mysql-proxy

106 7 SLA-Driven Database Replication on Virtualized Database Servers

us-w
est-1c

eu-w
est-1c

us-east-1e
Cloudstone benchmark

Master

Slave
us-west-1

Slave
us-west-2

Slave
us-east-1

Slave
us-east-2

M / N read
write split

Replication within and across regions

M / N satisfies pre-defined read/write ratio

Slave
eu-west-1

Slave
eu-west-2

MySQL Proxy

The controller
Monitor and
manage to scale

Fig. 7.3 The implementation of the SLA management framework in the setup of experiments

The experiment setup is a multiple-layer implementation. The first layer rep-
resents the Cloudstone benchmark which generates an increasing workload of
database requests with a fixed read/write ratio. The benchmark is deployed in
a large instance to avoid any overload on the application tier. The second layer
hosts the MySQL Proxy and the SLA management framework. MySQL Proxy
with read and write split enabled resides in the middle between the benchmark
and the virtualized database replica servers, and acts as a load balancer to forward
read and write operations to the master and slaves correspondingly. The third layer
represents the database tier that consists of all the replica servers where the master
database receives the write operations from the load balancer after which it becomes
responsible for propagating the writesets to all the virtualized database slave servers.
The master database runs in a small instance so that an increasing replication delay
is expected to be observed along with an increasing workload. The master database
is closely located to the benchmark, the load balancer and the SLA management
framework. They are all deployed in the location of us-west. The slave servers are
responsible for serving the read operations and updating the writesets. They are

7.4 Evaluation of SLA Management Framework 107

deployed in three regions, namely: us-west, us-east and eu-west. All slaves run in
small instances for the same reason of provisioning the master instance.

Two sets of experiments are implemented in order to evaluate the effectiveness
of the SLA management framework in terms of its effectiveness on maximizing
the end-to-end system throughput and minimizing the replication delay for the
underlying virtualized database servers. In the first set of experiments, the value
of the tolerance component, delaytolerance, of the SLA replication delay is fixed at
1,000 ms, and the monitor interval, intvlmon, is varied among the following set of
values, 60, 120, 240, and 480 s. In the second set of experiments, in contrast to the
first test, the monitor interval, intvlmon, is fixed at 120 s, and the SLA of replication
delay is adjusted by varying the tolerance component of the replication delay,
delaytolerance, among the values of 500, 1,000, 2,000, and 4,000 ms. In the experiment
environment, the round-trip component for the virtualized database replica servers
is determined with ping command running every second for a 10 min period. The
average round-trip time of three geographical regions is 30, 130, and 200 ms from
the master to slaves in us-west, us-east, and eu-west respectively.

Every experiment runs for a period of 3,000 s with a starting workload of
220 concurrent users and database requests with read/write ratio at 80/20. The
workload gradually increases in steps of 20 concurrent users every 600 s so that
each experiment ends with a workload of 300 concurrent users. Each experiment
deploys 6 virtualized database replica servers in 3 regions where each region hosts
two replica servers: the first replica server is an active replica which is used from the
start of the experiment for serving the database requests of the application while the
second one is a hot backup which is not used for serving the application requests at
the beginning of the experiment but can be added by the action module, as necessary,
when triggered by the control module. Finally, in addition to the two sets of
experiments, two experiments without the adaptive SLA management framework
are conducted as baselines for measuring the end-to-end throughputs and replication
delays of 3 and 6 slaves, representing the minimum and the maximum number of
running replica servers, respectively. For all experiments, the value of the heartbeat
interval, intvlheart, is set to 1 s and the value of the threshold, T , for the maximum
possible continuous SLA violations for any replica server is calculated using the
following formula T D intvlmon

intvlheart
.

7.4 Evaluation of SLA Management Framework

End-to-End Throughput

Table 7.1 presents the end-to-end throughput results for the set of experiment with
different configuration parameters. The baseline experiments represent both the
minimum and the maximum end-to-end throughput results with 22:33 and 38:96
operations per second respectively. The end-to-end throughput delivered by the

108 7 SLA-Driven Database Replication on Virtualized Database Servers

Ta
bl

e
7.

1
T

he
ef

fe
ct

of
th

e
ad

ap
tiv

e
SL

A
m

an
ag

em
en

tf
ra

m
ew

or
k

on
th

e
en

d-
to

-e
nd

sy
st

em
th

ro
ug

hp
ut

E
xp

er
im

en
tp

ar
am

et
er

s
T

he
m

on
ito

r
in

te
rv

al
,

in
tv

l m
o

n
,i

n
se

co
nd

s

T
he

to
le

ra
nc

e
of

re
pl

ic
at

io
n

de
la

y,
d

e
la

y
to

le
r
a

n
c
e
,i

n
m

ill
is

ec
on

ds

N
um

be
r

of
ru

nn
in

g
re

pl
ic

a
se

rv
er

s

R
un

ni
ng

tim
e

of
al

lr
ep

lic
a

se
rv

er
s

in
se

co
nd

s

E
nd

-t
o-

en
d

th
ro

ug
hp

ut
in

op
er

at
io

ns
pe

r
se

co
nd

s
Fi

gu
re

B
as

el
in

es
w

ith
fix

ed
nu

m
be

r
of

re
pl

ic
a

se
rv

er
s

N
=
A

N
=
A

3
9,

00
0

22
:3

3
Fi

g.
7.

4
N

=
A

N
=
A

6
18

;0
00

38
:9

6
Fi

g.
7.

5

V
ar

yi
ng

th
e

m
on

ito
r

in
te

rv
al

,
in

tv
l m

o
n

60
1,

00
0

3
!

6
15

;8
37

38
:4

3
Fi

g.
7.

6
12

0
1,

00
0

3
!

6
15

;4
98

36
:4

5
Fi

g.
7.

7
24

0
1,

00
0

3
!

6
13

;9
35

34
:1

2
Fi

g.
7.

8
48

0
1,

00
0

3
!

6
12

;2
94

31
:4

0
Fi

g.
7.

9

V
ar

yi
ng

th
e

to
le

ra
nc

e
of

re
pl

ic
at

io
n

de
la

y,
d

e
la

y
to

le
r
a

n
c
e

12
0

50
0

3
!

6
15

;2
53

37
:4

4
Fi

g.
7.

10
12

0
1,

00
0

3
!

6
15

;4
98

36
:4

5
Fi

g.
7.

7
12

0
2,

00
0

3
!

6
13

;9
28

36
:3

3
Fi

g.
7.

11
12

0
4,

00
0

3
!

6
14

;4
37

34
:6

8
Fi

g.
7.

12

7.4 Evaluation of SLA Management Framework 109

adaptive SLA management framework for the different experiments fall between
the two baselines based on the variance on the monitor interval, intvlmon, and the
tolerance of replication delay, delaytolerance . However, it is worth noting that the
end-to-end throughput can be still affected by a lot of performance variations in
the cloud environment such as hardware performance variation, network variation
and warm up time of the virtualized database servers. Similarly, The two baseline
experiments also represent the minimum and the maximum running time of all
virutalized database replica servers with 9,000 and 18,000 s respectively. Therefore,
the total running time of the replica servers for the different experiments fall within
the range of 9,000 and 18,000 s. Each experiment starts with 3 active replicas which
are gradually increased during the experiments based on the configurations of the
monitor interval and the SLA of replication delay parameters until it finally ends
with 6 replica servers.

In general, the relationship between the running time of all slaves and end-to-end
throughput is not straightforward. Intuitively, a longer monitor interval or a longer
tolerance of replication delay usually postpones the addition of new virtualized
database replica servers and consequently reduces the end-to-end throughput. The
results show that the tolerance of the replication delay parameter, delaytolerance is
more sensitive than the monitor interval parameter, intvlmon. For example, setting
the values of the tolerance of the replication delay to 4,000 and 1,000 result in longer
running times of the replica servers than when the values are set to 2,000 and 500.
On the other hand, the increase of running time of all replica servers clearly follows
a linear trend along with the increase of the end-to-end throughput. However, a
general conclusion can not be made as the trend is likely affected by the workload
characteristics.

Replication Delay

Figures 7.4–7.12 illustrate the effect of the adaptive SLA management framework
on the performance of the replication delay for the virtualized database replica
servers. Figures 7.4 and 7.5 show the replication delay of the two baseline cases that
will be used for comparison purposes. They represent the experiments of running
with a fixed number of virtualized database replica servers, 3 and 6 respectively,
from the start until the end of the experiments. Figure 7.4 shows that the replication
delay tends to follow different patterns for different replica servers. The two trends
of virtualized database servers in us-west-1 and eu-west-1 surge significantly at 260
and 280 users respectively. At the same time, the trend of virtualized database server
in us-east-1 tends to be stable through out the entire running time of the experiment.
The main reason behind that is the performance variation between the virtualized
database servers for replicas, as both virtualized database servers in us-west-1 and
eu-west-1 are powered by Intel(R) Xeon(R) E5507 @ 2.27 GHz CPU, whereas the
server in us-east-1 is deployed with a higher performance CPU, Intel(R) Xeon(R)
E5645 @ 2.40 GHz CPU. Due to the performance differences between the physical

110 7 SLA-Driven Database Replication on Virtualized Database Servers

us-west-1 us-east-1 eu-west-1

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.4 The performance of the replication delay for fixed 3 replica servers with the framework
disabled

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.5 The performance of the replication delay for fixed 6 replica servers with the framework
disabled

CPUs specifications, the virtualized database server in us-east-1 is able to handle
the amount of operations that saturated the servers in us-west-1 and eu-west-1.
Moreover, with an identical CPU for us-west-1 and eu-west-1, the former seems
to surge at an earlier point than the latter. This is basically because of the difference
in the geographical location of the two virtualized database servers. As illustrated in
Fig. 7.3, the MySQL Proxy location is closer to the virtualized database server in us-
west-1 than the server in eu-west-1. Therefore, the forwarded database operations by
the MySQL Proxy take less time to reach the server in us-west-1 than to the server

7.4 Evaluation of SLA Management Framework 111

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.6 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 1;000 ms, and intvlmon D 60 s

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.7 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 1;000 ms, and intvlmon D 120 s

in eu-west-1 which leads to more congestion on the us-west-1 side. Similarly, in
Fig. 7.5, the replication delay tends to surge in both virtualized database servers
in us-west-1 and us-west-2 for the same reason of the difference in the geographic
location of the underlying virtualized database server.

Figures 7.7, and 7.10–7.12 show the results of the replication delay for the
experiments using different values for the monitor interval, intvlmon, and the
tolerance of replication delay, delaytolerance , parameters. For example, Fig. 7.7
shows that the virtualized database replica servers in us-west-2, us-east-2,

112 7 SLA-Driven Database Replication on Virtualized Database Servers

us-west-1 us-east-1 eu-west-1
eu-west-2us-west-2 us-east-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.8 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 1;000 ms, and intvlmon D 240 s

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.9 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 1;000 ms, and intvlmon D 480 s

and eu-west-2 are added in sequence at the 255th, 407th, and 1,843th seconds,
where the drop lines are emphasized. The addition of the three replica servers are
caused by the SLA-violation of the virtualized database replica server in us-west-
1 at different periods. In particular, there are four SLA-violation periods for the
replica server in us-west-1 where the period must exceed the monitor interval, and
all calculated replication delays in the period must exceed the SLA of replication
delay. These four periods are: from 67 to 415 in total of 349 s, from 670 to 841 for

7.4 Evaluation of SLA Management Framework 113

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.10 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 500 ms, and intvlmon D 120 s

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.11 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 2;000 ms, and intvlmon D 120 s

a total of 172 s, from 1,373 to 1,579 for a total of 207 s, and from 1,615 to 3,000 for
a total of 1,386 s. The adding of new replica servers is only triggered on the 1st and
the 4th periods based on the time point analysis. The 2nd and the 3rd periods do
not trigger the addition of any new replica servers as the number of detected SLA
violations does not exceed the defined threshold, T .

Figures 7.6–7.9 show the effect of varying the monitor interval, intvlmon on the
replication delay of the different virtualized database replica servers. The results
show that virtualized database replica server in us-west-2 is always the first location

114 7 SLA-Driven Database Replication on Virtualized Database Servers

us-west-1 us-east-1 eu-west-1
us-west-2 us-east-2 eu-west-2

0 600 1200 1800 2400 3000
1E-4

1E-3

0.01

0.1

1

10

100

1000

R
ep

lic
at

io
n

de
la

y
(s

ec
on

ds
)

Timeline per slave (second)

Fig. 7.12 The performance of the replication delay for up to 6 replica servers with the framework
enabled, delaytolerance D 4;000 ms, and intvlmon D 120 s

that add a new replica server because it is the closest location to the virtualized
database server in us-west-1 which hosts the replica server that is first to violate
its defined SLA data freshness. The results also show that as the monitor interval
increases, the triggering points for adding new replica servers are usually delayed.
On the contrary, the results of Figs. 7.7, and 7.10–7.12 show that increasing the
value of the tolerance of the replication delay parameter, delaytolerance , does not
necessarily cause a delay in the triggering point for adding new replica servers.

7.5 Provisioning the Database Tier Based on SLA
of Transaction Response Times

Another consumer-centric SLA metric that we consider in our framework is the total
execution times of database transactions (response time). In practice, this metric
has a great impact on the user experience and thus satisfaction of the underlying
services. In other words, individual users are generally more concerned about when
their transaction will complete rather than how many transactions the system will
be able to execute in a second (system throughput) [133]. To illustrate, assuming a
transaction (T) with an associated SLA for its execution time (S) is presented to the
system at time 0, if the system is able to finish the execution of the transaction at
time (t � S) then the service provider has achieved his target otherwise if (t > S)
then the transaction response cannot be delivered within the defined SLA and hence
a penalty p is incurred. In practice, the SLA requirements can vary between the
different types of application transactions (for example, a login application request

7.5 Provisioning the Database Tier Based on SLA of Transaction Response Times 115

may have an SLA of 100 ms execution time, a search request may have an SLA of
600 ms while a request of submitting an order information would have 1,500 ms).
Obviously, the variations in the SLA of different applications transactions is due to
their different natures and their differences in the consumption behaviour of system
resources (e.g. disk I/O, CPU time). In practice, each application transaction can
send one or more operations to the underlying database system. Therefore, in our
framework, consumer applications can define each transaction as pattern(s) of SQL
commands where the transaction execution time is computed as the total execution
time of these individual operations in the described pattern. Thus, the monitoring
module is responsible for correlating the received database operations based on
their sender in order to detect the transaction patterns [203]. Our framework also
enables the consumer application to declaratively define application-specific action
rules to adaptively scale out or scale in according to the monitored status of the
response times of application transactions. For example, an application can define to
scale out the underlying database tier if the average percentage of SLA violation for
transactions T1 and T2 exceeds 10 % (of the total number of T1 and T2 transactions)
for a continuous period of more than 8 min. Similarly, the application can define to
scale in the database tier if the average percentage of SLA violation for transactions
T1 and T2 is less than 2 % for a continuous period that is more than 8 min and the
average number of concurrent users per database replica is less than 25.

We conducted our experiments with 4 different rules for achieving elasticity and
dynamic provisioning for the database tier in the cloud. Two rules are defined based
on the average CPU utilization of allocated virtual machines for the database server
as follows: Scale out the database tier (add one more replica) when the average
CPU utilization of the virtual machines exceeds of 75 % for (R1) and 85 % for
(R2) over a continuous period of 5 min. Two other rules are defined based on the
percentage of the SLA satisfaction of the workload transactions (the SLA values
of the different transactions are defined as specified in the Cloudstone benchmark)
as follows: Scale out the database tier when the percentage of SLA satisfaction is
less than 97 % for (R3) and 90 % for (R4) over a continuous period of 5 min. Our
evaluation metrics are the overall percentage of SLA satisfaction and the number of
provisioned database replicas during the experimental time.

Figure 7.13 illustrates the results of running our experiments over a period of
1 h for the 80/20 workload (Fig. 7.13a) and the 50/50 workload (Fig. 7.13b). In
these figures, the X-axis represents the elapsed time of the experiment while the
Y-axis represents the SLA satisfaction of the application workload according to
the different elasticity rules. In general, we see that, even for this relatively small
deployment, the incorporation of SLA-based rules can show improved overall SLA
satisfaction of different workloads of the application. The results show that the
SLA-based rules (R3 and R4) are, by design, more sensitive for achieving the SLA
satisfaction and thus they react earlier than the resource-based rules. The resource-
based rules (R1 and R2) can accept a longer period SLA violations before taking
any necessary action (CPU utilization reaches the defined limit). The benefits of
SLA-based rules become clear with the workload increase (increasing the number
of users during the experiment time). The gap between the resource-based rules

116 7 SLA-Driven Database Replication on Virtualized Database Servers

01:0000:5500:5000:4500:4000:3500:1500:1000:05
70

75

80

85

90

95

100
S

L
A

 S
at

is
fa

ct
io

n
 (

%
)

Time

a

b

R1
R2
R3
R4

00:5000:4500:4000:3500:3000:2500:2000:1500:1000:05 01:0000:55

70

75

80

85

90

95

100

S
L

A
 S

at
is

fa
ct

io
n

 (
%

)

Time

R1
R2
R3
R4

00:05 00:20 00:25 00:30

Fig. 7.13 Comparison of SLA-based vs resource-based database provisioning rules. (a) Work-
load: 80/20 (r/w). (b) Workload: 50/50 (r/w)

and SLA-based rules is smaller for the workload with the higher write ratio (50/50)
due to the higher contention of CPU resources for the write operations and thus the
conditions of the resource-based rules can be satisfied earlier.

Table 7.2 shows the total number of provisioned database replicas using the
different elasticity rules for the two different workloads. Clearly, while the SLA-
based rules achieves better SLA satisfaction, they may also provision more database

7.6 Related work 117

Table 7.2 Number of
provisioned database replicas

Workload / Rule R1 R2 R3 R4

80/20 4 3 5 5
50/50 5 4 7 6

replicas. This trade-off shows that there is no clear winner between the two
approaches and we can not favour one approach over the other. However, the
declarative SLA-based approach empowers the cloud consumer with a more
convenient and flexible mechanism for controlling and achieving their policies in
dynamic environments such as the Cloud.

7.6 Related work

Several approaches have been proposed for dynamic provisioning of computing
resources based on their effective utilization [115, 190, 232]. These approaches
are mainly geared towards the perspective of cloud providers. Wood et. al. [232]
have presented an approach for dynamic provisioning of virtual machines. They
define a unique metric based on the data consumption of the three physical
computing resources: CPU, network and memory to make the provisioning decision.
Padala et.al. [190] carried out black box profiling of the applications and built
an approximated model which relates performance attributes such as the response
time to the fraction of processor allocated to the virtual machine on which the
application is running. Dolly [96] is a virtual machine cloning technique to
spawn database replicas and provisioning shared-nothing replicated databases in
the cloud. The technique proposes database provisioning cost models to adapt the
provisioning policy to the low-level cloud resources according to the application
requirements. Rogers et al. [200] proposed two approaches for managing the
resource provisioning challenge for cloud databases. The Black-box provisioning
uses end-to-end performance results of sample query executions, whereas white-
box provisioning uses a finer grained approach that relies on the DBMS optimizer
to predict the physical resource (e.g., I/O, memory, CPU) consumption for each
query. Floratou et al. [131] have studied the performance and cost in the relational
database as a service environments. The results show that given a range of
pricing models and the flexibility of the allocation of resources in cloud-based
environments, it is hard for a user to figure out their actual monthly cost upfront.
Soror et al. [211] introduced a virtualization design advisor that uses information
about the database workloads to provide offline recommendations of workload-
specific virtual machines configurations. To the best of our knowledge, our approach
is the first to tackle the problem of dynamic provisioning the cloud resources of the
database tier based on consumer-centric and application-defined SLA metrics.

118 7 SLA-Driven Database Replication on Virtualized Database Servers

7.7 Discussion

In this chapter, we presented the design and implementation details3 of an end-to-
end framework that facilitates adaptive and dynamic provisioning of the database
tier of the software applications based on consumer-centric policies for satisfying
their own SLA performance requirements, avoiding the cost of any SLA violation
and controlling the monetary cost of the allocated computing resources. The
framework provides the consumer applications with declarative and flexible mech-
anisms for defining their specific requirements for fine-grained SLA metrics at the
application level. The framework is database platform-agnostic, uses virtualization-
based database replication mechanisms and requires zero source code changes of
the cloud-hosted software applications.

3http://cdbslaautoadmin.sourceforge.net/.

http://cdbslaautoadmin.sourceforge.net/

Chapter 8
QoS-Aware Service Compositions
in Cloud Computing

Services in cloud computing can be categorized into application services and
utility computing services [68]. Almost all the software/applications that are
available through the Internet are application services, e.g., flight booking services,
hotel booking services. Utility computing services are software or virtualized
hardware that support application services, e.g., virtual machines, CPU services,
and storage services. Service compositions in cloud computing therefore include
compositions of application services and utility computing services. Compositions
in the application level are similar to the Web service compositions in Service-
Oriented Computing (SOC). Compositions in the utility level are similar to the task
matching and scheduling in grid computing. A composite application service fulfills
several tasks (i.e. abstract services). Each task is implemented by several substitute
application services (i.e. concrete services). The choice among these substitute
services is based on their non-functional properties, which are also referred to as
Quality of Service (QoS). QoS values of these substitute application services are
further dependent on the choices of utility computing services. In a word, once
a concrete application service is selected for each abstract service, the following
decisions have to be made: matching, i.e. assigning concrete application services
to utility computing services, and scheduling, i.e. ordering execution sequence of
application services.

Several approaches and systems are proposed to solve Web service composition
problems in SOC. Most of them [201, 238] only consider the compositions in the
application level. Composition approaches in cloud computing need to consider
compositions both in the application level and utility computing level. Besides, most
existing composition approaches in SOC [201,238] use integer programming to find
the global optimized solution. Although this is useful for small-scale compositions,
it incurs a significant performance penalty if applied to large-scale composition
problems such as compositions in cloud computing [202]. Contrasts to these existing
approaches, Genetic Algorithms (GAs) are heuristic approaches to iteratively find
near-optimal solutions in large search spaces. There is ample evidence regarding the
applicability of GAs for large-scale optimization problems [202, 229]. Whereas, no
GA based approach is available to compose services in cloud computing.

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__8,
© Springer International Publishing Switzerland 2014

119

120 8 QoS-Aware Service Compositions in Cloud Computing

In this chapter, a genetic-algorithm-based service composition approach is
proposed for cloud computing. In particular, a coherent way to calculate the
QoS values of services in cloud computing is presented. At last, comparisons
between the proposed approach and other approaches show the effectiveness and
efficiency of the proposed approach. The rest of the chapter is structured as follows:
Section 8.1 illustrates the background and preliminaries of service composition
in cloud computing. Section 8.2 elaborates the details of the proposed approach.
Section 8.3 evaluates the approach and shows the experiment results. Section 8.4
presents the related work to the proposed approach. Section 8.5 concludes this
chapter and highlights some future work.

8.1 Preliminaries

This section presents preliminary knowledge about cloud computing, service com-
positions in cloud computing. Genetic algorithms are also introduced at the end of
this section. Services in a cloud, refers to both the applications delivered as services
over the Internet and the hardware and system software in the data centers that
provide those services [68]. Cloud computing provides easy access to Application
Services (i.e. SaaS) and Utility Computing Services (UCS) (Fig. 8.1).

• Application Services are the most visible services to the end users. Examples
of application services include: Salesforce’s CRM applications, Google Apps
etc. Application services that contain other component application services are
Composite Application Services. Simple Application Services do not contain

Fig. 8.1 Cloud system

8.1 Preliminaries 121

Fig. 8.2 Control flows

other component application services. Application Users can be end users or
other application services. Application Providers are providers of application
services.

• Utility Computing Services. Some vendors use terms such as PaaS (Platform as
a Service) or IaaS (Infrastructure as a Service) to describe their products. In this
chapter, PaaS and IaaS are considered together as UCSs. PaaS are platforms that
are used to develop, test, deploy and monitor application services. For example,
Google has Google App Engine works as the platform to develop, deploy and
maintain Google Apps. Microsoft Azure and Force.com are also examples of
PaaS. IaaS services provide fundamental computing resources, which can be used
to construct new platform services or application services. UCSs can be catego-
rized into computation services, i.e., Virtual Machines (VMs); storage services,
i.e., Databases; and network services. UCS Users are these application providers
or other utility computing services etc. UCS Vendors are these companies or
organizations that make their computing resources available to the public.

Service Compositions in Cloud Computing

A composite service is specified as a collection of abstract application services
according to a combination of control-flow and data-flow. Control-flow graphs are
represented using UML activity diagrams. Each node in the graph is an abstract
application service. There are four control-flow patterns. For example, Fig. 8.2
shows a composite service consists of four patterns of control-flows. S1 and S2 run
in a sequence pattern. S3 runs in parallel with S4 (parallel pattern). After that, either
S5 or S6 is selected to run (conditional pattern). Finally, S7 cycles for a certain times
(loop pattern).

There are several data-flow graphs for the same control-flow graph, if the control-
flow graph contains conditional patterns. Figure 8.3 shows the two data-flow graphs
corresponding to the control-flow shown in Fig. 8.2. Directed acyclic graphs (DAGs)
are used to represent data-flow graphs. The start node of an edge is denoted as source
service, the node where the edge ends is denoted as destination service. Source
services must be executed before the destination services. The destination service
can only be executed after all its source services are finished. Node Sb represents

Force.com

122 8 QoS-Aware Service Compositions in Cloud Computing

Fig. 8.3 Data flow graphs

the start point of the composite service. Se represents the end point. The data items
transferred between these abstract application services form a set D D fdatai ; 1 �
i � dg.

A set of kn concrete application services fsn1; sn2; : : : ; snkng is available to
execute the abstract service Sn. A concrete application service can be executed
on several virtual machines, databases and network services. After mapping each
abstract service to a concrete application service, VM UCSs and Database UCSs
need to be selected for each application service. Network UCSs need to be selected
for each data transfer in the data-flow graph. Assume each VM can only execute
one application service at a time. A late application service can only execute on
the VM after the former application services finish their executions. To sum up, any
solution to a composition problem in cloud computing includes: (1) Map the abstract
application services to concrete application services and corresponding UCSs (VM,
database and network services). (2) Schedule the execution order of the application
services. This execution order is a topological sort [114] of the data-flow graph, i.e.
a total ordering of the nodes in the DAG that obeys the precedence constraints.

QoS Model

QoS attributes contains (1) ascending QoS attributes, i.e. a higher value is better;
(2) descending QoS attributes, i.e. a smaller value is better; (3) equal QoS attributes,
i.e. no ordering but only equality, e.g. security protocol should be X.509. Four
QoS attributes are considered in this work: response time, price, availability
and reputation. Among them, time and price belong to the descending attributes
while availability and reputation belong to the ascending attributes. Vector Q D
Q1; Q2; Q3; Q4 denotes all the available QoS attributes. Qi ; 1 � i � 4 represents
time, price, availability and reputation.

QoS values of an application service consist of three parts: execution, network
and storage QoSs. Existing QoS models in SOC [238] only consider the execution
QoSs. Execution QoS refers to the QoS value for executing an application service in

8.1 Preliminaries 123

Fig. 8.4 Aggregation functions for each QoS attribute

a specified VM. Same application service has different execution QoS in different
VMs. Network QoS refers to the QoS for transferring data from one application
service to another using a specified network UCS. Data transfers are determined by
the source services and the destination services. Each data will be transferred as soon
as the source service produces them. Hence, network QoS values are only calculated
at the destination services. Storage QoS refers to the QoS for storing certain amount
of data for a certain time using specified database service. Assume no data will be
stored during the execution of an application service. Therefore, the only data needs
to be stored are the input data. For example, a destination service has two input
data. One input data arrives early, the other arrives later. The earlier arrived data
need to be stored when waiting the second input data to arrive. The QoS value for
a service therefore equals to the sum of execution QoS, network QoS and storage
QoS. Figure 8.4 shows the aggregation functions for calculating the overall QoS
for composite services. m is the number of component services in the composite
service. QoS values are normalized using Simple Additive Weighting (SAW), which
is also used in [238]. The best QoS values are normalized to 0, the worst QoS values
are normalized to 1. Thus, higher normalized values indicate worse quality.

QoS constraints (denoted as QC) for composite services have two types: Global
Constraints and Local Constraints. Global Constraints are the QoS constraints for
the overall composite service, while Local Constraints apply to component services
within the composition. A global constraint (GC) for a given QoS attribute Ql is
denoted as GC l . Local constraints are denoted as LC l . Constraints on different
QoS attributes are transformed into inequality constraints [107]. QC 1 (time) and
QC 2 (price) can be transformed by subtract the threshold to the constraints, e.g.
QC 1 � 1 minute is transformed to QC 1 (QC 1 �1 � 0; QC 2 � 5 USdol lars

is transformed to QC 2 (QC 2 � 5 � 0. QC 3 (availability) and QC 4 (reputation)
can be transformed by subtracting the QoS value from the threshold, e.g. QC 3 �
0:9 is transformed to QC 3 (0:9 � QC 3 � 0. Constraints on equal QoS attributes
can be transformed using this function: QC (jQC j � � � 0, where � is the
tolerance allowed range (a very small value).

Genetic Algorithms

Genetic Algorithms (GAs) are heuristic approaches to iteratively find near-optimal
solutions in large search spaces. Any possible solution to the optimization problem
is encoded as a Chromosome (normally a string). A set of chromosomes is referred

124 8 QoS-Aware Service Compositions in Cloud Computing

to as a Population. The first step of a GA is to derive an initial population.
A random set of chromosomes is often used as the initial population. This initial
population is the first generation from which the evolution starts. The second step
is selection. Each chromosome is eliminated or duplicated (one or more times)
based on its relative quality. The population size is typically kept constant. The
next step is Crossover. Some pairs of chromosomes are selected from the current
population and some of their corresponding components are exchanged to form
two valid chromosome. After crossover, each chromosome in the population may
be mutated with some probability. The mutation process transforms a chromosome
into another valid one. The new population is then evaluated. Each chromosome is
associated with a fitness value, which is a value obtained from the objective function
(details will be discussed in Sect. 8.2). The objective of the evaluation is to find a
chromosome that has the optimal fitness value. If the stopping criterion is not met,
the new population goes through another cycle (iteration) of selection, crossover,
mutation, and evaluation. These cycles continue until the stopping criterion is met.

8.2 QoS-Aware Service Composition in Cloud Computing

Assume there are m VM UCSs (vm1; vm2; : : : ; vmm), p database UCSs (db1, db2,
: : :, dbp) and q network UCSs (net1; net2; : : : ; netq) in different cloud systems.
Each composition solution (chromosome) consists of two parts, the matching string
(ms) and the scheduling string (ss). ms is a vector of length n, such that ms.i/ D
sj vmxdbynetz, where 1 � i � n, 1 � j � kn, 1 � x � m, 1 � y � p and
1 � z � q. A matching string means that abstract service Si is assigned to concrete
service sij which is lodged on virtual machine vmx and has database service dby ,
network service netz. The scheduling string is a topological sort of the data-flow
graph. ss.k/ D i , where 1 � i; k � n; i.e. service Si is the kth running service
in the scheduling string. Thus, a chromosome represents the mapping from each
abstract service to concrete service and UCSs, together with the execution order
of the application services. Figure 8.5 shows a solution to the composite problem
that has the control-flow shown in Fig. 8.2, and the data-flow shown in Fig. 8.3 (left

Fig. 8.5 Composition solution

8.2 QoS-Aware Service Composition in Cloud Computing 125

DAG). In this solution, ms represents the mapping string, e.g., abstract service S1 is
mapped to application service S11, S11 is further deployed on virtual machine vm1

and database db1. The network service for a transferred data is determined when the
source service and the destination service are mapped to the corresponding virtual
machine and database services. ss represents the scheduling string of the solution,
e.g., the execution order of this solution in Fig. 8.5 is S11; S23; S31; S41; S54; S71; S71.

Genetic Algorithm Based Approach

In the first step, a predefined number of chromosomes are generated to form the
initial generation. The chromosomes in a generation are first ordered by their fitness
values (explained later) from the best to worst. These having the same fitness value
are ranked arbitrarily among themselves. Then a rank-based roulette wheel selection
schema is used to implement the selection step [213]. There is a higher probability
that one or more copies of the better solution will be included in the next generation,
since a better solution has a larger sector angle than that of a worse solution. In this
way, the chromosomes formed the next generation are determined. Notice that the
population size of each generation is always P .

The crossover operator for a matching string randomly chooses some pairs of the
matching strings. For each pair, it randomly generates a cut-off point to divide both
matching strings into two parts. Then the bottom parts are exchanged. The crossover
operator for a scheduling string randomly chooses some pairs of the scheduling
strings. For each pair, it randomly generates a cut-off point, which divides the
scheduling strings into top and bottom parts. The abstract application services in
each bottom part are reordered. The new ordering of the services in one bottom
part is the relative positions of these services in the other original scheduling string
in the pair. This guarantees that the newly generated scheduling strings are valid
schedules. Figure 8.6a demonstrates the crossover operator for a scheduling string.

The mutation operator for a matching string randomly selects an abstract service
and randomly replaces the corresponding concrete service and other utility comput-
ing services. The mutation operator for a scheduling string randomly chooses some
scheduling strings. It then randomly selects a target service. The valid range of this
target service is the set of the positions in the scheduling string at which the target
service can be placed without violating any data dependency constraints. The valid
range is after all source services of the target service and before any destination
service of the target service. The mutation operator can move this target service
randomly to another position in the scheduling string within its valid range. Figure
8.6b demonstrates the mutation operator for a scheduling string. sv is between sb

and sc before the mutation, it is between sa and sb after the mutation operator.
After crossover and mutation operators, GA will evaluate the chromosomes using

fitness function. The fitness function needs to maximize some QoS attributes (i.e.
ascending attributes), minimize some other attributes (i.e. descending attributes)
and satisfy other QoS attributes (i.e. equal QoS attributes). In addition, the fitness

126 8 QoS-Aware Service Compositions in Cloud Computing

Fig. 8.6 Crossover and mutation operators

function must penalize solutions that do not meet the QoS constraints and drive
the evolution towards satisfaction. The distance from constraint satisfaction for a
solution c is defined as:

D.c/ D ˙l
iD1QC i .c/ � ei � weight i ; ei D

�
0 QC i .c/ � 0

1 QC i .c/ > 0
(8.1)

where weighti indicates the weight of the QoS constraint. Notice that this distance
function for constraints include both local and global constraints specified. The
fitness function for a chromosome c is then defined as follows:

F.c/ D ˙4
iD1wi � Qi .c/ C weightp � D.c/ (8.2)

wi are the weights for each QoS attribute. weightp is the penalty factor. Several
features are highlighted when calculating the fitness function based on the match
string and the scheduling string:

1. Services are executed exactly in the order specified by the scheduling string. For
example, Fig. 8.7a shows a scheduling string for a composition. Assume there
are two different match strings for this ss. (a) ms1: Let S1 and S2 be assigned to
the same VM vm1, and S3 be assigned to another VM vm2. In this chromosome,
because S1 is to be executed before S2, data1 is available before data2. Thus,
data1 will be transferred to S3 before data2. And data1 will be stored in S3’s
database service till data2 has been transferred to S3. (b) ms2: Let the three
services S1, S2, and S3 be assigned to three different VMs vm1, vm2 and vm3.

8.2 QoS-Aware Service Composition in Cloud Computing 127

Fig. 8.7 Example of
scheduling string. (a)
Example 1. (b) Example 2
for data forwarding

S2 starts to execute just after S1 starts, S1 and S2 can be considered to start their
execution at the same time. If data2 is available (S2 executes faster) before data1,
data2 will be stored in S2’s database service till data1 has been transferred to S3.

2. Another important feature is data forwarding [229]. For an input data, the source
service can be chosen among the services that produce or consume this input
data. All the consumers of this input data can be forwarders. For example,
Fig. 8.7b shows a scheduling string. S2 and S3 both have the input data from S1.
S2 may forward data1 from S1 to S3, i.e. shown as the dashed line in Fig. 8.7b.
This kind of data forwarding is not allowed in our work. Data must be only
transferred from the original data producer to its consumers.

Stop criterions for the proposed approach are: (1) Iterate until the constraints
are met (i.e. D.c/ D 0). (2) If this does not happen within MAXGEN

generations, then iterate until the best fitness value remains unchanged for a
given number (MAXGEN) of generations. (3) If neither (1) nor (2) happens
within MAXGEN generations, then no solution will be returned.

Handling Multiple Data Flow Graphs

Assume the composite service (e.g. shown in Fig. 8.2) has multiple data-flow graphs
(shown in Fig. 8.3). For each data-flow graph, an optimal composition solution can
be generated using the proposed GA-based approach. Since each of the optimal
solution only covers a subset of the composite service, further actions are needed
to aggregate these partial composition solutions into an overall solution. Assume
the composite service has f data-flow graphs (i.e. dfg1; dfg2; : : : ; dfgf). The
approach adopts the following strategies to aggregate multiple solutions into an
overall solution:

• Given an abstract service Si , if Si only belongs to one data-flow graph (e.g.
dfgj), then the proposed approach selects dfgj ’s solution chromosomej to
execute abstract service Si .

128 8 QoS-Aware Service Compositions in Cloud Computing

• Given an abstract service Si , if Si belongs to more than one data-flow graphs,
then there are many solutions can be used to execute Si . The proposed approach
will select the most frequently used solution (from execution history), or ask end
users to select a preferable solution.

8.3 Experiment and Evaluation

Our experiments consist of two parts. First, comparisons are conducted between the
proposed approach and other approaches in small-scale scenarios. Second, compar-
isons are conducted in large-scale scenarios. All the experiments are conducted on
computers with Intel Core 2 Duo 6400 CPU (2.13 GHz and 2GB RAM).

Creation of Experimental Scenarios

Randomly generated scenarios are used for the experiments. Each scenario contains
a control-flow graph and a data-flow graph. QoS values of different concrete
services, virtual machines, database services and network services for each abstract
service are generated randomly with uniform probability. A scenario generation
system is designed to generate the scenarios for experiments. The system first
determines a root pattern (i.e. sequence, conditional, parallel, loop patterns) with
uniform probability for the control-flow. Within this root, the system chooses with
equal probability to either place an abstract services into it or to choose another
composition pattern as substructure. This procedure ends until the generation system
has spent the predefined number (n) of abstract services. All the conditional patterns
have 2 possible options, either of them has the probability of 0:5. Each loop pattern
will run for twice. There are k candidate concrete services to implement each
abstract service. The number of data transferred between each abstract services in
the flow graph is d . Each concrete service can be lodged in m virtual machines,
p database services and q network services. These variables are predefined and
used as input (denoted as fn; k; d; m; p; qg) to the generation system. Small-
scale scenarios have the input f5; 2; 6; 3; 3; 3g. Large-scale scenarios have 100

abstract services. Each abstract service can be executed by 30 concrete services.
120 data items are transferred between services and each concrete service is
suitable to run in 20 different VMs, 20 different database services and 20 network
services. The four QoS attributes and the four QoS constraints have same weight
equals 1. The execution QoS, network QoS and storage QoS were randomly
generated with uniform distribution from the following intervals: Q1.T ime/ 2
Œ100; 2; 000�, Q2.P rice/ 2 Œ200; 1; 000�, Q3.Availabili ty/ 2 Œ0:9750; 0:9999�

and Q4.Reputat ion/ 2 Œ1; 100�.

8.3 Experiment and Evaluation 129

Every approach runs 50 times for each scenario. All the results shown below
are the average values from these experiments. Each experiment for the GA-based
approach starts from a different initial population each time. The probability of
crossover pcross D 0:4 is the same for the matching string and scheduling string.
The probability of mutation pmut D 0:1 is also the same for the matching string
and scheduling string. The approach uses rank-based roulette wheel schema for
selection. The angle ratio of the sectors on the roulette wheel for two adjacently
ranked chromosomes, i.e. R, was chosen to be 1 C 1=P , where P is the population
size. By using this simple formula, the angle ratio between the slots of the best and
median chromosomes for P D 50 (and also for P D 200 for large-scale scenarios)
is very closely to the optimal empirical ratio value of 1:5 in [231]. MAXFIT

equals to 150. MAXGEN equals to 1; 000. Exhaustive search approach would
traverse all the possible solutions to the composition problem and find the optimized
solution that has the smallest fitness value. Although this approach would always
find the most optimal composition solution, the execution time is extremely high.
Random selection approach is also a GA-based approach. This approach would
randomly select chromosomes to form a new generation. Comparisons with these
approaches show the effectiveness and efficiency of the proposed approach. Integer
Programming (IP) approaches have been proposed to solve QoS-aware service
composition in SOC. The IP approach is implemented using LPSolve [77], which is
an open source integer programming system. Comparisons with IP approach show
the scalability of the proposed approach.

Experiments Results

Small-scale experiments are conducted on 10 different test datasets. We only show
two of them in Fig. 8.9 to make the graph much easier to read. Figure 8.8 shows
the results between the proposed approach and the exhaustive search approach.
Proposed GA-based approach would always find near-optimal solution compared
to exhaustive search algorithms. Figure 8.9 shows the comparisons between the
proposed approach and the random selection solution. As shown in this figure,
proposed approach will always reach an optimized fitness value while random
selection seldom converges. To sum up, the proposed GA based approach will
always reach an optimal fitness value and the converged point is very close to the
actual optimal point. Figure 8.10 shows the efficiency of the proposed approach.
These experiments are conducted on small-scale scenarios. Each test dataset has
the same configuration, except for the number of concrete services for each abstract
service. As shown in Fig. 8.10, the execution time increases quickly at the beginning,
but keeps stable when the number of concrete services for each abstract service is
larger than 200.

As shown in Fig. 8.11a, IP approach performs as good as the GA based approach
at the beginning. Notice that, when the number of the abstract services becomes
more than 40, IP approaches would cost exponential growing time to solve the

130 8 QoS-Aware Service Compositions in Cloud Computing

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 2 3 4 5 6 7 8 9 10

F
itn

es
s

va
lu

e

Test dataset

GA
Exhaustive Search Algorithm

Fig. 8.8 Fitness vs Dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400

F
itn

es
s

va
lu

e

Number of generation

Test dataset 1 on GA
Test dataset 2 on GA

Test dataset 1 on Random selection
Test dataset 2 on Random selection

Fig. 8.9 GA vs Random selection

composition problems. Figure 8.11b shows the fitness value’s trend corresponding
to the increment of the number of the abstract services. Both IP approach and GA
based approach behave well when the number of abstract services is relatively small.

8.4 Related Work 131

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

ex
ec

ut
io

n
tim

e

Number of concrete services for each abstract service

Test dataset 1
Test dataset 2

Fig. 8.10 Time vs Concrete services

When the number of abstract services increases, the optimal fitness value obtained
from GA based approach also increases. This is because population size and other
related variables stay the same when the number of the abstract services varies.
Hence, GA based approach are more scalable and efficient than IP approaches.

8.4 Related Work

Most composition approaches in SOC use linear programming methods. [238]
presents two approaches: one focuses on local optimization, the other on global
optimization. They use integer programming to solve the global optimization
problem. The limit of this approach is that all QoS attributes need to be linearized as
integer programming is a linear programming approach. [66] proposes an improved
approach based on [238], using Mixed Linear Programming (MILP) approach. They
also introduce several concepts such as loop peeling and negotiation mechanisms to
address situation where no feasible solution can be found. [63] proposes an approach
to decompose global QoS constraints into local constraints with conservative upper
and lower bounds. These local constraints are resolved by using an efficient
distributed local selection strategy.

All of the aforementioned approaches only consider the service composition
problems in small-scale scenarios. These linear programming approaches are not
suitable to handle large-scale scenarios problems, e.g. service composition in cloud

132 8 QoS-Aware Service Compositions in Cloud Computing

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70 80 90 100

ex
ec

ut
io

n
tim

e

Number of abstract services

GA
Integer programming

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s

va
lu

e

Number of abstract services

GA
Integer programming

a

b

Fig. 8.11 GA vs Integer programming approach. (a) GA vs Integer programming on time. (b) GA
vs Integer programming on fitness

8.5 Conclusion 133

computing. [93] was the first to use GA for optimization of QoS-aware compositions
in SOC. The results show that their GA implementation scales better than linear
programming. [135] presents a GA and a Culture Algorithm (CA) for Web service
compositions. The first algorithm is similar to [93], the latter uses a global belief
space and an influence function that accelerate the convergence of the population.
[202] presents a mutation operator which consider both the local and global
constraints to accelerate the converge of the population.

Existing GA-based approaches are solely focus on service composition in
application level, which do not consider the computing resources composition.
Service composition in cloud computing involves application service composition
and computing resources matching and scheduling. In this chapter, a genetic
algorithm based approach is proposed to compose services in cloud computing, by
combining QoS-aware service composition approaches and resources matching and
scheduling approaches.

8.5 Conclusion

A genetic algorithm based approach is presented for service compositions in cloud
computing. Service compositions in cloud computing involve the selections of
application services and utility computing services. The chromosome size is bound
to the number of n of abstract services. The number of possible application services
and utility computing services only augments the search space. For small-scale
scenarios, the proposed approach finds optimal solutions. For larger-scale problems,
it outperforms the integer programming approach. This is a beginning to propose
robust service composition approaches in cloud computing. Future work may focus
to eliminate several assumptions: (1) QoS values for each component are known in
this research. Calculating the QoS values at runtime is one direction; (2) penalty
factor in the fitness function is static. More dynamic fitness functions can be used
to improve the performance of the approach. (3) novel crossover and mutation
operators may accelerate the converge.

Chapter 9
Big Data Processing Systems

In the last two decades, the continuous increase of computational power has
produced an overwhelming flow of data which has called for a paradigm shift in the
computing architecture and large scale data processing mechanisms. MapReduce
is a simple and powerful programming model that enables easy development of
scalable parallel applications to process vast amounts of data on large clusters
of commodity machines. It isolates the application from the details of running
a distributed program such as issues on data distribution, scheduling and fault
tolerance. However, the original implementation of the MapReduce framework had
some limitations that have been tackled by many research efforts in several followup
works after its introduction. This chapter provides a comprehensive survey for a
family of approaches and mechanisms of large scale data processing mechanisms
that have been implemented based on the original idea of the MapReduce framework
and are currently gaining a lot of momentum in both research and industrial
communities. We also cover a set of systems that have been implemented to provide
declarative programming interfaces on top of the MapReduce framework. In addi-
tion, we review several large scale data processing systems that resemble some of the
ideas of the MapReduce framework for different purposes and application scenarios.
Finally, we discuss some of the future research directions for implementing the next
generation of MapReduce-like solutions.

9.1 Introduction

Many enterprises continuously collect large datasets that record customer interac-
tions, product sales, results from advertising campaigns on the Web, and other types
of information. For example, Facebook collects 15 TeraBytes of data each day into
a PetaByte-scale data warehouse [222]. In general, the growing demand for large-
scale data processing and data analysis applications has spurred the development
of novel solutions from both the industry (e.g., web-data analysis, click-stream
analysis, network-monitoring log analysis) and the sciences (e.g., analysis of data

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__9,
© Springer International Publishing Switzerland 2014

135

136 9 Big Data Processing Systems

produced by massive-scale simulations, sensor deployments, high-throughput lab
equipment) [206]. Although parallel database systems [122] serve some of these
data analysis applications (e.g. Teradata [45], SQL Server PDW [36], Vertica [51],
Greenplum [25], ParAccel [40], Netezza [31], they are expensive, difficult to admin-
ister and lack fault-tolerance for long-running queries [194]. MapReduce [118] is a
framework which is introduced by Google for programming commodity computer
clusters to perform large-scale data processing in a single pass. The framework is
designed such that a MapReduce cluster can scale to thousands of nodes in a fault-
tolerant manner. One of the main advantages of this framework is its reliance on
a simple and powerful programming model. In addition, it isolates the application
developer from all the complex details of running a distributed program such as:
issues on data distribution, scheduling and fault tolerance [193].

In principle, the success of many enterprises often rely on their ability to analyze
expansive volumes of data. In general, cost-effective processing of large datasets is
a nontrivial undertaking. Fortunately, MapReduce frameworks and cloud computing
have made it easier than ever for everyone to step into the world of big data.
This technology combination has enabled even small companies to collect and
analyze terabytes of data in order to gain a competitive edge. For example, the
Amazon Elastic Compute Cloud (EC2) [4] is offered as a commodity that can
be purchased and utilised. In addition, Amazon has also provided the Amazon
Elastic MapReduce [6] as an online service to easily and cost-effectively process
vast amounts of data without the need to worry about time-consuming set-up,
management or tuning of computing clusters or the compute capacity upon which
they sit. Hence, such services enable third-parties to perform their analytical queries
on massive datasets with minimum effort and cost by abstracting the complexity
entailed in building and maintaining computer clusters.

The implementation of the basic MapReduce architecture had some limitations.
Therefore, several research efforts have been triggered to tackle these limitations
by introducing several advancements in the basic architecture in order to improve
its performance. This chapter provides a comprehensive survey for a family of
approaches and mechanisms of large scale data analysis mechanisms that have
been implemented based on the original idea of the MapReduce framework and are
currently gaining a lot of momentum in both research and industrial communities.
In particular, the remainder of this chapter is organized as follows. Section 9.2
describes the basic architecture of the MapReduce framework. Section 9.3 discusses
several techniques that have been proposed to improve the performance and capabil-
ities of the MapReduce framework from different perspectives. Section 9.4 covers
several systems that support a high level SQL-like interface for the MapReduce
framework. In Sect. 9.5, we conclude the chapter and discuss some of the future
research directions for implementing the next generation of MapReduce/Hadoop-
like solutions.

9.2 MapReduce Framework: Basic Architecture 137

9.2 MapReduce Framework: Basic Architecture

The MapReduce framework is introduced as a simple and powerful programming
model that enables easy development of scalable parallel applications to process
vast amounts of data on large clusters of commodity machines [118, 119]. In
particular, the implementation described in the original paper is mainly designed
to achieve high performance on large clusters of commodity PCs. One of the
main advantages of this approach is that it isolates the application from the details
of running a distributed program, such as issues on data distribution, scheduling
and fault tolerance. In this model, the computation takes a set of key/value pairs
input and produces a set of key/value pairs as output. The user of the MapReduce
framework expresses the computation using two functions: Map and Reduce. The
Map function takes an input pair and produces a set of intermediate key/value
pairs. The MapReduce framework groups together all intermediate values associated
with the same intermediate key I and passes them to the Reduce function. The
Reduce function receives an intermediate key I with its set of values and merges
them together. Typically just zero or one output value is produced per Reduce
invocation. The main advantage of this model is that it allows large computations
to be easily parallelized and re-executed to be used as the primary mechanism for
fault tolerance. Figure 9.1 illustrates an example MapReduce program expressed in
pseudo-code for counting the number of occurrences of each word in a collection of
documents. In this example, the map function emits each word plus an associated
count of occurrences while the reduce function sums together all counts emitted
for a particular word. In principle, the design of the MapReduce framework has
considered the following main principles [103]:

• Low-cost unreliable commodity hardware: Instead of using expensive, high-
performance, reliable symmetric multiprocessing (SMP) or massively parallel
processing (MPP) machines equipped with high-end network and storage sub-
systems, the MapReduce framework is designed to run on large clusters of
commodity hardware. This hardware is managed and powered by open-source
operating systems and utilities so that the cost is low.

• Extremely scalable RAIN cluster: Instead of using centralized RAID-based SAN
or NAS storage systems, every MapReduce node has its own local off-the-
shelf hard drives. These nodes are loosely coupled where they are placed in

Fig. 9.1 An example MapReduce program

138 9 Big Data Processing Systems

racks that can be connected with standard networking hardware connections.
These nodes can be taken out of service with almost no impact to still-running
MapReduce jobs. These clusters are called Redundant Array of Independent (and
Inexpensive) Nodes (RAIN).

• Fault-tolerant yet easy to administer: MapReduce jobs can run on clusters with
thousands of nodes or even more. These nodes are not very reliable as at any point
in time, a certain percentage of these commodity nodes or hard drives will be out
of order. Hence, the MapReduce framework applies straightforward mechanisms
to replicate data and launch backup tasks so as to keep still-running processes
going. To handle crashed nodes, system administrators simply take crashed
hardware off-line. New nodes can be plugged in at any time without much
administrative hassle. There is no complicated backup, restore and recovery
configurations like the ones that can be seen in many DBMS.

• Highly parallel yet abstracted: The most important contribution of the MapRe-
duce framework is its ability to automatically support the parallelization of task
executions. Hence, it allows developers to focus mainly on the problem at hand
rather than worrying about the low level implementation details such as memory
management, file allocation, parallel, multi-threaded or network programming.
Moreover, MapReduce’s shared-nothing architecture [215] makes it much more
scalable and ready for parallelization.

Hadoop [9] is an open source Java library [230] that supports data-intensive
distributed applications by realizing the implementation of the MapReduce frame-
work.1 It has been widely used by a large number of business companies for
production purposes.2 On the implementation level, the Map invocations of a
MapReduce job are distributed across multiple machines by automatically parti-
tioning the input data into a set of M splits. The input splits can be processed in
parallel by different machines. Reduce invocations are distributed by partitioning the
intermediate key space into R pieces using a partitioning function (e.g. hash(key)
mod R). The number of partitions (R) and the partitioning function are specified
by the user. Figure 9.2 illustrates an example of the overall flow of a MapReduce
operation which goes through the following sequence of actions:

1. The input data of the MapReduce program is split into M pieces and starts up
many instances of the program on a cluster of machines.

2. One of the instances of the program is elected to be the master copy while the
rest are considered as workers that are assigned their work by the master copy. In
particular, there are M map tasks and R reduce tasks to assign. The master picks
idle workers and assigns each one or more map tasks and/or reduce tasks.

3. A worker who is assigned a map task processes the contents of the corresponding
input split and generates key/value pairs from the input data and passes each pair
to the user-defined Map function. The intermediate key/value pairs produced by
the Map function are buffered in memory.

1In the rest of this chapter, we use the two names: MapReduce and Hadoop, interchangeably.
2http://wiki.apache.org/hadoop/PoweredBy.

http://wiki.apache.org/hadoop/PoweredBy

9.2 MapReduce Framework: Basic Architecture 139

Input files Intermediate files
(on local disk)

Reduce phase Output
files

Map phase

Fig. 9.2 An overview of the flow of execution a MapReduce operation

4. Periodically, the buffered pairs are written to local disk and partitioned into R

regions by the partitioning function. The locations of these buffered pairs on the
local disk are passed back to the master, who is responsible for forwarding these
locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it reads the
buffered data from the local disks of the map workers which is then sorted by the
intermediate keys so that all occurrences of the same key are grouped together.
The sorting operation is needed because typically many different keys map to the
same reduce task.

6. The reduce worker passes the key and the corresponding set of intermediate
values to the user’s Reduce function. The output of the Reduce function is
appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master program
wakes up the user program. At this point, the MapReduce invocation in the user
program returns the program control back to the user code.

During the execution process, the master pings every worker periodically. If no
response is received from a worker within a certain amount of time, the master
marks the worker as failed. Any map tasks marked completed or in progress by
the worker are reset back to their initial idle state and therefore become eligible
for scheduling by other workers. Completed map tasks are re-executed on a task

140 9 Big Data Processing Systems

failure because their output is stored on the local disk(s) of the failed machine and is
therefore inaccessible. Completed reduce tasks do not need to be re-executed since
their output is stored in a global file system.

9.3 Extensions and Enhancements of the MapReduce
Framework

In practice, the basic implementation of the MapReduce is very useful for handling
data processing and data loading in a heterogenous system with many different
storage systems. Moreover, it provides a flexible framework for the execution of
more complicated functions than that can be directly supported in SQL. However,
this basic architecture suffers from some limitations. Dean and Ghemawa [120]
reported about some possible improvements that can be incorporated into the
MapReduce framework. Examples of these possible improvements include:

• MapReduce should take advantage of natural indices whenever possible.
• Most MapReduce output can be left unmerged since there is no benefit of

merging them if the next consumer is just another MapReduce program.
• MapReduce users should avoid using inefficient textual formats.

In the following subsections we discuss some research efforts that have been
conducted in order to deal with these challenges and the different improvements
that has been made on the basic implementation of the MapReduce framework in
order to achieve these goals.

Processing Join Operations

One main limitation of the MapReduce framework is that it does not support the
joining of multiple datasets in one task. However, this can still be achieved with
additional MapReduce steps. For example, users can map and reduce one dataset
and read data from other datasets on the fly. Blanas et al. [82] have reported
about a study that evaluated the performance of different distributed join algorithms
using the MapReduce framework. In particular, they have evaluated the following
implementation strategies of distributed join algorithms:

• Standard repartition join: The two input relations are dynamically partitioned
on the join key and the corresponding pairs of partitions are joined using the
standard partitioned sort-merge join approach.

• Improved repartition join: One potential problem with the standard repartition
join is that all the records for a given join key from both input relations have
to be buffered. Therefore, when the key cardinality is small or when the data is
highly skewed, all the records for a given join key may not fit in memory. The

9.3 Extensions and Enhancements of the MapReduce Framework 141

improved repartition join strategy fixes the buffering problem by introducing the
following key changes:

– In the map function, the output key is changed to a composite of the join key
and the table tag. The table tags are generated in a way that ensures records
from one input relation will be sorted ahead of those from the other input
relation on a given join key.

– The partitioning function is customized so that the hashcode is computed from
just the join key part of the composite key. This way records with the same
join key are still assigned to the same reduce task.

– As records from the smaller input are guaranteed to be ahead of those from L
for a given join key, only the records from the smaller input are buffered and
the records of the larger input are streamed to generate the join output.

• Broadcast join: Instead of moving both input relations across the network as in
the repartition-based joins, the broadcast join approach moves only the smaller
input relation so that it avoids the preprocessing sorting requirement of both
input relations and more importantly avoids the network overhead for moving
the larger relation.

• Semi-join: This join approach tries to avoid the problem of the broadcast join
approach where it is possible to send many records of the smaller input relation
across the network while they may not be actually referenced by any records in
the other relation. It achieves this goal at the cost of an extra scan of the smaller
input relation where it determines the set of unique join keys in the smaller
relation, send them to the other relation to specify the list of the actual referenced
join keys and then send only these records across the network for executing the
real execution of the join operation.

• Per-split semi-join: This join approach tries to improve the semi-join approach
with a further step to address the fact that not every record in the filtered version
of the smaller relation will join with a particular split of the larger relation.
Therefore, an extra process step is executed to determine the target split(s) of
each filtered join key.

Figure 9.3 illustrates a decision tree that summarizes the tradeoffs of the studied
join strategies according to the results of that study. Based on statistics, such as
the relative data size and the fraction of the join key referenced, this decision tree
tries to determine what is the right join strategy for a given circumstance. If data is
not preprocessed, the right join strategy depends on the size of the data transferred
via the network. If the network cost of broadcasting an input relation R to every
node is less expensive than transferring both R and projected L, then the broadcast
join algorithm should be used. When preprocessing is allowed, semi-join, per-split
semi-join and directed join with sufficient partitions are the best choices. Semi-join
and per-split semi-join offer further flexibility since their preprocessing steps are
insensitive to how the log table is organized, and thus suitable for any number of
reference tables. In addition, the preprocessing steps of these two algorithms are
cheaper since there is no shuffling of the log data.

142 9 Big Data Processing Systems

Fig. 9.3 Decision tree for choosing between various join strategies on the MapReduce framework

driver process

remote transfer
DFS input/output
internal transfer

DFS file/chunks

communication
fork

coordinator

split mapper

mapper

mapper

mapper

mapper

mapper

mapper

mapper
reducer

reducer

reducer
merger

merger

merger

reducer

reducer

reducer
split

split

output

output

output

split

split

split

split

split

split

split

Fig. 9.4 An overview of the Map-Reduce-Merge framework

To tackle the limitation of the extra processing requirements for performing join
operations in the MapReduce framework, the Map-Reduce-Merge model [103] have
been introduced to enable the processing of multiple datasets. Figure 9.4 illustrates
the framework of this model where the map phase transforms an input key/value pair
.k1; v1/ into a list of intermediate key/value pairs Œ.k2; v2/�. The reduce function
aggregates the list of values Œv2� associated with k2 and produces a list of values
Œv3� which is also associated with k2. Note that inputs and outputs of both functions
belong to the same lineage (˛). Another pair of map and reduce functions produce

9.3 Extensions and Enhancements of the MapReduce Framework 143

the intermediate output .k3; Œv4�/ from another lineage (ˇ). Based on keys k2 and
k3, the merge function combines the two reduced outputs from different lineages
into a list of key/value outputs Œ.k4; v5/�. This final output becomes a new lineage
(�). If ˛ D ˇ then this merge function does a self-merge which is similar to self-
join in relational algebra. The main differences between the processing model of
this framework and the original MapReduce is the production of a key/value list
from the reduce function instead of just that of values. This change is introduced
because the merge function requires input datasets to be organized (partitioned, then
either sorted or hashed) by keys and these keys have to be passed into the function
to be merged. In the original framework, the reduced output is final. Hence, users
pack whatever is needed in Œv3� while passing k2 for the next stage is not required.
Figure 9.5 illustrates a sample execution of the Map-Reduce-Merge framework. In
this example, there are two datasets Employee and Department where Employee’s
key attribute is emp-id and the Department’s key is dept-id. The execution of
this example query aims to join these two datasets and compute employee bonuses.
On the left hand side of Fig. 9.5, a mapper reads Employee entries and computes a
bonus for each entry. A reducer then sums up these bonuses for every employee
and sorts them by dept-id, then emp-id. On the right hand side, a mapper
reads Department entries and computes bonus adjustments. A reducer then sorts
these department entries. At the end, a merger matches the output records from the
two reducers on dept-id and applies a department-based bonus adjustment on
employee bonuses. Yang et al. [104] have also proposed an approach for improving
the Map-Reduce-Merge framework by adding a new primitive called Traverse. This
primitive can process index file entries recursively, select data partitions based on
query conditions and feed only selected partitions to other primitives.

The Map-Join-Reduce [154] represents another approach that has been intro-
duced with a filtering-join-aggregation programming model as an extension of the
standard MapReduce’s filtering-aggregation programming model. In particular, in
addition to the standard mapper and reducer operation of the standard MapReduce
framework, they introduce a third operation, join (called joiner), to the framework.
Hence, to join multiple datasets for aggregation, users specify a set of join()
functions and the join order between them. Then, the runtime system automatically
joins the multiple input datasets according to the join order and invoke join()
functions to process the joined records. They have also introduced a one-to-many
shuffling strategy which shuffles each intermediate key/value pair to many joiners
at one time. Using a tailored partition strategy, they can utilize the one-to-many
shuffling scheme to join multiple datasets in one phase instead of a sequence
of MapReduce jobs. The runtime system for executing a Map-Join-Reduce job
launches two kinds of processes: MapTask, and ReduceTask. Mappers run inside
the MapTask process while joiners and reducers are invoked inside the ReduceTask
process. Therefore, Map-Join-Reduce’s process model allows for the pipelining of
intermediate results between joiners and reducers since joiners and reducers are run
inside the same ReduceTask process.

144 9 Big Data Processing Systems

emp-id

emp-id

dept-id bonus adjustment

emp-id

emp-id bonus

bonus-sumdept-id

bonusdept-id

emp-info: dept-id emp-info: bonus

1 B

LHS mapper computes emp bonuses

LHS reducer sorts on (dept-id, emp-id)

A sort-merge merger joins LHS and
RHS reduced outputs, then
computes final emp bonuses.

pair and sums up emp bonuses

RHS mapper retrieves bonus adjustment

RHS reducer modified bonus adjustment and
sorts on dept-id

match keys on dept-id

innovation award ($100)

B hard worker award ($50)

A NULL ($0)

A high-performer ($150)

A

1

2

3

3

1 B

A 0.95

1.15B

dept-id

dept-id dept-info: bonus adjustment

bonus adjustment

1.15

1.1

0.9

B

B

A

0.95A

$100

$150

$100

$50

$0

$0

$0

$237.5

$172.5

$250

$150

B

A

A

A

A

A

B

1

2

3

3

2

2

3

1

3

1

Innovation award ($100)

Fig. 9.5 A sample execution of the Map-Reduce-Merge framework

Afrati and Ullman [60, 61] have presented another approach to improve the
join phase in the MapReduce framework. The approach aims to optimize the
communication cost by focusing on selecting the most appropriate attributes that
are used to partition and replicate the data among the reduce process. Therefore,
it begins by identifying the map-key, the set of attributes that identify the Reduce
process to which a Map process must send a particular tuple. Each attribute of the
map-key gets a “share” which is the number of buckets into which its values are
hashed, to form a component of the identifier of a Reduce process. Relations have
their tuples replicated in limited fashion of which the degree of replication depends
on the shares for those map-key attributes that are missing from their schema.
The approach considers two important special join cases: chain joins (represents
a sequence of two-way join operations where the output of one operation in this
sequence is used as an input to another operation in a pipelined fashion) and star
joins (represents joining of a large fact table with several smaller dimension tables).
In each case, the proposed algorithm is able to determine the map-key and determine
the shares that yield the least replication. The proposed approach is not always

9.3 Extensions and Enhancements of the MapReduce Framework 145

superior to the conventional way of using map-reduce to implement joins. However,
there are some cases where the proposed approach results in clear wins such as:

• Analytic queries in which a very large fact table is joined with smaller dimension
tables.

• Queries involving paths through graphs with high out-degree, such as the Web or
a social network.

Li et al. [175] have proposed a data analysis platform, based on MapReduce,
that is geared for incremental one-pass analytics. In particular, they replace the
sort-merge implementation in the standard MapReduce framework with a purely
hash-based framework, which is designed to address the computational and I/O
bottlenecks as well as the blocking behavior of the sort-merge algorithm. Therefore,
they devised two hash techniques to suit different user reduce functions, depending
on whether the reduce function permits incremental processing. Besides eliminating
the sorting cost from the map tasks, these hash techniques enable fast in-memory
processing of the reduce function when the memory reaches a sufficient size as
determined by the workload and algorithm. In addition, in order to bring the benefits
of fast in-memory processing to workloads that require a large key-state space
that far exceeds available memory, they presented a special technique to identify
frequent keys and then update their states using a full in-memory processing path,
both saving I/Os and also enabling early answers for these keys.

Supporting Iterative Processing

Many data analysis techniques (e.g. PageRank algorithm, recursive relational
queries, social network analysis) require iterative computations. These techniques
have a common requirement which is that data are processed iteratively until the
computation satisfies a convergence or stopping condition. The basic MapReduce
framework does not directly support these iterative data analysis applications.
Instead, programmers must implement iterative programs by manually issuing
multiple MapReduce jobs and orchestrating their execution using a driver program.
In practice, there are two key problems with manually orchestrating an iterative
program in MapReduce:

• Even though much of the data may be unchanged from iteration to iteration, the
data must be re-loaded and re-processed at each iteration, wasting I/O, network
bandwidth and CPU resources.

• The termination condition may involve the detection of when a fixpoint has been
reached. This condition may itself require an extra MapReduce job on each
iteration, again incurring overhead in terms of scheduling extra tasks, reading
extra data from disk and moving data across the network.

146 9 Big Data Processing Systems

Task Queue

.

.

.

Task21 Task22 Task23

Task31 Task32 Task33

Task11 Task12 Task13

Identical to Hadoop New in HaLoop

Local communication

Master

Job 1

F
ile

 S
ys

te
m

F
ra

m
ew

or
k

A
pp

lic
at

io
n

Job 2

Task Scheduler

Loop Control

Distributed File System

Task Tracker

Caching Indexing

Local File System

Job 3

Slaves

Remote communication

Modified from Hadoop

Fig. 9.6 An overview of HaLoop architecture

The HaLoop system [87, 88] is designed to support iterative processing on the
MapReduce framework by extending the basic MapReduce framework with two
main functionalities:

1. Caching the invariant data in the first iteration and then reusing them in later
iterations.

2. Caching the reducer outputs, which makes checking for a fixpoint more efficient,
without an extra MapReduce job.

Figure 9.6 illustrates the architecture of HaLoop as a modified version of the
basic MapReduce framework. In order to accommodate the requirements of iterative
data analysis applications, HaLoop has incorporated the following changes to the
basic Hadoop MapReduce framework:

• It exposes a new application programming interface to users that simplifies the
expression of iterative MapReduce programs.

• HaLoop’s master node contains a new loop control module that repeatedly starts
new map-reduce steps that compose the loop body until a user-specified stopping
condition is met.

• It uses a new task scheduler that leverages data locality.
• It caches and indices application data on slave nodes. In principle, the task tracker

not only manages task execution but also manages caches and indices on the slave
node and redirects each task’s cache and index accesses to local file system.

In principle, HaLoop relies on the same file system and has the same task queue
structure as Hadoop but the task scheduler and task tracker modules are modified,
and the loop control, caching, and indexing modules are newly introduced to the

9.3 Extensions and Enhancements of the MapReduce Framework 147

architecture. The task tracker not only manages task execution but also manages
caches and indices on the slave node, and redirects each task’s cache and index
accesses to local file system.

In the MapReduce framework, each map or reduce task contains its portion of
the input data and the task runs by performing the map/reduce function on its input
data records where the life cycle of the task ends when finishing the processing of
all the input data records has been completed. The iMapReduce framework [240]
supports the feature of iterative processing by keeping alive each map and reduce
task during the whole iterative process. In particular, when all of the input data of a
persistent task are parsed and processed, the task becomes dormant, waiting for the
new updated input data. For a map task, it waits for the results from the reduce tasks
and is activated to work on the new input records when the required data from the
reduce tasks arrive. For the reduce tasks, they wait for the map tasks’ output and are
activated synchronously as in MapReduce. Jobs can terminate their iterative process
in one of two ways:

1. Defining fixed number of iterations: Iterative algorithm stops after it iterates n
times.

2. Bounding the distance between two consecutive iterations: Iterative algorithm
stops when the distance is less than a threshold.

The iMapReduce runtime system does the termination check after each iteration.
To terminate the iterations by a fixed number of iterations, the persistent map/reduce
task records its iteration number and terminates itself when the number exceeds a
threshold. To bound the distance between the output from two consecutive iterations,
the reduce tasks can save the output from two consecutive iterations and compute
the distance. If the termination condition is satisfied, the master will notify all the
map and reduce tasks to terminate their execution.

Other projects have been implemented for supporting iterative processing on the
MapReduce framework. For example, Twister [50] is a MapReduce runtime with
an extended programming model that supports iterative MapReduce computations
efficiently [125]. It uses a publish/subscribe messaging infrastructure for communi-
cation and data transfers, and supports long running map/reduce tasks. In particular,
it provides programming extensions to MapReduce with broadcast and scatter type
data transfers. Microsoft has also developed a project that provides an iterative
MapReduce runtime for Windows Azure called Daytona [37].

Data and Process Sharing

With the emergence of cloud computing, the use of an analytical query processing
infrastructure (e.g., Amazon EC2) can be directly mapped to monetary value.
Taking into account that different MapReduce jobs can perform similar work, there
could be many opportunities for sharing the execution of their work. Thus, this
sharing can reduce the overall amount of work which consequently leads to the

148 9 Big Data Processing Systems

reduction of the monetary charges incurred while utilizing the resources of the
processing infrastructure. The MRShare system [187] have been presented as a
sharing framework which is tailored to transform a batch of queries into a new batch
that will be executed more efficiently by merging jobs into groups and evaluating
each group as a single query. Based on a defined cost model, they described an
optimization problem that aims to derive the optimal grouping of queries in order
to avoid performing redundant work and thus resulting in significant savings on
both processing time and money. In particular, the approach considers exploiting
the following sharing opportunities:

• Sharing scans. To share scans between two mapping pipelines Mi and Mj , the
input data must be the same. In addition, the key/value pairs should be of the
same type. Given that, it becomes possible to merge the two pipelines into a
single pipeline and scan the input data only once. However, it should be noted
that such combined mapping will produce two streams of output tuples (one for
each mapping pipeline Mi and Mj) . In order to distinguish the streams at the
reducer stage, each tuple is tagged with a tag() part. This tagging part is used
to indicate the origin mapping pipeline during the reduce phase.

• Sharing map output. If the map output key and value types are the same for two
mapping pipelines Mi and Mj then the map output streams for Mi and Mj can
be shared. In particular, if Mapi and Mapj are applied to each input tuple, then
the map output tuples coming only from Mapi are tagged with tag(i) only. If
a map output tuple was produced from an input tuple by both Mapi and Mapj ,
it is then tagged by tag(i)+tag(j). Therefore, any overlapping parts of the
map output will be shared. In principle, producing a smaller map output leads to
savings on sorting and copying intermediate data over the network.

• Sharing map functions. Sometimes the map functions are identical and thus they
can be executed once. At the end of the map stage, two streams are produced
where each is tagged with its job tag. If the map output is shared, then clearly
only one stream needs to be generated. Even if only some filters are common in
both jobs, it is possible to share parts of the map functions.

In practice, sharing scans and sharing map-output yield I/O savings while sharing
map functions (or parts of them) would yield additional CPU savings.

While the MRShare system focus on sharing the processing between queries
that are executed concurrently, the ReStore system [126, 127] has been introduced
so that it can enable the queries that are submitted at different times to share
the intermediate results of previously executed jobs and reusing them for future
submitted jobs to the system. In particular, each MapReduce job produces output
that is stored in the distributed file system used by the MapReduce system (e.g.
HDFS). These intermediate results are kept (for a defined period) and managed so
that it can be used as input by subsequent jobs. ReStore can make use of whole jobs
or sub-jobs reuse opportunities. To achieve this goal, the ReStore consists of two
main components:

9.3 Extensions and Enhancements of the MapReduce Framework 149

• Repository of MapReduce job outputs: It stores the outputs of previously
executed MapReduce jobs and the physical plans of these jobs.

• Plan matcher and rewriter: Its aim is to find physical plans in the repository that
can be used to rewrite the input jobs using the available matching intermediate
results.

In principle, the approach of the ReStore system can be viewed as analogous to
the steps of building and using materialized views for relational databases [145].

Support of Data Indices and Column Storage

One of the main limitations of the original implementation of the MapReduce
framework is that it is designed in a way that the jobs can only scan the input data
in a sequential-oriented fashion. Hence, the query processing performance of the
MapReduce framework is unable to match the performance of a well-configured
parallel DBMS [194]. In order to tackle this challenge, Dittrich et al. [123] have
presented the HadoopCC system which aims to boost the query performance of the
Hadoop system without changing any of the system internals. They achieved this
goal by injecting their changes through user-defined function (UDFs) which only
affect the Hadoop system from inside without any external effect. In particular, they
introduce the following main changes:

• Trojan index: The original Hadoop implementation does not provide index access
due to the lack of a priori knowledge of schema and the MapReduce jobs
being executed. Hence, the HadoopCC system is based on the assumption
that if we know the schema and the anticipated MapReduce jobs, then we can
create appropriate indices for the Hadoop tasks. In particular, trojan index is an
approach to integrate indexing capability into Hadoop in a non-invasive way.
These indices are created during the data loading time and thus have no penalty
at query time. Each trojan index provides an optional index access path which
can be used for selective MapReduce jobs. The scan access path can still be used
for other MapReduce jobs. These indices are created by injecting appropriate
UDFs inside the Hadoop implementation. Specifically, the main features of trojan
indices can be summarized as follows:

– No external library or engine: Trojan indices integrate indexing capability
natively into the Hadoop framework without imposing a distributed SQL-
query engine on top of it.

– Non-invasive: They do not change the existing Hadoop framework. The index
structure is implemented by providing the right UDFs.

– Optional access path: They provide an optional index access path which can
be used for selective MapReduce jobs. However, the scan access path can still
be used for other MapReduce jobs.

150 9 Big Data Processing Systems

– Seamless splitting: Data indexing adds an index overhead for each data
split. Therefore, the logical split includes the data as well as the index as it
automatically splits the indexed data at logical split boundaries.

– Partial index: Trojan Index need not be built on the entire split. However, it
can be built on any contiguous subset of the split as well.

– Multiple indexes: Several Trojan Indexes can be built on the same split. How-
ever, only one of them can be the primary index. During query processing,
an appropriate index can be chosen for data access based on the logical query
plan and the cost model.

• Trojan join: Similar to the idea of the trojan index, the HadoopCC system
assumes that if we know the schema and the expected workload, then we can
co-partition the input data during the loading time. In particular, given any two
input relations, they apply the same partitioning function on the join attributes
of both the relations at data loading time and place the co-group pairs, having
the same join key from the two relations, on the same split and hence on the
same node. As a result, join operations can be then processed locally within each
node at query time. Implementing the trojan joins do not require any changes
to be made to the existing implementation of the Hadoop framework. The only
changes are made on the internal management of the data splitting process. In
addition, trojan indices can be freely combined with trojan joins.

The design and implementation of a column-oriented and binary backend storage
format for Hadoop has been presented in [132]. In general, a straightforward way to
implement a column-oriented storage format for Hadoop is to store each column of
the input dataset in a separate file. However, this raises two main challenges:

• It requires generating roughly equal sized splits so that a job can be effectively
parallelized over the cluster.

• It needs to ensure that the corresponding values from different columns in the
dataset are co-located on the same node running the map task.

The first challenge can be tackled by horizontally partitioning the dataset and
storing each partition in a separate subdirectory. The second challenge is harder to
tackle because of the default three-way block-level replication strategy of HDFS that
provides fault tolerance on commodity servers but does not provide any co-location
guarantees. Floratou et al. [132] tackle this challenge by implementing a modified
HDFS block placement policy which guarantees that the files corresponding to the
different columns of a split are always co-located across replicas. Hence, when
reading a dataset, the column input format can actually assign one or more split-
directories to a single split and the column files of a split-directory are scanned
sequentially and the records are reassembled using values from corresponding
positions in the files. A lazy record construction technique is used to mitigate the
deserialization overhead in Hadoop, as well as eliminate unnecessary disk I/O. The
basic idea behind lazy record construction is to deserialize only those columns of a
record that are actually accessed in a map function. Each column of the input dataset
can be compressed using one of the following compression schemes:

9.3 Extensions and Enhancements of the MapReduce Framework 151

Sync (optional)
Value 1

File Header

Version
Column Type

Compression Scheme
#value per block (k)

Offset of Block 1
Offset of Block 2

Offset of Block n

Starting value in Block 1

Starting value in Block n
...

Starting value in Block 2

...

Indexed Value
(Optional)

Block Index

File Summary

...

Data Block n

Data Block 2

Data Block 1Value 2

Value k

#Total records
#Blocks

Offset of Block index
Offset of Indexed Value

...

Fig. 9.7 An example structure of CFile

1. Compressed blocks: This scheme uses a standard compression algorithm to
compress a block of contiguous column values. Multiple compressed blocks may
fit into a single HDFS block. A header indicates the number of records in a
compressed block and the block’s size. This allows the block to be skipped if
no values are accessed in it. However, when a value in the block is accessed, the
entire block needs to be decompressed.

2. Dictionary compressed skip list: This scheme is tailored for map-typed columns.
It takes advantage of the fact that the keys used in maps are often strings that
are drawn from a limited universe. Such strings are well suited for dictionary
compression. A dictionary is built of keys for each block of map values and store
the compressed keys in a map using a skip list format. The main advantage of this
scheme is that a value can be accessed without having to decompress an entire
block of values.

One advantage of this approach is that adding a column to a dataset is not an
expensive operation. This can be done by simply placing an additional file for
the new column in each of the split-directories. On the other hand, a potential
disadvantage of this approach is that the available parallelism may be limited for
smaller datasets. Maximum parallelism is achieved for a MapReduce job when the
number of splits is at least equal to the number of map tasks.

The Llama system [177] have introduced another approach of providing column
storage support for the MapReduce framework. In this approach, each imported
table is transformed into column groups where each group contains a set of files
representing one or more columns. Llama introduced a column-wise format for
Hadoop, called CFile, where each file can contain multiple data blocks and each
block of the file contains a fixed number of records (Fig. 9.7). However, the size of
each logical block may vary since records can be variable-sized. Each file includes

152 9 Big Data Processing Systems

a block index, which is stored after all data blocks, stores the offset of each block
and is used to locate a specific block. In order to achieve storage efficiency, Llama
uses block-level compression by using any of the well-known compression schemes.
In order to improve the query processing and the performance of join operations,
Llama columns are formed into correlation groups to provide the basis for the
vertical partitioning of tables. In particular, it creates multiple vertical groups where
each group is defined by a collection of columns, one of them is specified as the
sorting column. Initially, when a new table is imported into the system, a basic
vertical group is created which contains all the columns of the table and sorted
by the table’s primary key by default. In addition, based on statistics of query
patterns, some auxiliary groups are dynamically created or discarded to improve
the query performance. The Clydesdale system [73, 157], a system which has been
implemented for targeting workloads where the data fits a star schema, uses CFile
for storing its fact tables. It also relies on tailored join plans and block iteration
mechanism [243] for optimizing the execution of its target workloads.

RCFile [146] (Record Columnar File) is another data placement structure that
provides column-wise storage for Hadoop file system (HDFS). In RCFile, each
table is firstly stored as horizontally partitioned into multiple row groups where each
row group is then vertically partitioned so that each column is stored independently
(Fig. 9.8). In particular, each table can have multiple HDFS blocks where each block
organizes records with the basic unit of a row group. Depending on the row group
size and the HDFS block size, an HDFS block can have only one or multiple row
groups. In particular, a row group contains the following three sections:

1. The sync marker which is placed in the beginning of the row group and mainly
used to separate two continuous row groups in an HDFS block.

2. A metadata header which stores the information items on how many records are
in this row group, how many bytes are in each column and how many bytes are
in each field in a column.

3. The table data section which is actually a column-store where all the fields in the
same column are stored continuously together.

RCFile utilizes a column-wise data compression within each row group and pro-
vides a lazy decompression technique to avoid unnecessary column decompression
during query execution. In particular, the metadata header section is compressed
using the RLE (Run Length Encoding) algorithm. The table data section is not
compressed as a whole unit. However, each column is independently compressed
with the Gzip compression algorithm. When processing a row group, RCFile does
not need to fully read the whole content of the row group into memory. It only
reads the metadata header and the needed columns in the row group for a given
query and thus it can skip unnecessary columns and gain the I/O advantages of a
column-store. The metadata header is always decompressed and held in memory
until RCFile processes the next row group. However, RCFile does not decompress
all the loaded columns and uses a lazy decompression technique where a column
will not be decompressed in memory until RCFile has determined that the data in
the column will be really useful for query execution.

9.3 Extensions and Enhancements of the MapReduce Framework 153

Fig. 9.8 An example structure of RCFile

The notion of Trojan Data Layout has been coined in [156] which exploits the
existing data block replication in HDFS to create different Trojan Layouts on a per-
replica basis. This means that rather than keeping all data block replicas in the same
layout, it uses different Trojan Layouts for each replica which is optimized for a
different subclass of queries. As a result, every incoming query can be scheduled
to the most suitable data block replica. In particular, Trojan Layouts change the
internal organization of a data block and not among data blocks. They co-locate
attributes together according to query workloads by applying a column grouping
algorithm which uses an interestingness measure that denotes how well a set of
attributes speeds up most or all queries in a workload. The column groups are
then packed in order to maximize the total interestingness of data blocks. At query
time, an incoming MapReduce job is transparently adapted to query the data block
replica that minimizes the data access time. The map tasks are then routed of the
MapReduce job to the data nodes storing such data block replicas.

Effective Data Placement

In the basic implementation of the Hadoop project, the objective of the data
placement policy is to achieve good load balance by distributing the data evenly
across the data servers, independently of the intended use of the data. This simple
data placement policy works well with most Hadoop applications that access just
a single file. However, there are some other applications that process data from
multiple files which can get a significant boost in performance with customized
strategies. In these applications, the absence of data colocation increases the data

154 9 Big Data Processing Systems

shuffling costs, increases the network overhead and reduces the effectiveness of
data partitioning. For example, log processing is a very common usage scenario
for Hadoop framework. In this scenario, data are accumulated in batches from
event logs such as: clickstreams, phone call records, application logs or a sequences
of transactions. Each batch of data is ingested into Hadoop and stored in one or
more HDFS files at regular intervals. Two of the most common operations in log
analysis of these applications are (1) joining the log data with some reference
data and (2) sessionization, i.e., computing user sessions. The performance of
such operations can be significantly improved if they utilize the benefits of data
colocation. CoHadoop [129] is a lightweight extension to Hadoop which is designed
to enable colocating related files at the file system level while at the same time
retaining the good load balancing and fault tolerance properties. It introduces a new
file property to identify related data files and modify the data placement policy of
Hadoop to colocate copies of those related files in the same server. These changes
are designed in a way to retain the benefits of Hadoop, including load balancing and
fault tolerance. In principle, CoHadoop provides a generic mechanism that allows
applications to control data placement at the file-system level. In particular, a new
file-level property called a locator is introduced and the Hadoop’s data placement
policy is modified so that it makes use of this locator property. Each locator is
represented by a unique value (ID) where each file in HDFS is assigned to at
most one locator and many files can be assigned to the same locator. Files with the
same locator are placed on the same set of datanodes, whereas files with no locator
are placed via Hadoop’s default strategy. It should be noted that this colocation
process involves all data blocks, including replicas. Figure 9.9 shows an example of
colocating two files, A and B, via a common locator. All of A’s two HDFS blocks
and B’s three blocks are stored on the same set of datanodes. To manage the locator
information and keep track of collocated files, CoHadoop introduces a new data
structure, the locator table, which stores a mapping of locators to the list of files
that share this locator. In practice, the CoHadoop extension enables a wide variety
of applications to exploit data colocation by simply specifying related files such as:
colocating log files with reference files for joins, collocating partitions for grouping
and aggregation, colocating index files with their data files and colocating columns
of a table.

Pipelining and Streaming Operations

The original implementation of the MapReduce framework has been designed in a
way that the entire output of each map and reduce task to be materialized into a local
file before it can be consumed by the next stage. This materialization step allows
for the implementation of a simple and elegant checkpoint/restart fault tolerance
mechanism. The MapReduce Online approach [108, 109] has been proposed as a
modified architecture of the MapReduce framework in which intermediate data is
pipelined between operators while preserving the programming interfaces and fault

9.3 Extensions and Enhancements of the MapReduce Framework 155

File A

Block 1 A1 A1 A2

B1

O1

O1 O1

C1 C2 D1

O2
A1 A2

B1 B2 B3

D1

C1 C2 D1

O2

C1 C2
O2

B2 B3 B1 B2 B3

A2

1 file A, file B

file C

file D

file O

Locator Table

...

2

6

n

Block 1

Block 2

Block 3

Block 2

File B

An HDFS cluster of 5
Nodes, with 3-way
replication

Fig. 9.9 Example file colocation in CoHadoop

tolerance models of previous MapReduce frameworks. This pipelining approach
provides important advantages to the MapReduce framework such as:

• The reducers can begin their processing of the data as soon as it is produced
by mappers. Therefore, they can generate and refine an approximation of their
final answer during the course of execution. In addition, they can provide initial
estimates of the results several orders of magnitude faster than the final results.

• It widens the domain of problems to which MapReduce can be applied. For
example, it facilitates the ability to design MapReduce jobs that run continuously,
accepting new data as it arrives and analyzing it immediately (continuous
queries). This allows MapReduce to be used for applications such as event
monitoring and stream processing.

• Pipelining delivers data to downstream operators more promptly, which can
increase opportunities for parallelism, improve utilization and reduce response
time.

In this approach, each reduce task contacts every map task upon initiation of the
job and opens a TCP socket which will be used to pipeline the output of the map
function. As each map output record is produced, the mapper determines which
partition (reduce task) the record should be sent to, and immediately sends it via
the appropriate socket. A reduce task accepts the pipelined data it receives from
each map task and stores it in an in-memory buffer. Once the reduce task learns that
every map task has completed, it performs a final merge of all the sorted runs. In
addition, the reduce tasks of one job can optionally pipeline their output directly
to the map tasks of the next job, sidestepping the need for expensive fault-tolerant
storage in HDFS for what amounts to a temporary file. However, the computation
of the reduce function from the previous job and the map function of the next job
cannot be overlapped as the final result of the reduce step cannot be produced until
all map tasks have completed, which prevents effective pipelining. Therefore, the
reducer treats the output of a pipelined map task as tentative until the JobTracker
informs the reducer that the map task has committed successfully. The reducer can

156 9 Big Data Processing Systems

merge together spill files generated by the same uncommitted mapper, but will
not combine those spill files with the output of other map tasks until it has been
notified that the map task has committed. Thus, if a map task fails, each reduce
task can ignore any tentative spill files produced by the failed map attempt. The
JobTracker will take care of scheduling a new map task attempt, as in standard
Hadoop. In principle, the main limitation of the MapReduce Online approach is
that it is based on HDFS. Therefore, it is not suitable for streaming applications, in
which data streams have to be processed without any disk involvement. A similar
approach has been presented by Logothetis and Yocum [179] which defines an
incremental MapReduce job as one that processes data in large batches of tuples
and runs continuously according to a specific window range and slide of increment.
In particular, it produces a MapReduce result that includes all data within a window
(of time or data size) of every slide and considers landmark MapReduce jobs where
the trailing edge of the window is fixed and the system incorporates new data into the
existing result. Map functions are trivially continuous, and process data on a tuple-
by-tuple basis. However, before the reduce function may process the mapped data,
the data must be partitioned across the reduce operators and sorted. When the map
operator first receives a new key-value pair, it calls the map function and inserts the
result into the latest increment in the map results. The operator then assigns output
key-value pairs to reduce tasks, grouping them according to the partition function.
Continuous reduce operators participate in the sort as well, grouping values by their
keys before calling the reduce function.

The Incoop system [81] has been introduced as a MapReduce implementation
that has been adapted for incremental computations which detects the changes
on the input datasets and enables the automatic update of the outputs of the
MapReduce jobs by employing a fine-grained result reuse mechanism. In particular,
it allows MapReduce programs which are not designed for incremental processing
to be executed transparently in an incremental manner. To achieve this goal, the
design of Incoop introduces new techniques that are incorporated into the Hadoop
MapReduce framework. For example, instead of relying on HDFS to store the input
to MapReduce jobs, Incoop devises a file system called Inc-HDFS (Incremental
HDFS) that provides mechanisms to identify similarities in the input data of
consecutive job runs. In particular, Inc-HDFS splits the input into chunks whose
boundaries depend on the file contents so that small changes to input do not
change all chunk boundaries. Therefore, this partitioning mechanism can maximize
the opportunities for reusing results from previous computations, while preserving
compatibility with HDFS by offering the same interface and semantics. In addition,
Incoop controls the granularity of tasks so that large tasks can be divided into
smaller subtasks that can be re-used even when the large tasks cannot. Therefore, it
introduces a new Contraction phase that leverages Combiner functions to reduce the
network traffic by anticipating a small part of the processing done by the Reducer
tasks and control their granularity. Furthermore, Incoop improves the effectiveness
of memoization by implementing an affinity-based scheduler that applies a work
stealing algorithm to minimize the amount of data movement across machines. This
modified scheduler strikes a balance between exploiting the locality of previously

9.3 Extensions and Enhancements of the MapReduce Framework 157

computed results and executing tasks on any available machine to prevent straggling
effects. On the runtime, instances of incremental Map tasks take advantage of
previously stored results by querying the memoization server. If they find that
the result has already been computed, they fetch the result from the location of
their memoized output and conclude. Similarly, the results of a Reduce task are
remembered by storing them persistently and locally where a mapping from a
collision-resistant hash of the input to the location of the output is inserted in the
memoization server.

Since a Reduce task receives input from n Map tasks, the key stored in the
memoization server consists of the hashes of the outputs from all n Map task that
collectively form the input to the Reduce task. Therefore, when executing a Reduce
task, instead of immediately copying the output from the Map tasks, the Reduce task
consults Map tasks for their respective hashes to determine if the Reduce task has
already been computed in previous run. If so, that output is directly fetched from
the location stored in the memoization server, which avoids the re-execution of that
task.

The M3 system [64] has been proposed to support the answering of continuous
queries over streams of data bypassing the HDFS so that data gets processed
only through a main-memory-only data-path and totally avoids any disk access.
In this approach, Mappers and Reducers never terminate where there is only
one MapReduce job per query operator that is continuously executing. In M3,
query processing is incremental where only the new input is processed, and the
change in the query answer is represented by three sets of inserted (Cve), deleted
(�ve) and updated (u) tuples. The query issuer receives as output a stream that
represents the deltas (incremental changes) to the answer. Whenever an input
tuple is received, it is transformed into a modify operation (+ve, -ve or u) that
is propagated in the query execution pipeline, producing the corresponding set of
modify operations in the answer. Supporting incremental query evaluation requires
that some intermediate state be kept at the various operators of the query execution
pipeline. Therefore, Mappers and Reducers run continuously without termination,
and hence can maintain main-memory state throughout the execution. In contrast to
splitting the input data based on its size as in Hadoops Input Split functionality, M3

splits the streamed data based on arrival rates where the Rate Split layer, between
the main-memory buffers and the Mappers, is responsible for balancing the stream
rates among the Mappers. This layer periodically receives rate statistics from the
Mappers and accordingly redistributes the load of processing amongst Mappers. For
instance, a fast stream that can overflow one Mapper should be distributed among
two or more Mappers. In contrast, a group of slow streams that would underflow
their corresponding Mappers should be combined to feed into only one Mapper.
To support fault tolerance, input data is replicated inside the main memory buffers
and an input split is not overwritten until the corresponding Mapper commits.
When a Mapper fails, it re-reads its corresponding input split from any of the
replica inside the buffers. A Mapper writes its intermediate key-value pairs in
its own main-memory, and does not overwrite a set of key-value pairs until the
corresponding reducer commits. When a reducer fails, it re-reads its corresponding
sets of intermediate key-value pairs from the Mappers.

158 9 Big Data Processing Systems

The DEDUCE system [166] has been presented as a middleware that attempts
to combine real-time stream processing with the capabilities of a large scale data
analysis framework like MapReduce. In particular, it extends the IBM’s System S
stream processing engine and augments its capabilities with those of the MapReduce
framework. In this approach, the input data set to the MapReduce operator can
be either pre-specified at compilation time or could be provided at runtime as
a punctuated list of files or directories. Once the input data is available, the
MapReduce operator spawns a MapReduce job and produces a list of punctuated
list of files or directories, which point to the output data. Therefore, a MapReduce
operator can potentially spawn multiple MapReduce jobs over the application
lifespan but such jobs are spawned only when the preceding job (if any) has
completed its execution. Hence, multiple jobs can be cascaded together to create a
data-flow of MapReduce operators where the output from the MapReduce operators
can be read to provide updates to the stream processing operators.

System Optimizations

Several studies have been conducted to evaluate the performance characteristics of
the MapReduce framework. For example, Gu and Grossman [141] have reported
the following lessons which they have learned from their experiments with the
MapReduce framework:

• The importance of data locality. Locality is a key factor especially when relying
on inexpensive commodity hardware.

• Load balancing and the importance of identifying hot spots. With poor load
balancing, the entire system can be waiting for a single node. It is important
to eliminate any “hot spots” which can be caused by data access (accessing data
from a single node) or network I/O (transferring data into or out of a single node).

• Fault tolerance comes with a price. In some cases, fault tolerance introduces
extra overhead in order to replicate the intermediate results. For example, in the
cases of running on small to medium sized clusters, it might be reasonable to
favor performance and re-run any failed intermediate task when necessary.

• Streams are important. Streaming is important in order to reduce the total running
time of MapReduce jobs.

Jiang et al. [155] have conducted an in-depth performance study of MapReduce
using its open source implementation, Hadoop. As an outcome of this study,
they identified some factors that can have significant performance impact on the
MapReduce framework. These factors are described as follows:

• Although MapReduce is independent of the underlying storage system, it still
requires the storage system to provide efficient I/O modes for scanning data. The
experiments of the study on HDFS show that direct I/O outperforms streaming
I/O by 10–15 %.

9.3 Extensions and Enhancements of the MapReduce Framework 159

• The MapReduce can utilize three kinds of indices (range-indices, block-level
indices and database indexed tables) in a straightforward way. The experiments
of the study show that the range-index improves the performance of MapReduce
by a factor of 2 in the selection task and a factor of 10 in the join task when
selectivity is high.

• There are two kinds of decoders for parsing the input records: mutable decoders
and immutable decoders. The study claim that only immutable decoders intro-
duce performance bottleneck. To handle database-like workloads, MapReduce
users should strictly use mutable decoders. A mutable decoder is faster than an
immutable decoder by a factor of 10, and improves the performance of selection
by a factor of 2. Using a mutable decoder, even parsing the text record is efficient.

• Map-side sorting exerts negative performance effect on large aggregation
tasks which require nontrivial key comparisons and produce millions of
groups. Therefore, fingerprinting-based sort can significantly improve the
performance of MapReduce on such aggregation tasks. The experiments show
that fingerprinting-based sort outperforms direct sort by a factor of 4 to 5, and
improves overall performance of the job by 20–25 %.

• Scheduling strategy affects the performance of MapReduce as it can be sensitive
to the processing speed of slave nodes, and slows down the execution time of the
entire job by 25–35 %.

The experiments of the study show that with proper engineering for these factors,
the performance of MapReduce can be improved by a factor of 2.5 to 3.5 and
approaches the performance of Parallel Databases. Therefore, several low-level
system optimization techniques have been introduced to improve the performance
of the MapReduce framework.

In general, running a single program in a MapReduce framework may require
tuning a number of parameters by users or system administrators. The settings of
these parameters control various aspects of job behavior during execution such
as memory allocation and usage, concurrency, I/O optimization, and network
bandwidth usage. The submitter of a Hadoop job has the option to set these param-
eters either using a program-level interface or through XML configuration files.
For any parameter whose value is not specified explicitly during job submission,
default values, either shipped along with the system or specified by the system
administrator, are used [69]. Users can run into performance problems because
they do not know how to set these parameters correctly, or because they do not
even know that these parameters exist. Herodotou and Babu [148] have focused
on the optimization opportunities presented by the large space of configuration
parameters for these programs. They introduced a Profiler component to collect
detailed statistical information from unmodified MapReduce programs and a What-
if Engine for fine-grained cost estimation. In particular, the Profiler component is
responsible for the following two main aspects:

1. Capturing information at the fine granularity of phases within the map and
reduce tasks of a MapReduce job execution. This information is crucial to the
accuracy of decisions made by the What-if Engine and the Cost-based Optimizer
components.

160 9 Big Data Processing Systems

2. Using dynamic instrumentation to collect run-time monitoring information from
unmodified MapReduce programs. The dynamic nature means that monitoring
can be turned on or off on demand.

The What-if Engine’s accuracy come from how it uses a mix of simulation
and model-based estimation at the phase level of the MapReduce job execu-
tion [147, 149, 150]. For a given MapReduce program, the role of the cost-based
optimizer component is to enumerate and search efficiently through the high
dimensional space of configuration parameter settings, making appropriate calls to
the What-if Engine. In order for the program to find a good configuration setting, it
clusters parameters into lower-dimensional subspaces such that the globally-optimal
parameter setting in the high-dimensional space can be generated by composing
the optimal settings found for the subspaces. Stubby [176] has been presented as a
cost-based optimizer for MapReduce workflows that searches through the subspace
of the full plan space that can be enumerated correctly and costed based on the
information available in any given setting. Stubby enumerates the plan space based
on plan-to-plan transformations and an efficient search algorithm.

The Manimal system [92, 153] is designed as a static analysis-style mechanism
for detecting opportunities for applying relational style optimizations in MapReduce
programs. Like most programming-language optimizers, it is a best-effort system
where it does not guarantee that it will find every possible optimization and it
only indicates an optimization when it is entirely safe to do so. In particular, the
analyzer component of the system is responsible for examining the MapReduce
program and sends the resulting optimization descriptor to the optimizer component.
In addition, the analyzer also emits an index generation program that can yield
a B+Tree of the input file. The optimizer uses the optimization descriptor, plus a
catalog of pre-computed indexes, to choose an optimized execution plan, called
an execution descriptor. This descriptor, plus a potentially-modified copy of the
user’s original program, is then sent for execution on the Hadoop cluster. These
steps are performed transparently from the user where the submitted program does
not need to be modified by the programmer in any way. In particular, the main
task of the analyzer is to produce a set of optimization descriptors which enable
the system to carry out a phase roughly akin to logical rewriting of query plans in
a relational database. The descriptors characterize a set of potential modifications
that remain logically identical to the original plan. The catalog is a simple mapping
from a filename to zero or more (X; O) pairs where X is an index file and O is
an optimization descriptor. The optimizer examines the catalog to see if there is
any entry for input file. If not, then it simply indicates that Manimal should run
the unchanged user program without any optimization. If there is at least one entry
for the input file, and a catalog-associated optimization descriptor is compatible
with analyzer-output, then the optimizer can choose an execution plan that takes
advantage of the associated index file.

A key feature of MapReduce is that it automatically handles failures, hiding the
complexity of fault-tolerance from the programmer. In particular, if a node crashes,
MapReduce automatically restarts the execution of its tasks. In addition, if a node

9.3 Extensions and Enhancements of the MapReduce Framework 161

is available but is performing poorly, MapReduce runs a speculative copy of its
task (backup task) on another machine to finish the computation faster. Without this
mechanism of speculative execution, a job would be as slow as the misbehaving task.
This situation can arise for many reasons, including faulty hardware and system
misconfiguration. On the other hand, launching too many speculative tasks may
take away resources from useful tasks. Therefore, the accuracy in estimating the
progress and time-remaining long running jobs is an important challenge for a
runtime environment like the MapReduce framework. In particular, this information
can play an important role in improving resource allocation, enhancing the task
scheduling, enabling query debugging or tuning the cluster configuration. The Para-
Timer system [184, 185] has been proposed to tackle this challenge. In particular,
ParaTimer provides techniques for handling several challenges including failures
and data skew. To handle unexpected changes in query execution times such as those
due to failures, ParaTimer provides users with a set of time-remaining estimates
that correspond to the predicted query execution times in different scenarios (i.e.,
a single worst-case failure, or data skew at an operator). Each of these indicators
can be annotated with the scenario to which it corresponds, giving users a detailed
picture of possible expected behaviors. To achieve this goal, ParaTimer estimates
time-remaining by breaking queries into pipelines where the time-remaining for
each pipeline is estimated by considering the work to be done and the speed at which
that work will be performed, taking (time-varying) parallelism into account. To get
processing speeds, ParaTimer relies on earlier debug runs of the same query on input
data samples generated by the user. In addition, ParaTimer identifies the critical
path in a query plan where it then estimates progress along that path, effectively
ignoring other paths. Zaharia et al. [236] have presented an approach to estimate the
progress of MapReduce tasks within environments of clusters with heterogenous
hardware configurations. In these environments, choosing the node on which to run
a speculative task is as important as choosing the task. They proposed an algorithm
for speculative execution called LATE (Longest Approximate Time to End) which
is based on three principles: prioritizing tasks to speculate, selecting fast nodes on
which to run and capping speculative tasks to prevent thrashing. In particular, the
algorithm speculatively execute the task that it suspects will finish farthest into
the future, because this task provides the greatest opportunity for a speculative
copy to overtake the original and reduce the job’s response time. To really get the
best chance of beating the original task with the speculative task, the algorithm
only launches speculative tasks on fast nodes (and not the first available node).
The RAFT (Recovery Algorithms for Fast-Tracking) system [197, 198] has been
introduced, as a part of the HadoopCC system [123], for tracking and recovering
MapReduce jobs under task or node failures. In particular, RAFT uses two main
checkpointing mechanisms: local checkpointing and query metadata checkpointing.
On the one hand, the main idea of local checkpointing is to utilize intermediate
results, which are by default persisted by Hadoop, as checkpoints of ongoing task
progress computation. In general, map tasks spill buffered intermediate results to
local disk whenever the output buffer is on the verge to overflow. RAFT exploits
this spilling phase to piggy-back checkpointing metadata on the latest spill of each

162 9 Big Data Processing Systems

map task. For each checkpoint, RAFT stores a triplet of metadata that includes the
taskID which represents a unique task identifier, spillID which represents the local
path to the spilled data and offset which specifies the last byte of input data that
was processed in that spill. To recover from a task failure, the RAFT scheduler
reallocates the failed task to the same node that was running the task. Then, the node
resumes the task from the last checkpoint and reuses the spills previously produced
for the same task. This simulates a situation where previous spills appear as if they
were just produced by the task. In case that there is no local checkpoint available, the
node recomputes the task from the beginning. On the other hand, the idea behind
query metadata checkpointing is to push intermediate results to reducers as soon
as map tasks are completed and to keep track of those incoming key-value pairs
that produce local partitions and hence that are not shipped to another node for
processing. Therefore, in case of a node failure, the RAFT scheduler can recompute
local partitions.

In general, energy consumption and cooling are large components of the
operational cost of datacenters [74]. Therefore, the cluster-level energy management
of MapReduce framework is another interesting system optimization aspect. In
principle, the energy efficiency of a cluster can be improved in two ways [174]:

1. By matching the number of active nodes to the current needs of the workload and
placing the remaining nodes in low-power standby modes.

2. By engineering the compute and storage features of each node to match its
workload and avoid energy wastage due to oversized components.

Lang and Patel [169] have investigated the approach to power down (and power
up) nodes of a MapReduce cluster in order to save energy during periods of low
utilization. In particular, they compared between the following two strategies for
MapReduce energy management:

1. Covering Set (CS) strategy that keeps only a small fraction of the nodes powered
up during periods of low utilization.

2. All-In Strategy (AIS) that uses all the nodes in the cluster to run a workload and
then powers down the entire cluster.

The results from this comparison show that there are two crucial factors that
affect the effectiveness of these two methods:

• The computational complexity of the workload.
• The time taken to transition nodes to and from a low power (deep hibernation)

state to a high performance state.

The evaluation shows that CS is more effective than AIS only when the
computational complexity of the workload is low (e.g., linear), and the time it takes
for the hardware to transition a node to and from a low power state is a relatively
large fraction of the overall workload time (i.e., the workload execution time is
small). In all other cases, the AIS shows better performance over CS in terms of
energy savings and response time performance.

9.4 Systems of Declarative Interfaces for the MapReduceFramework 163

9.4 Systems of Declarative Interfaces for the MapReduce
Framework

For programmers, a key appealing feature in the MapReduce framework is that there
are only two main high-level declarative primitives (map and reduce) that can be
written in any programming language of choice and without worrying about the
details of their parallel execution. However, the MapReduce programming model
has its own limitations such as:

• Its one-input data format (key/value pairs) and two-stage data flow is extremely
rigid. As we have previously discussed, to perform tasks that have a different data
flow (e.g. joins or n stages) would require inelegant workarounds.

• Custom code has to be written for even the most common operations (e.g.
projection and filtering) which leads to the fact that the code is usually difficult
to reuse and maintain unless the users build and maintain their own libraries with
the common functions they use for processing their data.

Moreover, many programmers could be unfamiliar with the MapReduce frame-
work and they would prefer to use SQL (in which they are more proficient) as a high
level declarative language to express their task while leaving all of the execution
optimization details to the backend engine. In addition, it is beyond doubt that
high level language abstractions enable the underlying system to perform automatic
optimization. In the following subsection we discuss research efforts that have
been proposed to tackle these problems and add SQL-like interfaces on top of the
MapReduce framework.

Sawzall

Sawzall [195] is a scripting language used at Google on top of MapReduce. A
Sawzall program defines the operations to be performed on a single record of
the data. There is nothing in the language to enable examining multiple input
records simultaneously, or even to have the contents of one input record influence
the processing of another. The only output primitive in the language is the
emit statement, which sends data to an external aggregator (e.g. Sum, Average,
Maximum, Minimum) that gathers the results from each record after which the
results are then correlated and processed. The authors argue that aggregation is done
outside the language for a couple of reasons: (1) A more traditional language can
use the language to correlate results but some of the aggregation algorithms are
sophisticated and are best implemented in a native language and packaged in some
form. (2) Drawing an explicit line between filtering and aggregation enables a high
degree of parallelism and hides the parallelism from the language itself.

Figure 9.10 depicts an example Sawzall program where the first three lines
declare the aggregators count, total and sum of squares. The keyword table

164 9 Big Data Processing Systems

count: table sum of int;
total: table sum of float;
sumOfSquares: table sum of float;
x: float = input;
emit count $<$- 1;
emit total $<$- x;
emit sumOfSquares $<$- x x;*

Fig. 9.10 An example Sawzall program

introduces an aggregator type which are called tables in Sawzall even though they
may be singletons. These particular tables are sum tables which add up the values
emitted to them, ints or floats as appropriate. The Sawzall language is implemented
as a conventional compiler, written in CCC, whose target language is an interpreted
instruction set, or byte-code. The compiler and the byte-code interpreter are part
of the same binary, so the user presents source code to Sawzall and the system
executes it directly. It is structured as a library with an external interface that accepts
source code which is then compiled and executed, along with bindings to connect to
externally-provided aggregators. The datasets of Sawzall programs are often stored
in Google File System (GFS) [137]. The business of scheduling a job to run on a
cluster of machines is handled by a software called Workqueue which creates a large-
scale time sharing system out of an array of computers and their disks. It schedules
jobs, allocates resources, reports status and collects the results.

Google has also developed FlumeJava [97], a Java library for developing and
running data-parallel pipelines on top of MapReduce. FlumeJava is centered around
a few classes that represent parallel collections. Parallel collections support a
modest number of parallel operations which are composed to implement data-
parallel computations where an entire pipeline, or even multiple pipelines, can
be translated into a single Java program using the FlumeJava abstractions. To
achieve good performance, FlumeJava internally implements parallel operations
using deferred evaluation. The invocation of a parallel operation does not actually
run the operation, but instead simply records the operation and its arguments in
an internal execution plan graph structure. Once the execution plan for the whole
computation has been constructed, FlumeJava optimizes the execution plan and then
runs the optimized execution plan. When running the execution plan, FlumeJava
chooses which strategy to use to implement each operation (e.g., local sequential
loop vs. remote parallel MapReduce) based in part on the size of the data being
processed, places remote computations near the data on which they operate and
performs independent operations in parallel.

9.4 Systems of Declarative Interfaces for the MapReduceFramework 165

Fig. 9.11 An example SQL query and its equivalent Pig Latin program

Pig Latin

Olston et al. [188] have presented a language called Pig Latin that takes a middle
position between expressing task using the high-level declarative querying model
in the spirit of SQL and the low-level/procedural programming model using
MapReduce. Pig Latin is implemented in the scope of the Apache Pig project [12]
and is used by programmers at Yahoo! for developing data analysis tasks. Writing a
Pig Latin program is similar to specifying a query execution plan (e.g. a data flow
graph). To experienced programmers, this method is more appealing than encoding
their task as an SQL query and then coercing the system to choose the desired
plan through optimizer hints. In general, automatic query optimization has its limits
especially with uncataloged data, prevalent user-defined functions and parallel exe-
cution, which are all features of the data analysis tasks targeted by the MapReduce
framework. Figure 9.11 shows an example SQL query and its equivalent Pig Latin
program. Given a URL table with the structure .url; category; pagerank/, the task
of the SQL query is to find each large category and its average pagerank of high-
pagerank urls (> 0.2). A Pig Latin program is described as a sequence of steps where
each step represents a single data transformation. This characteristic is appealing to
many programmers. At the same time, the transformation steps are described using
high-level primitives (e.g. filtering, grouping, aggregation) much like in SQL.

Pig Latin has several other features that are important for casual ad-hoc data
analysis tasks. These features include support for a flexible, fully nested data model,
extensive support for user-defined functions and the ability to operate over plain
input files without any schema information [136]. In particular, Pig Latin has a
simple data model consisting of the following four types:

1. Atom: An atom contains a simple atomic value such as a string or a number, e.g.
“alice”.

2. Tuple: A tuple is a sequence of fields, each of which can be any of the data types,
e.g. (“alice”, “lakers”).

3. Bag: A bag is a collection of tuples with possible duplicates. The schema of the
constituent tuples is flexible where not all tuples in a bag need to have the same
number and type of fields

e.g.

�
.“alice”; “lakers”/

.“alice”; .“iPod”; “apple”//

�
:

166 9 Big Data Processing Systems

Fig. 9.12 Pig compilation
and execution steps

4. Map: A map is a collection of data items, where each item has an associated key
through which it can be looked up. As with bags, the schema of the constituent
data items is flexible However, the keys are required to be data atoms, e.g.�

“k1” ! .“alice”; “lakers”/

“k2” ! “20”

�
:

To accommodate specialized data processing tasks, Pig Latin has extensive
support for user-defined functions (UDFs). The input and output of UDFs in Pig
Latin follow its fully nested data model. Pig Latin is architected such that the parsing
of the Pig Latin program and the logical plan construction is independent of the
execution platform. Only the compilation of the logical plan into a physical plan
depends on the specific execution platform chosen. Currently, Pig Latin programs
are compiled into sequences of MapReduce jobs which are executed using the
Hadoop MapReduce environment. In particular, a Pig Latin program goes through a
series of transformation steps [188] before being executed as depicted in Fig. 9.12.
The parsing steps verifies that the program is syntactically correct and that all
referenced variables are defined. The output of the parser is a canonical logical
plan with a one-to-one correspondence between Pig Latin statements and logical
operators which are arranged in a directed acyclic graph (DAG). The logical plan
generated by the parser is passed through a logical optimizer. In this stage, logical
optimizations such as projection pushdown are carried out. The optimized logical
plan is then compiled into a series of MapReduce jobs which are then passed
through another optimization phase. The DAG of optimized MapReduce jobs is
then topologically sorted and jobs are submitted to Hadoop for execution.

Hive

The Hive project [11] is an open-source data warehousing solution which has
been built by the Facebook Data Infrastructure Team on top of the Hadoop
environment [222]. The main goal of this project is to bring the familiar relational
database concepts (e.g. tables, columns, partitions) and a subset of SQL to the

9.4 Systems of Declarative Interfaces for the MapReduceFramework 167

FROM (
MAP doctext USING ’python wc_mapper.py’ AS (word, cnt)
FROM docs
CLUSTER BY word

) a
REDUCE word, cnt USING ’python wc_reduce.py’;

Fig. 9.13 An example HiveQl query

unstructured world of Hadoop while still maintaining the extensibility and flexibility
that Hadoop provides. Thus, it supports all the major primitive types (e.g. integers,
floats, strings) as well as complex types (e.g. maps, lists, structs). Hive supports
queries expressed in an SQL-like declarative language, HiveQL [29], and therefore
can be easily understood by anyone who is familiar with SQL. These queries
are compiled into MapReduce jobs that are executed using Hadoop. In addition,
HiveQL enables users to plug in custom MapReduce scripts into queries [224]. For
example, the canonical MapReduce word count example on a table of documents
(Fig. 9.1) can be expressed in HiveQL as depicted in Fig. 9.13 where the MAP clause
indicates how the input columns (doctext) can be transformed using a user program
(‘python wc_mapper.py’) into output columns (word and cnt). The REDUCE clause
specifies the user program to invoke (‘python wc_reduce.py’) on the output columns
of the subquery.

HiveQL supports Data Definition Language (DDL) statements which can be
used to create, drop and alter tables in a database [223]. It allows users to load
data from external sources and insert query results into Hive tables via the load
and insert Data Manipulation Language (DML) statements respectively. However,
HiveQL currently does not support the update and deletion of rows in existing
tables (in particular, INSERT INTO, UPDATE and DELETE statements) which
allows the use of very simple mechanisms to deal with concurrent read and
write operations without implementing complex locking protocols. The metastore
component is the Hive’s system catalog which stores metadata about the underlying
table. This metadata is specified during table creation and reused every time the
table is referenced in HiveQL. The metastore distinguishes Hive as a traditional
warehousing solution when compared with similar data processing systems that are
built on top of MapReduce-like architectures like Pig Latin [188].

Tenzing

The Tenzing system [100] has been presented by Google as an SQL query execution
engine which is built on top of MapReduce and provides a comprehensive SQL92
implementation with some SQL99 extensions (e.g. ROLLUP() and CUBE() OLAP
extensions). Tenzing also supports querying data in different formats such as: row

168 9 Big Data Processing Systems

stores (e.g. MySQL database), column stores, Bigtable (Google’s built in key-value
store) [99], GFS (Google File System) [137], text and protocol buffers. In particular,
the Tenzing system has four major components:

• The distributed worker pool: Represents the execution system which takes a
query execution plan and executes the MapReduce jobs. The pool consists of
master and worker nodes plus an overall gatekeeper called the master watcher.
The workers manipulate the data for all the tables defined in the metadata layer.

• The query server: Serves as the gateway between the client and the pool. The
query server parses the query, applies different optimization mechanisms and
sends the plan to the master for execution. In principle, the Tenzing optimizer
applies some basic rule and cost-based optimizations to create an optimal
execution plan.

• Client interfaces: Tenzing has several client interfaces including a command line
client (CLI) and a Web UI. The CLI is a more powerful interface that supports
complex scripting while the Web UI supports easier-to-use features such as query
and table browsers tools. There is also an API to directly execute queries on the
pool and a standalone binary which does not need any server side components
but rather can launch its own MapReduce jobs.

• The metadata server: Provides an API to store and fetch metadata such as table
names and schemas and pointers to the underlying data.

A typical Tenzing query is submitted to the query server (through the Web
UI, CLI or API) which is responsible for parsing the query into an intermediate
parse tree and fetching the required metadata from the metadata server. The query
optimizer goes through the intermediate format, applies various optimizations and
generates a query execution plan that consists of one or more MapReduce jobs.
For each MapReduce, the query server finds an available master using the master
watcher and submits the query to it. At this stage, the execution is physically
partitioned into multiple units of work where idle workers poll the masters for
available work. The query server monitors the generated intermediate results,
gathers them as they arrive and streams the output back to the client. In order to
increase throughput, decrease latency and execute SQL operators more efficiently,
Tenzing has enhanced the MapReduce implementation with some main changes:

• Streaming and in-memory chaining: The implementation of Tenzing does not
serialize the intermediate results of MapReduce jobs to GFS. Instead, it streams
the intermediate results between the Map and Reduce tasks using the network
and uses GFS only for backup purposes. In addition, it uses a memory chaining
mechanism where the reducer and the mapper of the same intermediate results
are co-located in the same process.

• Sort avoidance: Certain operators such as hash join and hash aggregation require
shuffling but not sorting. The MapReduce API was enhanced to automatically
turn off sorting for these operations, when possible, so that the mapper feeds
data to the reducer which automatically bypasses the intermediate sorting step.
Tenzing also implements a block-based shuffle mechanism that combines many

9.4 Systems of Declarative Interfaces for the MapReduceFramework 169

small rows into compressed blocks which is treated as one row in order to
avoid reducer side sorting and avoid some of the overhead associated with row
serialization and deserialization in the underlying MapReduce framework code.

Cheetah

The Cheetah system [101] has been introduced as a custom data warehouse solution
which has been built on top of the MapReduce framework. In particular, it defines
a virtual view on top of the common star or snowflake data warehouse schema and
applies a stack of optimization techniques on top of the MapReduce framework
including: data compression, optimized access methods, multi-query optimization
and the exploiting materialized views. Cheetah provides an SQL-like and a non-SQL
interface for applications to directly access the raw data which enables seamless
integration of MapReduce and Data Warehouse tools so that the developers can take
full advantage of the power of both worlds. For example, it has a JDBC interface
such that a user program can submit query and iterate through the output results. If
the query results are too big for a single program to consume, the user can write a
MapReduce job to analyze the query output files which are stored on HDFS.

Cheetah stores data in the compressed columnar format. The choice of compres-
sion type for each column set is dynamically determined based on the data in each
cell. During the ETL (extract-transfer-load) phase of a data warehousing project, the
statistics of each column is maintained and the best compression method is chosen.
During the query execution, Cheetah applies different optimization techniques. For
example, the map phase uses a shared scanner which shares the scan of the fact
tables and joins to the dimension tables where a selection pushup approach is
applied in order to share the joins among multiple queries. Each scanner attaches
a query ID to each output row, indicating which query this row qualifies. The
reduce phase splits the input rows based on their query IDs and then sends them
to the corresponding query operators. Cheetah also makes use of materialized view
and applies a straightforward view matching and query rewriting process where
the query must refer the virtual view that corresponds to the same fact table upon
which the materialized view is defined. The non-aggregate columns referred in the
SELECT and WHERE clauses in the query must be a subset of the materialized
view’s group by columns.

SQL/MapReduce

In general, a user-defined function (UDF) is a powerful database feature that
allows users to customize database functionality. Friedman et al. [134] introduced
the SQL/MapReduce (SQL/MR) UDF framework which is designed to facilitate
parallel computation of procedural functions across hundreds of servers working

170 9 Big Data Processing Systems

SELECT ...
FROM functionname(

ON table-or-query
[PARTITION BY expr, ...]
[ORDER BY expr, ...]
[clausename(arg, ...) ...]
)

Fig. 9.14 Basic syntax of
SQL/MR query function

together as a single relational database. The framework is implemented as part
of the Aster Data Systems [13] nCluster shared-nothing relational database. The
framework leverages ideas from the MapReduce programming paradigm to provide
users with a straightforward API through which they can implement a UDF in the
language of their choice. Moreover, it allows maximum flexibility as the output
schema of the UDF is specified by the function itself at query plan-time. This means
that a SQL/MR function is polymorphic as it can process arbitrary input because
its behavior as well as output schema are dynamically determined by information
available at query plan-time. This also increases reusability as the same SQL/MR
function can be used on inputs with many different schemas or with different user-
specified parameters. In particular, SQL/MR allows the user to write custom-defined
functions in any programming language and insert them into queries that leverage
traditional SQL functionality. A SQL/MR function is defined in a manner that is
similar to MapReduce’s map and reduce functions.

The syntax for using a SQL/MR function is depicted in Fig. 9.14 where the
SQL/MR function invocation appears in the SQL FROM clause and consists of the
function name followed by a set of clauses that are enclosed in parentheses. The ON
clause specifies the input to the invocation of the SQL/MR function. It is important
to note that the input schema to the SQL/MR function is specified implicitly at query
plan-time in the form of the output schema for the query used in the ON clause.

In practice, a SQL/MR function can be either a mapper (Row function) or a
reducer (Partition function). The definitions of row and partition functions ensure
that they can be executed in parallel in a scalable manner. In the Row Function, each
row from the input table or query will be operated on by exactly one instance of
the SQL/MR function. Semantically, each row is processed independently, allowing
the execution engine to control parallelism. For each input row, the row function
may emit zero or more rows. In the Partition Function, each group of rows as
defined by the PARTITION BY clause will be operated on by exactly one instance
of the SQL/MR function. If the ORDER BY clause is provided, the rows within
each partition are provided to the function instance in the specified sort order.
Semantically, each partition is processed independently, allowing parallelization by
the execution engine at the level of a partition. For each input partition, the SQL/MR
partition function may output zero or more rows.

9.4 Systems of Declarative Interfaces for the MapReduceFramework 171

HadoopDB

Parallel database systems have been commercially available for nearly two decades
and there are now about a dozen of different implementations in the marketplace
(e.g. Teradata [45], Aster Data [13], Netezza [31], Vertica [51], ParAccel [40],
Greenplum [25]). The main aim of these systems is to improve performance through
the parallelization of various operations such as loading data, building indices and
evaluating queries. These systems are usually designed to run on top of a shared-
nothing architecture [215] where data may be stored in a distributed fashion and
input/output speeds are improved by using multiple CPUs and disks in parallel. On
the other hand, there are some key reasons that make MapReduce a more preferable
approach over a parallel RDBMS in some scenarios such as [82]:

• Formatting and loading a huge amount of data into a parallel RDBMS in a timely
manner is a challenging and time-consuming task.

• The input data records may not always follow the same schema. Developers often
want the flexibility to add and drop attributes and the interpretation of an input
data record may also change over time.

• Large scale data processing can be very time consuming and therefore it is
important to keep the analysis job going even in the event of failures. While most
parallel RDBMSs have fault tolerance support, a query usually has to be restarted
from scratch even if just one node in the cluster fails. In contrast, MapReduce
deals with failures in a more graceful manner and can redo only the part of the
computation that was lost due to the failure.

There has been a long debate on the comparison between the MapReduce frame-
work and parallel database systems3 [217]. Pavlo et al. [194] have conducted a large
scale comparison between the Hadoop implementation of MapReduce framework
and parallel SQL database management systems in terms of performance and
development complexity. The results of this comparison have shown that parallel
database systems displayed a significant performance advantage over MapReduce
in executing a variety of data intensive analysis tasks. On the other hand, the
Hadoop implementation was very much easier and more straightforward to set up
and use in comparison to that of the parallel database systems. MapReduce have
also shown to have superior performance in minimizing the amount of work that
is lost when a hardware failure occurs. In addition, MapReduce (with its open
source implementations) represents a very cheap solution in comparison to the very
financially expensive parallel DBMS solutions (the price of an installation of a
parallel DBMS cluster usually consists of seven figures of U.S. Dollars) [217].

The HadoopDB project [27] is a hybrid system that tries to combine the
scalability advantages of MapReduce with the performance and efficiency advan-
tages of parallel databases [58]. The basic idea behind HadoopDB is to connect

3http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/.

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

172 9 Big Data Processing Systems

multiple single node database systems (PostgreSQL) using Hadoop as the task
coordinator and network communication layer. Queries are expressed in SQL but
their execution are parallelized across nodes using the MapReduce framework,
however, as much of the single node query work as possible is pushed inside of the
corresponding node databases. Thus, HadoopDB tries to achieve fault tolerance and
the ability to operate in heterogeneous environments by inheriting the scheduling
and job tracking implementation from Hadoop. Parallely, it tries to achieve the
performance of parallel databases by doing most of the query processing inside
the database engine. Figure 9.15 illustrates the architecture of HadoopDB which
consists of two layers: (1) A data storage layer or the Hadoop Distributed File
System (HDFS) [26]. (2) A data processing layer or the MapReduce Framework.
In this architecture, HDFS is a block-structured file system managed by a central
NameNode. Individual files are broken into blocks of a fixed size and distributed
across multiple DataNodes in the cluster. The NameNode maintains metadata about
the size and location of blocks and their replicas. The MapReduce Framework
follows a simple master-slave architecture. The master is a single JobTracker and
the slaves or worker nodes are TaskTrackers. The JobTracker handles the runtime
scheduling of MapReduce jobs and maintains information on each TaskTracker’s
load and available resources. The Database Connector is the interface between
independent database systems residing on nodes in the cluster and TaskTrackers.
The Connector connects to the database, executes the SQL query and returns results
as key-value pairs. The Catalog component maintains metadata about the databases,
their location, replica locations and data partitioning properties. The Data Loader
component is responsible for globally repartitioning data on a given partition key
upon loading and breaking apart single node data into multiple smaller partitions
or chunks. The SMS planner extends the HiveQL translator [222] (Sect. 9.4) and
transforms SQL into MapReduce jobs that connect to tables stored as files in HDFS.
Abouzeid et al. [59] have demonstrated HadoopDB in action running the following
two different application types:

1. A semantic web application that provides biological data analysis of protein
sequences.

2. A classical business data warehouse.

Jaql

Jaql [32] is a query language which is designed for Javascript Object Notation
(JSON),4 a data format that has become popular because of its simplicity and
modeling flexibility. JSON is a simple, yet flexible way to represent data that
ranges from flat, relational data to semi-structured, XML data. Jaql is primarily

4http://www.json.org/.

http://www.json.org/

9.4 Systems of Declarative Interfaces for the MapReduceFramework 173

SMS Planner

SQL Query

MapReduce Job

Master node

Hadoop core

MapReduce
FrameworkHDFS

NameNode JobTracker

InputFormat Implementations

C
atalog

D
ata

Loader

Node 1

TaskTracker

DataNodeDatabase

Node 2

TaskTracker

DataNodeDatabase

Node n

TaskTracker

DataNodeDatabase

Database Connector

MapReduce
Job

Task with
InputFormat

Fig. 9.15 The architecture of HadoopDB

used to analyze large-scale semi-structured data. It is a functional, declarative query
language which rewrites high-level queries when appropriate into a low-level query
consisting of Map-Reduce jobs that are evaluated using the Apache Hadoop project.
Core features include user extensibility and parallelism. Jaql consists of a scripting
language and compiler, as well as a runtime component [80]. It is able to process
data with no schema or only with a partial schema. However, Jaql can also exploit
rigid schema information when it is available, for both type checking and improved
performance.

Jaql uses a very simple data model, a JDM value is either an atom, an array or
a record. Most common atomic types are supported, including strings, numbers,
nulls and dates. Arrays and records are compound types that can be arbitrarily
nested. In more detail, an array is an ordered collection of values and can be used to
model data structures such as vectors, lists, sets or bags. A record is an unordered
collection of name-value pairs and can model structs, dictionaries and maps. Despite
its simplicity, JDM is very flexible. It allows Jaql to operate with a variety of
different data representations for both input and output, including delimited text
files, JSON files, binary files, Hadoop’s sequence files, relational databases, key-
value stores or XML documents. Functions are first-class values in Jaql. They can
be assigned to a variable and are high-order in that they can be passed as parameters
or used as a return value. Functions are the key ingredient for reusability as any Jaql
expression can be encapsulated in a function, and a function can be parameterized
in powerful ways. Figure 9.16 depicts an example of a Jaql script that consists of a

174 9 Big Data Processing Systems

import myrecord;
countFields = fn(records)(
records

);

read(hdfs("docs.dat"))
-> countFields()
-> write(hdfs("fields.dat"));

-> transform myrecord::names()
-> expand
-> group by fName = as occurrences
 into { name: fName, num: count(occurrences) }

Fig. 9.16 Sample Jaql script

sequence of operators. The read operator loads raw data, in this case from Hadoop’s
Distributed File System (HDFS), and converts it into Jaql values. These values are
processed by the countFields subflow, which extracts field names and computes
their frequencies. Finally, the write operator stores the result back into HDFS. In
general, the core expressions of the Jaql scripting language include:

1. Transform: The transform expression applies a function (or projection) to every
element of an array to produce a new array. It has the form e1->transform
e2, where e1 is an expression that describes the input array and e2 is applied to
each element of e1.

2. Expand: The expand expression is most often used to unnest its input array. It
differs from transform in two primary ways: (1) e2 must produce a value v that
is an array type, and (2) each of the elements of v is returned to the output array,
thereby removing one level of nesting.

3. Group by: Similar to SQL’s GROUP BY, Jaql’s group by expression partitions
its input on a grouping expression and applies an aggregation expression to each
group.

4. Filter: The filter expression, e� >filter p, retains input values from e for
which predicate p evaluates to true.

5. Join: The join expression supports equijoin of 2 or more inputs. All of the options
for inner and outer joins are also supported.

6. Union: The union expression is a Jaql function that merges multiple input arrays
into a single output array. It has the form: union(e1; : : :) where each ei is an
array.

7. Control-flow: The two most commonly used control-flow expressions in Jaql are
if-then-else and block expressions. The if-then-else expression
is similar to conditional expressions found in most scripting and programming
languages. A block establishes a local scope where zero or more local variables
can be declared and the last statement provides the return value of the block.

At a high-level, the Jaql architecture depicted in Fig. 9.17 is similar to most
database systems. Scripts are passed into the system from the interpreter or an
application, compiled by the parser and rewrite engine, and either explained
or evaluated over data from the I/O layer. The storage layer is similar to a
federated database. It provides an API to access data of different systems including

9.5 Conclusions 175

I/O Layer
File Systems

(hdfs, gpfs, local)
Databases

(DBMS, HBase)
Streams

(Web, Pipes)

Evaluation
MapReduce

Interactive Shell

Explain
Rewriter
Parser

Expr

Script

I/O Desc Value

Variables

ModulesCompiler

Local …

ApplicationsFig. 9.17 Jaql system
architecture

local or distributed file systems (e.g., Hadoop’s HDFS), database systems (e.g.,
DB2, Netezza, HBase), or from streamed sources like the Web. Unlike federated
databases, however, most of the accessed data is stored within the same cluster
and the I/O API describes data partitioning, which enables parallelism with data
affinity during evaluation. Jaql derives much of this flexibility from Hadoop’s I/O
API. It reads and writes many common file formats (e.g., delimited files, JSON text,
Hadoop sequence files). Custom adapters are easily written to map a data set to
or from Jaql’s data model. The input can even simply be values constructed in the
script itself. The Jaql interpreter evaluates the script locally on the computer that
compiled the script, but spawns interpreters on remote nodes using MapReduce.
The Jaql compiler automatically detects parallelization opportunities in a Jaql script
and translates it to a set of MapReduce jobs.

9.5 Conclusions

The database community has been always focusing on dealing with the challenges
of Big Data management, although the meaning of “Big” has been evolving
continuously to represent different scales over the time [84]. According to IBM, we
are currently creating 2.5 quintillion bytes of data, everyday. This data comes from
many different sources and in different formats including digital pictures, videos,
posts to social media sites, intelligent sensors, purchase transaction records and cell
phone GPS signals. This is a new scale of Big Data which is attracting a huge
interest from both the industrial and research communities with the aim of creating
the best means to process and analyze this data in order to make the best use of it.
In the last decade, the MapReduce framework has emerged as a popular mechanism
to harness the power of large clusters of computers. It allows programmers to think
in a data-centric fashion where they can focus on applying transformations to sets
of data records while the details of distributed execution and fault tolerance are
transparently managed by the MapReduce framework.

In this chapter, we presented a survey of the MapReduce family of approaches
for developing scalable data processing systems and solutions. In general we notice

176 9 Big Data Processing Systems

that although the MapReduce framework, and its open source implementation of
Hadoop, are now considered to be sufficiently mature such that they are widely used
for developing many solutions by academia and industry in different application
domains. We believe that it is unlikely that MapReduce will completely replace
database systems even for data warehousing applications. We expect that they will
always coexist and complement each others in different scenarios. We are also
convinced that there is still room for further optimization and advancement in
different directions on the spectrum of the MapReduce framework that is required
to bring forward the vision of providing large scale data analysis as a commodity
for novice end-users. For example, energy efficiency in the MapReduce is an
important problem which has not attracted sufficient attention from the research
community, yet. The traditional challenge of debugging large scale computations
on distributed system has not been given sufficient consideration by the MapReduce
research community. Related with the issue of the power of expressiveness of the
programming model, we feel that this is an area that requires more investigation.
We also noticed that the over simplicity of the MapReduce programming model
have raised some key challenges on dealing with complex data models (e.g., nested
models, XML and hierarchical model , RDF and graphs) efficiently. This limitation
has called for the need of next-generation of big data architectures and systems that
can provide the required scale and performance attributes for these domain. For
example, Google has created the Dremel system [182, 183], commercialized under
the name of BigQuery [22], to support interactive analysis of nested data. Google
has also presented the Pregel system [180], open sourced by Apache Giraph and
Apache Hama projects, that uses a BSP-based programming model for efficient
and scalable processing of massive graphs on distributed cluster of commodity
machines. Recently, Twitter has announced the release of the Storm [47] system as
a distributed and fault-tolerant platform for implementing continuous and realtime
processing applications of streamed data. We believe that more of these domain-
specific systems will be introduced in the future to form the new generation of big
data systems. Defining the right and most convenient programming abstractions
and declarative interfaces of these domain-specific Big Data systems is another
important research direction that will need to be deeply investigated.

Chapter 10
Conclusions

The advantages of the cloud computing paradigm opens up new avenues for
deploying novel applications which were not economically feasible in a traditional
enterprise infrastructure setting. Therefore, the cloud has become an increasingly
popular platform for hosting software applications in a variety of domains such as
e-retail, finance, news and social networking. Thus, we are witnessing a proliferation
in the number of applications with a tremendous increase in the scale of the
data generated as well as being consumed by such applications. Cloud-hosted
database systems powering these applications form a critical component in the
software stack of these applications. They play an important role in ensuring
the smooth deployment or migration of software applications from the traditional
enterprise infrastructures and on-premise data centers to the new cloud platforms
and infrastructures. In the previous chapter, we presented an overview of the
state-of-the-art of existing technologies for hosting the database tier of software
applications in cloud environments. We crystallized the design choices, strengths,
weaknesses of each technology. In this chapter, we shed the lights on a set of
research challenges, that have been introduced by the new wave of cloud-hosted
data storage systems that need to be addressed in order to ensure that the vision of
designing and implementing successful scalable data management solutions can be
achieved.

10.1 True Elasticity

A common characteristic of internet scale applications and services is that they can
be used by large numbers of end-users and highly variable load spikes in the demand
for services which can occur depending on the day and the time of year, and the
popularity of the application [204]. In addition, the workload characteristic could
vary significantly from one application type to another where possible fluctuations
on the workload characteristics which could be of several orders of magnitude on
the same business day may also occur [83]. In principle, elasticity and horizontal

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2__10,
© Springer International Publishing Switzerland 2014

177

178 10 Conclusions

scalability are considered to be of the most important features which are provided
by NoSQL systems [218]. In practice, both of the commercial NoSQL offerings
(e.g. Amazon SimpleDB) and commercial DaaS offerings (e.g. Amazon RDS,
Microsoft SQL Azure) do not provide their users with any flexibility to dynamically
increase or decrease the allocated computing resources of their applications. While
NoSQL offerings claim to provide elastic services of their tenants, they do not
provide any guarantee that their provider-side elasticity management will provide
scalable performance with increasing workloads [75]. Moreover, commercial DaaS
pricing models require their users to pre-determine the computing capacity that
will be allocated to their database instance as they provide standard packages of
computing resources (e.g. Micro, Small, Large and Extra Large DB Instances). In
practice, predicting the workload behavior (e.g. arrival pattern, I/O behavior, service
time distribution) and consequently accurate planning of the computing resource
requirements with consideration of their monetary costs are very challenging tasks.
Therefore, the user might still tend to over-provision the allocated computing
resources for the database tier of their application in order to ensure satisfactory
performance for their workloads. As a result of this, the software application is
unable to fully utilize the elastic feature of the cloud environment.

Xiong et al. [234] have presented an provider-centric approach for intelligently
managing the computing resources in a shared multi-tenant database system at the
virtual machine level. The proposed approach consists of two main components:

1. The system modeling module that uses machine learning techniques to learn
a model that describes the potential profit margins for each tenant under
different resource allocations. The learned model considers many factors of the
environment such as SLA cost, client workload, infrastructure cost and action
cost.

2. The resource allocation decision module dynamically adjusts the resource allo-
cations, based on the information of the learned model, of the different tenants in
order to achieve the optimum profits.

Tatemura et al. [220] proposed a declarative approach for achieving elastic
OLTP workloads. The approach is based on defining the following two main
components:

1. The transaction classes required for the application.
2. The actual workload with references to the transaction classes.

Using this information, a formal model can be defined to analyze elasticity of the
workload with transaction classes specified. In general, we believe that there is a
lack of flexible and powerful consumer-centric elasticity mechanisms that enable
software application to have more control on allocating the computing resources for
the database tier of their applications over the application running time and make
the best use of the elasticity feature of the cloud computing environments. More
attention from the research community is required to address these issues in the
future work.

10.2 Data Replication and Consistency Management 179

10.2 Data Replication and Consistency Management

In general, stateless services are easy to scale since any new replicas of these
services can operate completely independently of other instances. In contrast,
scaling stateful services, such as a database system, needs to guarantee a consistent
view of the system for users of the service. However, the cost of maintaining several
database replicas that are always strongly consistent is very high. As we have
previously described, according to the CAP theorem, most of the NoSQL systems
overcome the difficulties of distributed replication by relaxing the consistency guar-
antees of the system and supporting various forms of weaker consistency models
(e.g. eventual consistency [226]). In practice, a common feature of the NoSQL
and DaaS cloud offerings is the creation and management of multiple replicas
(usually 3) of the stored data while a replication architecture is running behind-the-
scenes to enable automatic failover management and ensure high availability of the
service. In general, replicating for performance differs significantly from replicating
for availability or fault tolerance. The distinction between the two situations is
mainly reflected by the higher degree of replication, and as a consequence the
need for supporting weak consistency when scalability is the motivating factor for
replication [95].

Several studies have been presented as an attempt to quantify the consistency
guarantees of cloud storage services. Wada et al. [228] presented an approach for
measuring time-based staleness by writing timestamps to a key from one client,
reading the same key and computing the difference between the reader’s local time
and the timestamp read. Bermbach and Tai [78] have tried to address a side of
these limitations by extending original the experiments of [228] using a number
of readers which are geographically distributed. They measure the consistency
window by calculating the difference between the latest read timestamp of version
n and the write timestamp of version n C 1. Their experiments with Amazon S3
showed that the system frequently violates monotonic read consistency. Anderson
et al. [65] presented an offline algorithm that analyzes the trace of interactions
between the client machines and the underlying key-value store, and reports how
many violations for consistent reads are there in the trace. This approach is useful
for checking the safety of running operations and detecting any violation on the
semantics of the executed operations. However, it is not useful for any system
that require online monitoring for their data staleness or consistency grantees.
Zellag and Kemme [237] have proposed an approach for real-time detection of
consistency anomalies for arbitrary cloud applications accessing various types of
cloud datastores in transactional or non-transactional contexts. In particular, the
approach builds the dependency graph during the execution of a cloud application
and detect cycles in the graph at the application layer and independently of the
underlying datastore. Bailis et al. [71] presented an approach that provides expected
bounds on staleness by predicting the behavior of eventually consistent quorum-
replicated data stores using Monte Carlo simulations and an abstract model of the
storage system including details such as the distribution of latencies for network
links.

180 10 Conclusions

Kraska et al. [163] have argued that finding the right balance between cost,
consistency and availability is not a trivial task. High consistency implies high cost
per transaction and, in some situations, reduced availability but avoids penalty costs.
Low consistency leads to lower costs per operation but might result in higher penalty
costs. Hence, they presented a mechanism that not only allows designers to define
the consistency guarantees on the data instead at the transaction level but also allows
them to automatically switch consistency guarantees at runtime. They described a
dynamic consistency strategy, called Consistency Rationing, to reduce the consis-
tency requirements when possible (i.e., the penalty cost is low) and raise them when
it matters (i.e., the penalty costs would be too high). The adaptation is driven by a
cost model and different strategies that dictate how the system should behave. In
particular, they divide the data items into three categories (A; B; C) and treat each
category differently depending on the consistency level provided. The A category
represents data items for which we need to ensure strong consistency guarantees
as any consistency violation would result in large penalty costs, the C category
represents data items that can be treated using session consistency as temporary
inconsistency is acceptable while the B category comprises all the data items where
the consistency requirements vary over time depending on the actual availability of
an item. Therefore, the data of this category is handled with either strong or session
consistency depending on a statistical-based policy for decision making. Keeton
et al. [106, 159] have proposed a similar approach in a system called LazyBase
that allows users to trade off query performance and result freshness. LazyBase
breaks up metadata processing into a pipeline of ingestion, transformation, and
query stages which can be parallelized to improve performance and efficiency.
By breaking up the processing, LazyBase can independently determine how to
schedule each stage for a given set of metadata, thus providing more flexibility than
existing monolithic solutions. LazyBase uses models of transformation and query
performance to determine how to schedule transformation operations to meet users’
freshness and performance goals and to utilize resources efficiently.

In general, the simplicity of key-value stores comes at a price when higher levels
of consistency are required. In these cases, application programmers need to spend
extra time and exert extra effort to handle the requirements of their applications with
no guarantee that all corner cases are handled which consequently might result in
an error-prone application. In practice, data replication across different data centers
is expensive. Inter-datacenter communication is prone to variation in Round-Trip
Times (RTTs) and loss of packets. For example, RTTs are in the order of hundreds of
milliseconds. Such large RTTs causes the communication overhead that dominates
the commit latencies observed by users. Therefore, systems often sacrifice strong
consistency guarantees to maintain acceptable response times. Hence, many solu-
tions either rely on asynchronous replication mechanism and weaker consistency
guarantees. Some systems have been recently proposed to tackle these challenges.
For example, Google Megastore [72] has been presented as a scalable and highly
available datastore which is designed to meet the storage requirements of large

10.2 Data Replication and Consistency Management 181

scale interactive Internet services. It relies on the Paxos protocol [98], a proven
optimal fault-tolerant consensus algorithm with no requirement for a distinguished
master, for achieving synchronous wide area replication. Megastore’s replication
mechanism provides a single, consistent view of the data stored in its underlying
database replicas. Megastore replication semantics is done on entity group basis,
a priori grouping of data for fast operations, basis by synchronously replicating
the group’s transaction log to a quorum of replicas. In particular, it uses a write-
ahead log replication mechanism over a group of symmetric peers where any node
can initiate reads and writes. Each log append blocks on acknowledgments from a
majority of replicas, and replicas in the minority catch up as they are able. Kraska
et al. [164] have proposed the MDCC (Multi-Data Center Consistency) commit
protocol for providing strongly consistent guarantees at a cost that is comparable to
eventually consistent protocols. In particular, in contrast to transactional consistency
two-phase commit protocol (2PC), MDCC is designed to commit transactions
in a single round-trip across data centers in the normal operational case. It also
does not require a master node so that apply reads or updates from any node in
any data center by ensuring that every commit has been received by a quorum
of replicas. It does not also impose any database partitioning requirements. The
MDCC commit protocol can be combined with different read guarantees where
the default configuration is to guarantee read committed consistency without any
lost updates. In principle, we believe that the problem of data replication and
consistency management across different data centers in the cloud environment
has, thus far, not attracted sufficient attention from the research community, and
it represents a rich direction of future research and investigation. Nawab et al. [186]
presented Message Futures, a distributed multi-datacenter transaction management
system that provides strong consistency guarantees while maintaining low commit
latency. It achieves an average commit latency of around one Round-Trip Times
(RTT). In this approach, a transaction is committed when a commit condition
on mutual information is met. The commit condition is designed to be true, at
any point in time, for any single object in at most one datacenter. The protocol
utilizes a Replicated Log (RLog) [233] to continuously share transactions and state
information among datacenters which allows a datacenter to commit transactions
without initiating a new wide-area message exchange with other datacenters and
improves the protocol’s resilience to node and communication failures.

The COPS system (Clusters of Order-Preserving Servers) [178] has been
designed to provide geo-replicated and distributed data stores that support complex
online applications, such as social networks, which must provide an always on
facility where operations always complete with low latency. In particular, it
provides causal C consistency where it executes all put and get operations in
the local datacenter in a linearizable fashion, and it then replicates data across
datacenters in a causal C consistent order in the background.COPS achieves the
causal C consistency by tracking and explicitly checking that causal dependencies
are satisfied before exposing writes in each cluster.

182 10 Conclusions

10.3 SLA Management

An SLA is a contract between a service provider and its customers. Service Level
Agreements (SLAs) capture the agreed upon guarantees between a service provider
and its customer. They define the characteristics of the provided service including
service level objectives (SLOs) (e.g. maximum response times) and define penalties
if these objectives are not met by the service provider. In practice, flexible and
reliable management of SLA agreements is of paramount importance for both of
cloud service providers and consumers. For example, Amazon found that every
100 ms of latency costs them 1% in sales and Google found that an extra 500 ms
in search page generation time dropped traffic by 20%. In addition, large enterprise
web applications (e.g., eBay and Facebook) need to provide high assurances in
terms of SLA metrics such as response times and service availability to their users.
Without such assurances, service providers of these applications stand to lose their
user base, and hence their revenues.

In general, SLA management is a common general problem for the different
types of software systems which are hosted in cloud environments for different
reasons such as the unpredictable and bursty workloads from various users in
addition to the performance variability in the underlying cloud resources [112,208].
In practice, resource management and SLA guarantee falls into two layers: the cloud
service providers and the cloud consumers (users of cloud services). In particular,
the cloud service provider is responsible for the efficient utilization of the physical
resources and guarantee their availability for their customers (cloud consumers).
The cloud consumers are responsible for the efficient utilization of their allocated
resources in order to satisfy the SLA of their customers (application end users)
and achieve their business goals. The state-of-the-art cloud databases do not allow
the specification of SLA metrics at the application nor at the end-user level. In
practice, cloud service providers guarantee only the availability (uptime guarantees),
but not the performance, of their services [68, 75, 124]. In addition, sometimes
the granularity of the uptime guarantees is also weak. For example, the uptime
guarantees of Amazon EC2 is on a per data center basis where a data center is
considered to be unavailable if a customer can not access any of its instances or
can not launch replacement instances for a contiguous interval of 5 min. In practice,
traditional cloud monitoring technologies (e.g. Amazon CloudWatch) focus on low-
level computing resources (e.g. CPU speed, CPU utilization, I/O disk speed). In
general, translating the SLO of software application to the thresholds of utilization
for low-level computing resources is a very challenging task and is usually done in
an ad-hoc manner due to the complexity and dynamism inherent in the interaction
between the different tiers and components of the system. Furthermore, cloud
service providers do not automatically detect SLA violation and leave the burden
of providing the violation proof on the customer [75].

In the multi-tenancy environment of DaaS, it is an important goal for DaaS
providers to promise high performance to their tenants. However, this goal normally
conflicts with another goal of minimizing the overall running servers and thus

10.3 SLA Management 183

operating costs by tenant consolidation. In general, increasing the degree of multi-
tenancy (number of tenants per server) is normally expected to decrease per-tenant
allocated resources and thus performance, but on the other hand, it also reduces the
overall operating cost for the DaaS provider and vice versa. Therefore, it is neces-
sary, but challenging for the DaaS providers to balance between the performance
that they can deliver to their tenants and the data center’s operating costs. Several
provider-centric approaches have been proposed to tackle this challenge. Chi et
al. [102] have proposed a cost-aware query scheduling algorithm, called iCBS, that
takes the query costs derived from the service level agreements (SLA) between
the service provider and its customers (in terms of response time) into account to
make cost-aware scheduling decisions that aims to minimize the total expected cost.
SLA-tree is another approach that have been proposed to efficiently support profit-
oriented decision making of query scheduling. SLA-tree uses the information about
the buffered queries which are waiting to be executed in addition to the SLA for each
query that indicates the different profits for the query for varying query response
times and provides support for the answering of certain profit-oriented what if type
of questions. Lang et al. [170] presented a framework that takes as input the tenant
workloads, their performance SLA, and the server hardware that is available to
the DaaS provider, and produces server characterizing models that can be used
to provide constraints into an optimization module. By solving this optimization
problem, the framework provides a cost-effective hardware provisioning policy and
a tenant scheduling policy on each hardware resource. The main limitation of this
approach is that the input information of the tenant workloads is not always easy to
specify and model accurately. PIQL [67] (Performance Insightful Query Language)
is a declarative language that has been proposed with a SLA compliance prediction
model. The PIQL query compiler uses static analysis to select only query plans
where it can calculate the number of operations to be performed at every step in their
execution. In particular, PIQL extends SQL to allow developers to provide extra
bounding information to the compiler. In contrast to traditional query optimizers,
the objective of the query compiler is not to find the fastest plan but to avoid
performance degradation. Thus, the compiler choose a potentially slower bounded
plan over an unbounded plan that happens to be faster given the current database
statistics. If the PIQL compiler cannot create a bounded plan for a query, it warns
the developer and suggests possible ways to bound the computation.

In general, adequate SLA monitoring strategies and timely detection of SLA
violations represent challenging research issues in the cloud computing environ-
ments. Salman [75] has suggested that it may be necessary, in the future, for cloud
providers to offer performance based SLAs for their services with a tiered pricing
model, and charge a premium for guaranteed performance. While this could be one
of the directions to solve this problem, we believe that it is a very challenging goal
to delegate the management of the fine-granular SLA requirements of the consumer
applications to the side of the cloud service provider due to the wide heterogeneity
in the workload characteristics, details and granularity of SLA requirements, and
cost management objectives of the very large number of consumer applications

184 10 Conclusions

(tenants) that can be running simultaneously in a cloud environment. Therefore,
it becomes a significant issue for the cloud consumers to be able to monitor and
adjust the deployment of their systems if they intend to offer viable service level
agreements (SLAs) to their customers (end users). It is an important requirement
for cloud service providers to enable the cloud consumers with a set of facilities,
tools and framework that ease their job of achieving this goal effectively.

10.4 Transaction Support

A transaction is a core concept in the data management world that represents
a set of operations which are required to be executed atomically on a single
consistent view of a database [140]. In general, the expertise gained from building
distributed database systems by researchers and practitioners have shown that sup-
porting distributed transactions hinder the ability of building scalable and available
systems [189]. Therefore, to satisfy the scalability requirements of large scale
internet services, many systems have sacrificed the ability to support distributed
transactions. For example, most of the NoSQL systems (e.g. Bigtable, Dynamo,
SimpleDB) supports atomic access only at the granularity of single keys. This
design choice allows these systems to horizontally partition the tables, without
worrying about the need for distributed synchronization and transaction support.
While many web applications can live with single key access patterns [99, 121],
many other applications (e.g. payment, auction services, online gaming, social
networks, collaborative editing) would require atomicity guarantee on multi key
accesses patterns. In practice, leaving the burden of ensuring transaction support
to the application programmer normally leads to increased code complexity, slower
application development, and low-performance client-side transaction management.
Therefore, one of the main challenges of cloud-hosted database systems that has
been considered is to support transactional guarantees for their applications without
compromising the scalability property as one of the main advantages of the cloud
environments.

The G-Store system [117] has been presented as a scalable data store which
provides transactional multi key access guarantees over non-overlapping groups of
keys using a key-value store. The main idea of GStore is the Key Group abstraction
that defines a relationship between a group of keys and represents the granule for
on-demand transactional access. This abstraction allows the Key Grouping protocol
to collocate control for the keys in the group to allow efficient access to the group of
keys. In particular, the Key Grouping protocol enables the transfer of ownership for
all keys in a group to a single node which then efficiently executes the operations on
the Key Group. At any instance of time, each key can only belong to a single group
and the Key Group abstraction does not define a relationship between two groups.
Thus, groups are guaranteed to be independent of each other and the transactions
on a group guarantee consistency only within the confines of a group. The Key
Grouping protocol ensures that the ownership of the members of a group reside

10.4 Transaction Support 185

with a single node. Thus, the implementation of the transaction manager component
does not require any distributed synchronization and is similar to the transaction
manager of any single node relational database management systems. The key
difference is that in G-Store, transactions are limited to smaller logical entities
(key groups). A similar approach has been followed by the Google Megastore
system [72]. It implements a transactional record manager on top of the BigTable
data store [99] and provides transaction support across multiple data items where
programmers have to manually link data items into hierarchical groups and each
transaction can only access a single group. Megastore partitions the data into a
collection of entity groups, a priori user-defined grouping of data for fast operations,
where each group is independently and synchronously replicated over a wide area.
In particular, Megastore tables are either entity group root tables or child tables.
Each child table must declare a single distinguished foreign key referencing a root
table. Thus, each child entity references a particular entity in its root table (called
the root entity). An entity group consists of a root entity along with all entities
in child tables that reference it. Entities within an entity group are mutated with
single- phase ACID transactions (for which the commit record is replicated via
Paxos). Operations across entity groups could rely on expensive two-phase commit
operations but they could leverage the built-in Megastore’s efficient asynchronous
messaging to achieve these operations. Google’s Spanner [113] has been presented
as a scalable and globally-distributed database that shards data across many sets of
Paxos state machines in datacenters which are spread all over the world. Spanner
automatically reshards data across machines as the amount of data or the number
of servers changes, and it automatically migrates data across machines (even across
datacenters) to balance load and in response to failures. It supports general-purpose
transactions, and provides a SQL-based query language.

Deuteronomy [173] have presented a radically different approach towards scaling
databases and supporting transactions in the cloud by unbundling the database into
two components: (1) The transactional component (TC) that manages transactions
and their concurrency control and undo/redo recovery but knows nothing about
physical data location. (2) The data component (DC) that maintains a data cache and
uses access methods to support a record-oriented interface with atomic operations
but knows nothing about transactions. Applications submit requests to the TC
which uses a lock manager and a log manager to logically enforce transactional
concurrency control and recovery. The TC passes requests to the appropriate Data
Component (DC). The DC, guaranteed by the TC to never receive conflicting
concurrent operations, needs to only support atomic record operations, without
concern for transaction properties that are already guaranteed by the TC. In this
architecture, data can be stored anywhere (e.g., local disk, in the cloud, etc) as the
TC functionality in no way depends on where the data is located. The TC and DC
can be deployed in a number of ways. Both can be located within the client, and that
is helpful in providing fast transactional access to closely held data. The TC could
be located with the client while the DC could be in the cloud, which is helpful in
case a user would like to use its own subscription at a TC service or wants to perform
transactions that involve manipulating data in multiple locations. Both TC and DC

186 10 Conclusions

can be in the cloud, which is helpful if a cloud data storage provider would like to
localize transaction services for some of its data to a TC component. There can be
multiple DCs serviced by one TC, where transactions spanning multiple DCs are
naturally supported because a TC does not depend on where data items are stored.
Also, there can be multiple TCs, yet, a transaction is serviced by one specific TC.

The Calvin system [221] has been designed to run alongside a non-transactional
storage system with the aim of transforming it into a shared-nothing (near-)linearly
scalable database system that provides high availability and full ACID transactions.
These transactions can potentially span multiple partitions spread across the shared-
nothing cluster. Calvin accomplishes this goal by providing a layer above the storage
system that handles the scheduling of distributed transactions, as well as replication
and network communication in the system. The key technical feature of Calvin is
that it relies on a deterministic locking mechanism that enables the elimination of
distributed commit protocols. In particular, the essence of Calvin lies in separating
the system into three separate layers of processing:

• The sequencing layer which intercepts transactional inputs and places them into
a global transactional input sequence which represents the order of transactions
to which all replicas will ensure serial equivalence during their execution.

• The scheduling layer that orchestrates transaction execution using a deterministic
locking scheme to guarantee equivalence to the serial order specified by the
sequencing layer while allowing transactions to be executed concurrently by a
pool of transaction execution threads.

• The storage layer which handles all physical data layout. Calvin transactions
access data using a simple CRUD interface. Therefore, any storage engine
supporting a similar interface can be directly plugged into Calvin.

Each node in a Calvin deployment typically runs one partition of each layer. It
supports horizontal scalability of the database and unconstrained ACID-compliant
distributed transactions by supporting both asynchronous and Paxos-based syn-
chronous replication, both within a single data center and across geographically
separated data centers.

10.5 Summary

In this chapter, we discussed a set of research challenges, that have been brought on
by the reliance on cloud computing platforms and faced by application developers
and designers of cloud database systems, and pointed out alternative research
directions for tackling them. Table 10.1 summarizes some of the open research
challenges along with the key related factors which could influence the design of
their solutions. For user of cloud database services, we can draw the following
recommendations:

10.5 Summary 187

Table 10.1 Open research challenges of cloud-hosted database systems

Research aspect Related factors Open research challenges

Elasticity
management

– Application
workload

– SLA satisfaction
– Monetary Cost
– Side of control

(provider or
consumer)

– Designing accurate models for characterizing and
predicting Internet scale application workloads

– Designing flexible dynamic provisioning
mechanisms that carefully consider the target
consumer application SLA and the target
monetary costs

– Enabling the consumer applications with
powerful and flexible tools (admission
controllers) to declaratively define and control
their elasticity policies

Data
replication
and
consistency
management

– CAP theorem
– Levels of

consistency
guarantee

– Replica locations

– Designing adaptable consistency mechanisms that
can be flexibly configured on the runtime
according to the application context

– Designing efficient data replication and
consistency management protocols across
different data centers in the cloud environment

– Further understanding to the practical limits of the
CAP theorem

Live migration – Down time
– Migration time
– SLA effect
– Triggering of

migration need
(when to
migrate?)

– Optimizing the down time and migration time
metrics of the live migration techniques

– Minimizing the performance effect and SLA
degradation of the co-located tenants during the
migration process

– Designing partitioning-aware live database
migration techniques

– Designing intelligent schedulers for the activities
of the migration processes

– Designing intelligent techniques for deciding the
optimal source and destination tenants and servers
with aim of optimizing the overall system
performance and the overall utilization of the
computing resources

SLA
management

– Side of control
– SLA granularity
– Monetary cost

– Designing efficient mechanisms for monitoring
and timely detecting SLA violations in cloud
environments

– Providing fine-granular SLA guarantees for cloud
hosting database services

– Designing cost-aware SLA management
techniques

– Enabling the consumer applications with flexible
mechanisms to declaratively define, monitor and
control their SLA requirements

188 10 Conclusions

Table 10.1 (continued)

Research aspect Related factors Open research challenges

Transaction
support

– Granularity of
atomicity

– Distributed
transactions

– Performance

– Providing efficient multi row atomicity guarantees
on NoSQL systems

– Designing intelligent workload-aware and
transaction-aware database partitioning
mechanisms for cloud-hosted databases

– Providing scalable transactional guarantees over
multiple partitions for distributed database (across
different data centers) in cloud environments

• NoSQL systems are viable solutions for applications that require scalable data
stores which can easily scale out over multiple servers and support flexible data
model and storage scheme. However, the access pattern of these applications
should not require much join operations and can work with limited transaction
support and weaker consistency guarantees. In general, NoSQL systems are
recommended for newly developed applications but not for migrating existing
applications which are written on top of traditional relational database systems.
For example, Amazon Web Services describe the anti-patterns for using its
cloud-hosted NoSQL solution, SimpleDB, to include: pre-developed software
applications which are tied to traditional relational database or applications that
may require many join operations and complex transactions.1 In addition, with
the wide options and variety of currently available NoSQL systems, software
developers need to well understand the requirements of their application to
choose the NoSQL system with adequate design decisions of their applications.

• Database-as-a-Service solutions are recommended for software applications
which are built on top of relational databases. They can be easily migrated to
cloud servers and alleviate the need to purchase expensive hardware, deal with
software upgrades and hire professionals for administrative and maintenance
tasks. However, these application should have the ability to accurately predict
their application workloads and provision the adequate computing resources that
can achiever their performance requirements. Unfortunately, these applications
should be ready to not automatically leverage the elasticity and scalability
promises of cloud services.

• Virtualized database servers are recommended for software applications which
require to leverage the full elasticity and scalability promises of cloud services
and need to have full control on the performance of their applications. However,
these application need to build and configure their admission control for manag-
ing the database tier of their applications.

1http://aws.amazon.com/whitepapers/storage-options-aws-cloud/.

http://aws.amazon.com/whitepapers/storage-options-aws-cloud/

10.5 Summary 189

For designers and developers, it is clear that there is no single perfect technology
or solution for hosting databases in cloud platforms. Different application target
different aspects in the design space, and multiple open problems still remain.
Therefore, they can use the challenges which are discussed above in order to
effectively decide on the points which can be improved in order to make an
effective contribution towards the vision of designing and implementing successful
data management solutions in the cloud environment. We believe that there is still
many opportunities for new innovations and optimizations in this area. For users of
cloud database services, they often have the challenge of choosing the appropriate
technology and system that can satisfy their specific set of application requirements.
Therefore, a thorough understanding of current cloud database technologies is
essential for dealing with this situation.

References

1. https://code.google.com/p/clouddb-replication/.
2. Amazon Auto Scaling Web Service. http://aws.amazon.com/autoscaling/s.
3. Amazon Cloud Watch. http://aws.amazon.com/cloudwatch/.
4. Amazon EC2 Cloud Service. http://aws.amazon.com/ec2/.
5. Amazon Elastic Load Balancing. http://aws.amazon.com/elasticloadbalancing/.
6. Amazon Elastic MapReduce (Amazon EMR). http://aws.amazon.com/elasticmapreduce/.
7. Apache Cassandra database - Project Webpage. http://cassandra.apache.org/.
8. Apache CouchDB database - Project Webpage. http://couchdb.apache.org/.
9. Apache Hadoop - Project Webpage. http://hadoop.apache.org/.

10. Apache HBase database - Project Webpage. http://hbase.apache.org/.
11. Apache Hive: Project Webpage. http://hive.apache.org/.
12. Apache Pig: Project Webpage. http://pig.apache.org/.
13. Aster Data Systems. http://www.asterdata.com/.
14. DEX: a distributed key-value storage system. http://www.dama.upc.edu/technology-transfer/

dex.
15. Dynomite: a distributed key-value storage system. http://wiki.github.com/cliffmoon/

dynomite/dynomite-framework.
16. Eucalyptus: Open Source AWS Compatible Private Clouds. http://www.eucalyptus.com/.
17. GoGrid Cloud Hosting. http://www.gogrid.com/.
18. GoGrid Load Balncer. http://www.gogrid.com/cloud-hosting/load-balancers.php.
19. Google App Engine. http://developers.google.com/appengine/.
20. Google AppEngine datastore. http://code.google.com/appengine/docs/python/datastore/.
21. Google Apps for Business. http://www.google.com/apps/.
22. Google BigQuery. https://developers.google.com/bigquery/.
23. Google Cloud SQL. https://developers.google.com/cloud-sql/.
24. GQL: Google Data Store Query Language. http://code.google.com/appengine/docs/python/

datastore/gqlreference.html.
25. Greenplum Inc. http://www.greenplum.com/.
26. Hadoop Distributed Filesystem (HDFS). http://hadoop.apache.org/hdfs/.
27. HadoopDB Project Webpage. http://db.cs.yale.edu/hadoopdb/hadoopdb.html.
28. Heroku Cloud Application Platform. http://www.heroku.com/.
29. HiveQL: Language Manual. https://cwiki.apache.org/confluence/display/Hive/

LanguageManual.
30. HyperTable: A high performance, scalable, distributed storage and processing system for

structured and unstructured data. http://hypertable.org/.
31. IBM Netezza Data Warehouse Appliances. http://www-01.ibm.com/software/data/netezza/.

L. Zhao et al., Cloud Data Management, DOI 10.1007/978-3-319-04765-2,
© Springer International Publishing Switzerland 2014

191

https://code.google.com/p/clouddb-replication/
http://aws.amazon.com/autoscaling/s
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticmapreduce/
http://cassandra.apache.org/
http://couchdb.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://www.asterdata.com/
http://www.dama.upc.edu/technology-transfer/dex
http://www.dama.upc.edu/technology-transfer/dex
http://wiki.github.com/cliffmoon/dynomite/dynomite-framework
http://wiki.github.com/cliffmoon/dynomite/dynomite-framework
http://www.eucalyptus.com/
http://www.gogrid.com/
http://www.gogrid.com/cloud-hosting/load-balancers.php
http://developers.google.com/appengine/
http://code.google.com/appengine/docs/python/datastore/
http://www.google.com/apps/
https://developers.google.com/bigquery/
https://developers.google.com/cloud-sql/
http://code.google.com/appengine/docs/python/datastore/gqlreference.html
http://code.google.com/appengine/docs/python/datastore/gqlreference.html
http://www.greenplum.com/
http://hadoop.apache.org/hdfs/
http://db.cs.yale.edu/hadoopdb/hadoopdb.html
http://www.heroku.com/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
http://hypertable.org/
http://www-01.ibm.com/software/data/netezza/

192 References

32. Jaql: Query Language for JavaScript(r) Object Notation (JSON). http://code.google.com/p/
jaql/.

33. KVM (Kernel-based Virtual Machine). http://www.linux-kvm.org/.
34. List of NoSQL Databases. http://NoSQL-database.org/.
35. Memcached: a distributed memory object caching system. http://memcached.org/.
36. Microsoft Appliance: Parallel Data Warehouse (PDW). http://www.microsoft.com/sqlserver/

en/us/solutions-technologies/data-warehousing/pdw.aspx.
37. Microsoft Windows Azure). http://www.windowsazure.com/.
38. MongoDB: an open-source document database. http://www.mongodb.org/.
39. Neo4J: Graph Database System. http://neo4j.org/.
40. ParAccel Big Data Analytics Platform. http://www.paraccel.com/.
41. Riak: a distributed key-value storage system. http://wiki.basho.com/display/RIAK/Riak.
42. RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
43. SalesForce Cloud Solutions. http://salesforce.com/.
44. SQL Azure Database. http://www.windowsazure.com/en-us/services/data-management/.
45. Teradata Inc. http://teradata.com/.
46. The DZero Experiment. http://www-d0.fnal.gov/.
47. The Storm Project. https://github.com/nathanmarz/storm/.
48. The Xen Project). http://xen.org/.
49. TPC-W: a transactional web e-Commerce benchmark. http://www.tpc.org/tpcw/.
50. Twister: Iterative MapReduce. http://www.iterativemapreduce.org/.
51. Vertica Systems Inc. http://www.vertica.com/.
52. Voldemort: a distributed key-value storage system. http://project-voldemort.com/.
53. YCSB++ Benchmark - Project Webpage. http://www.pdl.cmu.edu/ycsb++/index.shtml.
54. YCSB: Yahoo! Cloud Serving Benchmark . http://wiki.github.com/brianfrankcooper/YCSB/.
55. Zoho Suite of Online Web Applications. http://www.zoho.com/.
56. Daniel Abadi. Data management in the cloud: Limitations and opportunities. Data Eng. Bull.,

32(1):3–12, March 2009.
57. Daniel Abadi. Consistency tradeoffs in modern distributed database system design: CAP is

only part of the story. Computer, 45(2):37–42, February 2012.
58. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander

Rasin. HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for
analytical workloads. Proc. VLDB Endow., 2(1):922–933, August 2009.

59. Azza Abouzied, Kamil Bajda-Pawlikowski, Jiewen Huang, Daniel J. Abadi, and Avi Silber-
schatz. HadoopDB in action: Building real world applications. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pages
1111–1114, New York, NY, USA, 2010. ACM.

60. Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment. In
EDBT, pages 99–110, 2010.

61. Foto N. Afrati and Jeffrey D. Ullman. Optimizing Multiway Joins in a Map-Reduce
Environment. IEEE TKDE, 23(9):1282–1298, 2011.

62. Divyakant Agrawal, Amr El Abbadi, Fatih Emekci, and Ahmed Metwally. Database man-
agement as a service: Challenges and opportunities. In Proceedings of the 25th IEEE
International Conference on Data Engineering, ICDE ’09, pages 1709–1716, Shanghai,
China, March 2009. IEEE Computer Society.

63. Mohammad Alrifai and Thomas Risse. Combining global optimization with local selection
for efficient QoS-aware service composition. In Proceedings of the 18th international
conference on World wide web, WWW ’09, pages 881–890, New York, NY, USA, 2009.
ACM.

64. Ahmed M. Aly, Asmaa Sallam, Bala M. Gnanasekaran, Long-Van Nguyen-Dinh, Walid G.
Aref, Mourad Ouzzaniy, and Arif Ghafoor. M3: Stream Processing on Main-Memory
MapReduce. In ICDE, 2012.

65. Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J. Wylie. What
consistency does your key-value store actually provide? In HotDep, 2010.

http://code.google.com/p/jaql/
http://code.google.com/p/jaql/
http://www.linux-kvm.org/
http://NoSQL-database.org/
http://memcached.org/
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://www.windowsazure.com/
http://www.mongodb.org/
http://neo4j.org/
http://www.paraccel.com/
http://wiki.basho.com/display/RIAK/Riak
http://rubis.ow2.org/
http://salesforce.com/
http://www.windowsazure.com/en-us/services/data-management/
http://teradata.com/
http://www-d0.fnal.gov/
https://github.com/nathanmarz/storm/
http://xen.org/
http://www.tpc.org/tpcw/
http://www.iterativemapreduce.org/
http://www.vertica.com/
http://project-voldemort.com/
http://www.pdl.cmu.edu/ycsb++/index.shtml
http://wiki.github.com/brianfrankcooper/YCSB/
http://www.zoho.com/

References 193

66. Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible processes.
IEEE Trans. Softw. Eng., 33(6):369–384, June 2007.

67. Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin, and
David A. Patterson. PIQL: Success-Tolerant Query Processing in the Cloud. PVLDB,
5(3):181–192, 2011.

68. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

69. Shivnath Babu. Towards automatic optimization of MapReduce programs. In SoCC, pages
137–142, 2010.

70. Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, , and Ion Stoica. The Potential
Dangers of Causal Consistency and an Explicit Solution. In SoCC, 2012.

71. Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion
Stoica. Probabilistically bounded staleness for practical partial quorums. PVLDB, 5(8), 2012.

72. Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing
scalable, highly available storage for interactive services. In Proceedings of the 5th Biennial
Conference on Innovative Data Systems Research, CIDR ’11, pages 223–234, Asilomar,
California, USA, January 2011.

73. Andrey Balmin, Tim Kaldewey, and Sandeep Tata. Clydesdale: structured data processing
on Hadoop. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 705–708, New York, NY, USA, 2012. ACM.

74. Luiz André Barroso and Urs Hölzle. The Case for Energy-Proportional Computing. IEEE
Computer, 40(12):33–37, 2007.

75. Salman A. Baset. Cloud SLAs: present and future. SIGOPS Oper. Syst. Rev., 46(2):57–66,
July 2012.

76. G. Bell, J. Gray, and A. Szalay. Petascale computational systems. IEEE Computer, 39(1):110–
112, 2006.

77. Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lpsolve: Open source (mixed-integer)
linear programming system. Technical report, Eindhoven U. of Technology.

78. David Bermbach and Stefan Tai. Eventual consistency: How soon is eventual? an evaluation
of Amazon S3’s consistency behavior. In Proceedings of the 6th Workshop on Middleware for
Service Oriented Computing, MW4SOC ’11, pages 1:1–1:6, Lisboa, Portugal, 2011. ACM.

79. Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal Kakivaya,
David B. Lomet, Ramesh Manne, Lev Novik, and Tomas Talius. Adapting Microsoft SQL
server for cloud computing. In Proceedings of the 27th IEEE International Conference on
Data Engineering, ICDE ’11, pages 1255–1263, Hannover, Germany, 2011. IEEE Computer
Society.

80. Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Y. Eltabakh,
Carl-Christian Kanne, Fatma Özcan, and Eugene J. Shekita. Jaql: A scripting language for
large scale semistructured data analysis. Proc. VLDB Endow., 4(12):1272–1283, August 2011.

81. Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and Rafael Pasquin.
Incoop: MapReduce for incremental computations. In Proceedings of the 2nd ACM Sympo-
sium on Cloud Computing, SOCC ’11, pages 7:1–7:14, New York, NY, USA, 2011. ACM.

82. Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and Yuanyuan
Tian. A comparison of join algorithms for log processing in MapReduce. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10,
pages 975–986, New York, NY, USA, 2010. ACM.

83. Peter Bodík, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A. Patterson.
Characterizing, modeling, and generating workload spikes for stateful services. In Proceed-
ings of the 1st ACM Symposium on Cloud computing, SoCC ’10, pages 241–252, Indianapolis,
IN, USA, 2010. ACM.

194 References

84. Vinayak Borkar, Michael J. Carey, and Chen Li. Inside “Big Data management”: ogres,
onions, or parfaits? In Proceedings of the 15th International Conference on Extending
Database Technology, EDBT ’12, pages 3–14, New York, NY, USA, 2012. ACM.

85. Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim Kraska.
Building a database on S3. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 251–264, Vancouver, BC, Canada,
2008. ACM.

86. Eric Brewer. Towards robust distributed systems (abstract). In Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Computing, PODC ’00, page 7, Portland, OR,
USA, 2000. ACM.

87. Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. HaLoop: efficient
iterative data processing on large clusters. Proc. VLDB Endow., 3(1–2):285–296, September
2010.

88. Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. The HaLoop approach
to large-scale iterative data analysis. VLDB J., 21(2):169–190, 2012.

89. Chris Bunch, Navraj Chohan, Chandra Krintz, Jovan Chohan, Jonathan Kupferman, Puneet
Lakhina, Yiming Li, and Yoshihide Nomura. An evaluation of distributed datastores using the
AppScale cloud platform. In Proceedings of the 3rd IEEE International Conference on Cloud
Computing, CLOUD ’10, pages 305–312, Washington, DC, USA, 2010. IEEE Computer
Society.

90. Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06,
pages 335–350, Seattle, WA, USA, 2006. USENIX Association.

91. Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging it platforms: Vision, hype, and reality for delivering comput-
ing as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

92. Michael J. Cafarella and Christopher Ré. Manimal: Relational Optimization for Data-
Intensive Programs. In WebDB, 2010.

93. Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An
approach for qos-aware service composition based on genetic algorithms. In Proceedings of
the 2005 Conference on Genetic and Evolutionary Computation, GECCO ’05, pages 1069–
1075, New York, NY, USA, 2005. ACM.

94. Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39(4):12–27, May 2011.
95. Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. Middleware-based database

replication: the gaps between theory and practice. In SIGMOD Conference, pages 739–752,
2008.

96. Emmanuel Cecchet, Rahul Singh, Upendra Sharma, and Prashant Shenoy. Dolly:
virtualization-driven database provisioning for the cloud. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’11,
pages 51–62, Newport Beach, CA, USA, 2011. ACM.

97. Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert
Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, efficient data-parallel pipelines.
SIGPLAN Not., 45(6):363–375, June 2010.

98. Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In PODC, pages 398–407, 2007.

99. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

100. Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha Aragonda, Vera
Lychagina, Younghee Kwon, and Michael Wong. Tenzing A SQL Implementation On The
MapReduce Framework. PVLDB, 4(12):1318–1327, 2011.

101. Songting Chen. Cheetah: a high performance, custom data warehouse on top of MapReduce.
Proc. VLDB Endow., 3(1–2):1459–1468, September 2010.

References 195

102. Yun Chi, Hyun Jin Moon, and Hakan Hacigümüş. iCBS: incremental cost-based scheduling
under piecewise linear SLAs. Proc. VLDB Endow., 4(9):563–574, June 2011.

103. Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-merge:
simplified relational data processing on large clusters. In SIGMOD, pages 1029–1040, 2007.

104. Hung chih Yang and D. Stott Parker. Traverse: Simplified indexing on large map-reduce-
merge clusters. In DASFAA, pages 308–322, 2009.

105. Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz, Nagy Mostafa, Sunil Soman,
and Rich Wolski. AppScale: Scalable and open AppEngine application development and
deployment. In Dimiter R. Avresky, Michel Diaz, Arndt Bode, Bruno Ciciani, and Eliezer
Dekel, editors, Proceedings of the 1st International Conference on Cloud Computing,
volume 34 of CloudComp ’09, pages 57–70, Munich, Germany, October 2009. Springer
Berlin Heidelberg.

106. James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey, III, Craig A.N. Soules,
and Alistair Veitch. LazyBase: trading freshness for performance in a scalable database. In
Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys ’12, pages
169–182, Bern, Switzerland, April 2012. ACM.

107. Carlos A. Coello Coello. Theoretical and Numerical Constraint-Handling Techniques used
with Evolutionary Algorithms: A Survey of the State of the Art. Computer methods in applied
mechanics and engineering, 191(11–12):1245–1287, 2002.

108. Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, and
Russell Sears. Mapreduce online. In NSDI, 2010.

109. Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, John Gerth, Justin Talbot,
Khaled Elmeleegy, and Russell Sears. Online aggregation and continuous query support in
MapReduce. In SIGMOD Conference, pages 1115–1118, 2010.

110. Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler, P. P. S. Narayan,
Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Silberstein, Utkarsh Srivastava,
and Raymie Stata. Building a cloud for yahoo! IEEE Data Eng. Bull., 32(1):36–43, 2009.

111. Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohan-
non, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s
hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

112. Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 143–154, Indianapolis, IN, USA, 2010. ACM.

113. James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s
globally-distributed database. In Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, OSDI ’12, pages 251–264, Berkeley, CA, USA, 2012.
USENIX Association.

114. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT press, 3rd edition, September 2009.

115. ´italo S. Cunha, Jussara M. Almeida, Virgilio Almeida, and Marcos Santos. Self-adaptive
capacity management for multi-tier virtualized environments. In Integrated Network Man-
agement, pages 129–138, 2007.

116. Carlo Curino, Evan Jones, Yang Zhang, Eugene Wu, and Sam Madde. Relational Cloud: The
Case for a Database Service. In CIDR, 2011.

117. Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: a scalable data store for
transactional multi key access in the cloud. In Proceedings of the 1st ACM Symposium on
Cloud computing, SoCC ’10, pages 163–174, New York, NY, USA, 2010. ACM.

118. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI, pages 137–150, 2004.

196 References

119. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

120. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun.
ACM, 53(1):72–77, 2010.

121. Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–
220, October 2007.

122. David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High Performance
Database Systems. Commun. ACM, 35(6):85–98, 1992.

123. Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty, and Jörg
Schad. Hadoop++: making a yellow elephant run like a cheetah (without it even noticing).
Proc. VLDB Endow., 3(1–2):515–529, September 2010.

124. Dave Durkee. Why cloud computing will never be free. Commun. ACM, 53(5):62–69, May
2010.

125. Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu,
and Geoffrey Fox. Twister: a runtime for iterative MapReduce. In HPDC, pages 810–818,
2010.

126. Iman Elghandour and Ashraf Aboulnaga. ReStore: Reusing Results of MapReduce Jobs.
PVLDB, 5(6):586–597, 2012.

127. Iman Elghandour and Ashraf Aboulnaga. ReStore: reusing results of MapReduce jobs in pig.
In SIGMOD Conference, pages 701–704, 2012.

128. Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr: live
migration in shared nothing databases for elastic cloud platforms. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, pages 301–
312, Athens, Greece, 2011. ACM.

129. Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha Krettek, and
John McPherson. CoHadoop: flexible data placement and its exploitation in Hadoop. Proc.
VLDB Endow., 4(9):575–585, June 2011.

130. Constantinos Evangelinos and C. N. Hill. Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled atmosphere-ocean climate models on Amazon’s
EC2. In Proceedings of the 1st Workshop on Cloud Computing and Its Applications, CCA
’08, Chicago, IL, USA, 2008.

131. Avrilia Floratou, Jignesh M. Patel, Willis Lang, and Alan Halverson. When free is not really
free: what does it cost to run a database workload in the cloud? In Proceedings of the
3rd TPC Technology Conference on Topics in Performance Evaluation, Measurement and
Characterization, TPCTC ’11, pages 163–179, Seattle, WA, USA, August 2011. Springer.

132. Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep Tata. Column-oriented
storage techniques for MapReduce. Proc. VLDB Endow., 4(7):419–429, April 2011.

133. Daniela Florescu and Donald Kossmann. Rethinking cost and performance of database
systems. SIGMOD Rec., 38(1):43–48, June 2009.

134. Eric Friedman, Peter M. Pawlowski, and John Cieslewicz. SQL/MapReduce: A practical
approach to self-describing, polymorphic, and parallelizable user-defined functions. PVLDB,
2(2):1402–1413, 2009.

135. Gaber and Bakouya. an affinity-driven clustering approach for service discovery and composi-
tion for pervasive computing. In Proceedings of the 3rd ACS/IEEE International Conference
on Pervasive Services, PERSER ’06, pages 277–280, Washington, DC, USA, 2006. IEEE
Computer Society.

136. Alan Gates. Programming Pig. O’Reilly Media, 2011.
137. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. SIGOPS

Oper. Syst. Rev., 37(5):29–43, October 2003.
138. Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.
139. Jim Gray. Distributed computing economics. Queue, 6(3):63–68, May 2008.

References 197

140. Jum Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. The
Morgan Kaufmann Series in Data Management Systems, 1992.

141. Yunhong Gu and Robert L. Grossman. Lessons learned from a year’s worth of benchmarks
of large data clouds. In Proceedings of the 2nd Workshop on Many-Task Computing on Grids
and Supercomputers, MTAGS ’09, pages 3:1–3:6, New York, NY, USA, 2009. ACM.

142. Wei Guo, Weiqiang Sun, Yaohui Jin, Weisheng Hu, and Chunming Qiao. Demonstration of
joint resource scheduling in an optical network integrated computing environment. Comm.
Mag., 48(5):76–83, May 2010.

143. I. W. Habib, Qiang Song, Zhaoming Li, and N. S.V. Rao. Deployment of the GMPLS
control plane for grid applications in experimental high-performance networks. Comm. Mag.,
44(3):65–73, March 2006.

144. Hakan Hacigümüs, Sharad Mehrotra, and Balakrishna R. Iyer. Providing Database as a
Service. In ICDE, 2002.

145. Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270–
294, December 2001.

146. Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and
Zhiwei Xu. RCFile: A fast and space-efficient data placement structure in MapReduce-based
warehouse systems. In ICDE, pages 1199–1208, 2011.

147. Herodotos Herodotou. Hadoop performance models. Technical Report CS-2011-05, Duke
University, February 2011.

148. Herodotos Herodotou and Shivnath Babu. Profiling, What-if Analysis, and Cost-based
Optimization of MapReduce Programs. PVLDB, 4(11):1111–1122, 2011.

149. Herodotos Herodotou, Fei Dong, and Shivnath Babu. MapReduce Programming and Cost-
based Optimization? Crossing this Chasm with Starfish. PVLDB, 4(12):1446–1449, 2011.

150. Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen
Cetin, and Shivnath Babu. Starfish: A Self-tuning System for Big Data Analytics. In CIDR,
pages 261–272, 2011.

151. Tony Hey, Stewart Tansley, and Kristin M. Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, Redmond, Washington, USA, 2009.

152. Zach Hill and Marty Humphrey. A quantitative analysis of high performance computing with
Amazon’s EC2 infrastructure: The death of the local cluster? In Proceedings of the 10th
IEEE/ACM International Conference on Grid Computing, pages 26–33, Banff, AB, Canada,
October 2009. IEEE Computer Society.

153. Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic optimization for MapRe-
duce programs. Proc. VLDB Endow., 4(6):385–396, March 2011.

154. David Jiang, Anthony K. H. Tung, and Gang Chen. MAP-JOIN-REDUCE: Toward Scalable
and Efficient Data Analysis on Large Clusters. IEEE TKDE, 23(9):1299–1311, 2011.

155. Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The Performance of MapReduce: An
In-depth Study. PVLDB, 3(1):472–483, 2010.

156. Alekh Jindal, Jorge-Arnulfo Quiane-Ruiz, and Jens Dittrich. Trojan Data Layouts: Right
Shoes for a Running Elephant. In SoCC, 2011.

157. Tim Kaldewey, Eugene J. Shekita, and Sandeep Tata. Clydesdale: structured data processing
on MapReduce. In Proceedings of the 15th International Conference on Extending Database
Technology, EDBT ’12, pages 15–25, New York, NY, USA, 2012. ACM.

158. David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: distributed caching protocols for relieving hot
spots on the World Wide Web. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, STOC ’97, pages 654–663, El Paso, TX, USA, May 1997. ACM.

159. Kimberly Keeton, Charles B. Morrey, III, Craig A.N. Soules, and Alistair Veitch. LazyBase:
freshness vs. performance in information management. SIGOPS Oper. Syst. Rev., 44(1):15–
19, March 2010.

160. Bettina Kemme, Ricardo Jiménez Peris, and Marta Patiño-Martínez. Database Replication.
Synthesis Lectures on Data Management. Morgan & Claypool, 1st edition, 2010.

198 References

161. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003.

162. Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative architec-
tures for transaction processing in the cloud. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10, pages 579–590, Indianapo-
lis, IN, USA, June 2010. ACM.

163. Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency
rationing in the cloud: pay only when it matters. Proc. VLDB Endow., 2(1):253–264, August
2009.

164. Tim Kraska, Gene Pang, Michael J. Franklin, and Samuel Madden. MDCC: Multi-Data
Center Consistency. CoRR, abs/1203.6049, 2012.

165. Sriram Krishnan. Programming Windows Azure: Programming the Microsoft Cloud. O’Reilly
Media, Sebastopol, CA, USA, 1st edition, 2010.

166. Vibhore Kumar, Henrique Andrade, Buğra Gedik, and Kun-Lung Wu. DEDUCE: at the
intersection of MapReduce and stream processing. In Proceedings of the 13th International
Conference on Extending Database Technology, EDBT ’10, pages 657–662, New York, NY,
USA, 2010. ACM.

167. Avinash Lakshman and Prashant Malik. Cassandra: a structured storage system on a p2p
network. In Proceedings of the 21st Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’09, pages 47–47, New York, NY, USA, 2009. ACM.

168. Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

169. Willis Lang and Jignesh M. Patel. Energy management for MapReduce clusters. Proc. VLDB
Endow., 3(1–2):129–139, September 2010.

170. Willis Lang, Srinath Shankar, Jignesh M. Patel, and Ajay Kalhan. Towards Multi-tenant
Performance SLOs. In ICDE, pages 702–713, 2012.

171. Tom Lehman, Jerry Sobieski, and Bijan Jabbari. DRAGON: a framework for service
provisioning in heterogeneous grid networks. Comm. Mag., 44(3):84–90, March 2006.

172. Alexander Lenk, Michael Menzel, Johannes Lipsky, Stefan Tai, and Philipp Offermann. What
are you paying for? performance benchmarking for Infrastructure-as-a-Service offerings. In
Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing, IEEE
CLOUD ’11, pages 484–491, Washington, DC, USA, July 2011. IEEE Computer Society.

173. Justin J. Levandoski, David Lomet, Mohamed F. Mokbel, and Kevin Keliang Zhao. Deuteron-
omy: Transaction support for cloud data. In Proceedings of the 5th Biennial Conference on
Innovative Data Systems Research, CIDR ’11, pages 123–133, Asilomar, California, USA,
January 2011.

174. Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of Hadoop clusters.
Operating Systems Review, 44(1):61–65, 2010.

175. Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and Prashant Shenoy. A platform
for scalable one-pass analytics using MapReduce. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11, pages 985–996, New York,
NY, USA, 2011. ACM.

176. Harold Lim, Herodotos Herodotou, and Shivnath Babu. Stubby: A Transformation-based
Optimizer for MapReduce Workflows. PVLDB, 5(12), 2012.

177. Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin Ooi, and Sai Wu. Llama: leveraging
columnar storage for scalable join processing in the MapReduce framework. In SIGMOD
Conference, pages 961–972, 2011.

178. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with COPS. In Proceedings of
the 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, pages 401–416, New
York, NY, USA, 2011. ACM.

179. Dionysios Logothetis and Kenneth Yocum. Ad-hoc data processing in the cloud. Proc. VLDB
Endow., 1(2):1472–1475, August 2008.

References 199

180. Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD, pages 135–146, 2010.

181. Peter M. Mell and Timothy Grance. Sp 800-145. the NIST definition of cloud computing.
Technical report, National Institute of Standards and Technology, Gaithersburg, MD, USA,
2011.

182. Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets. Proc. VLDB
Endow., 3(1–2):330–339, September 2010.

183. Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets. Commun.
ACM, 54(6):114–123, June 2011.

184. Kristi Morton, Magdalena Balazinska, and Dan Grossman. ParaTimer: a progress indicator
for MapReduce DAGs. In SIGMOD Conference, pages 507–518, 2010.

185. Kristi Morton, Abram L. Friesen, Magdalena Balazinska, and Dan Grossman. Estimating the
progress of mapreduce pipelines. In Proceedings of the 26th IEEE International Conference
on Data Engineering, ICDE ’10, pages 681–684, Long Beach, CA, USA, March 2010. IEEE
Computer Society.

186. Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Message Futures: Fast Commitment
of Transactions in. Multi-datacenter Environments. In CIDR, 2013.

187. Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick Koudas.
MRShare: Sharing Across Multiple Queries in MapReduce. PVLDB, 3(1):494–505, 2010.

188. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. In SIGMOD, pages 1099–1110, 2008.

189. M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer,
New York, NY, USA, 3rd edition, March 2011.

190. Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal,
Arif Merchant, and Kenneth Salem. Adaptive control of virtualized resources in utility
computing environments. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems, EuroSys ’07, pages 289–302, Lisboa, Portugal, March
2007. ACM.

191. Douglas F. Parkhill. The challenge of the computer utility. Addison-Wesley, 1966.
192. Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth Gib-

son, Adam Fuchs, and Billie Rinaldi. YCSB++: benchmarking and performance debugging
advanced features in scalable table stores. In SOCC, 2011.

193. David A. Patterson. Technical perspective: the data center is the computer. Commun. ACM,
51(1):105, 2008.

194. Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel
Madden, and Michael Stonebraker. A comparison of approaches to large-scale data analysis.
In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’09, pages 165–178, New York, NY, USA, 2009. ACM.

195. Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data: Parallel
analysis with sawzall. Sci. Program., 13(4):277–298, October 2005.

196. Dan Pritchett. BASE: An ACID alternative. Queue, 6(3):48–55, May 2008.
197. Jorge-Arnulfo Quiané-Ruiz, Christoph Pinkel, Jörg Schad, and Jens Dittrich. RAFT at work:

speeding-up mapreduce applications under task and node failures. In SIGMOD Conference,
pages 1225–1228, 2011.

198. Jorge-Arnulfo Quiané-Ruiz, Christoph Pinkel, Jörg Schad, and Jens Dittrich. RAFTing
MapReduce: Fast recovery on the RAFT. In ICDE, pages 589–600, 2011.

199. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds. In Proceedings of the
16th ACM Conference on Computer and Communications Security, CCS ’09, pages 199–212,
Chicago, IL, USA, November 2009. ACM.

200 References

200. Jennie Rogers, Olga Papaemmanouil, and Ugur Çetintemel. A generic auto-provisioning
framework for cloud databases. In Proceedings of the 26th IEEE International Conference
on Data Engineering Workshops, ICDEW ’10, pages 63–68, Long Beach, CA, USA, March
2010. IEEE Computer Society.

201. Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and Schahram
Dustdar. An end-to-end approach for QoS-aware service composition. In Proceedings of the
13th IEEE International Enterprise Distributed Object Computing Conference, EDOC ’09,
pages 151–160, Washington, DC, USA, 2009. IEEE Computer Society.

202. Florian Rosenberg, Max Benjamin Müller, Philipp Leitner, Anton Michlmayr, Athman
Bouguettaya, and Schahram Dustdar. Metaheuristic Optimization of Large-Scale QoS-aware
Service Compositions. In IEEE SCC, pages 97–104, 2010.

203. Sherif Sakr and Anna Liu. SLA-based and consumer-centric dynamic provisioning for cloud
databases. In Proceedings of the 5th IEEE International Conference on Cloud Computing,
IEEE CLOUD ’12, pages 360–367, Honolulu, HI, USA, June 2012. IEEE Computer Society.

204. Sherif Sakr and Anna Liu. Is your cloud-hosted database truly elastic? In Proceedings of the
9th IEEE World Congress on Services, IEEE SERVICES ’13. IEEE Computer Society, June
2013.

205. Sherif. Sakr, Anna. Liu, Daniel .M. Batista, and Mohammad. Alomari. A survey of large
scale data management approaches in cloud environments. IEEE Communications Surveys &
Tutorials, 13(3):311–336, 2011.

206. Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. The Family of MapReduce and Large Scale
Data Processing Systems. CoRR, abs/1302.2966, 2013.

207. Sherif Sakr, Liang Zhao, Hiroshi Wada, and Anna Liu. CloudDB AutoAdmin: Towards a truly
elastic cloud-based data store. In Proceedings of the 9th IEEE International Conference on
Web Services, ICWS ’11, pages 732–733, Washington, DC, USA, July 2011. IEEE Computer
Society.

208. Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements in the
cloud: observing, analyzing, and reducing variance. Proc. VLDB Endow., 3(1–2):460–471,
September 2010.

209. Adam Silberstein, Jianjun Chen, David Lomax, B. McMillan, M. Mortazavi, P. P. S. Narayan,
Raghu Ramakrishnan, and Russell Sears. PNUTS in Flight: Web-Scale Data Serving at
Yahoo. IEEE Internet Computing, 16(1):13–23, 2012.

210. Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert Wong, Arthur
Klepchukov, Sheetal Patil, Armando Fox, and David Patterson. Cloudstone: Multi-platform,
multi-language benchmark and measurement tools for web 2.0. In Proceedings of the 1st
Workshop on Cloud Computing and Its Applications, CCA ’08, Chicago, IL, USA, October
2008.

211. Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem, Peter Kokosielis,
and Sunil Kamath. Automatic virtual machine configuration for database workloads. ACM
Trans. Database Syst., 35(1):7:1–7:47, February 2008.

212. Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 385–400, New York, NY, USA, 2011. ACM.

213. M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. Computer, 27(6):17–26, June
1994.

214. James Staten, Simon Yates, Frank E. Gillett, and Walid Saleh. Is cloud computing ready for
the enterprise? Technical report, Forrester Research, March 2008.

215. Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9(1):4–9, 1986.
216. Michael Stonebraker. One size fits all: an idea whose time has come and gone. Commun.

ACM, 51(12):76, 2008.
217. Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Erik Paulson,

Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss: friends or foes?
Commun. ACM, 53(1):64–71, 2010.

References 201

218. Basem Suleiman, Sherif Sakr, Ross Jeffrey, and Anna Liu. On understanding the economics
and elasticity challenges of deploying business applications on public cloud infrastructure.
Internet Services and Applications, 3(2):173–193, 2012.

219. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, October 2006.

220. Jun’ichi Tatemura, Oliver Po, and Hakan Hacigümüs. Microsharding: a declarative approach
to support elastic OLTP workloads. Operating Systems Review, 46(1):4–11, 2012.

221. Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J. Abadi. Calvin: fast distributed transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’12, pages 1–12, New York, NY, USA, 2012. ACM.

222. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solution over
a map-reduce framework. Proc. VLDB Endow., 2(2):1626–1629, August 2009.

223. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang,
Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive: a petabyte scale data warehouse
using Hadoop. In Proceedings of the 26th IEEE International Conference on Data Engi-
neering, ICDE ’10, pages 996–1005, Long Beach, CA, USA, March 2010. IEEE Computer
Society.

224. Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep
Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics infrastructure
at facebook. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 1013–1020, New York, NY, USA, 2010. ACM.

225. Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55,
December 2008.

226. Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.
227. Mladen A. Vouk. Cloud computing - issues, research and implementations. In Proceedings

of the 30th International Conference on Information Technology Interfaces, ITI ’08, pages
31–40, Dubrovnik, Croatia, June 2008.

228. Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the consumers’ perspective. In
Proceedings of the 5th Biennial Conference on Innovative Data Systems Research, CIDR ’11,
pages 134–143, Asilomar, California, USA, January 2011.

229. Lee Wang, Howard Jay Siegel, Vwani P. Roychowdhury, and Anthony A. Maciejewski.
Task Matching and Scheduling in Heterogenous Computing Environments Using a Genetic-
Algorithm-Based Approach. J. Parallel Distrib. Comput., 47(1):8–22, 1997.

230. Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 3rd edition, May 2012.
231. Darrell Whitley. The GENITOR algorithm and selection pressure: why rank-based allocation

of reproductive trials is best. In Proceedings of the third international conference on Genetic
algorithms, pages 116–121, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers
Inc.

232. Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Black-box and
gray-box strategies for virtual machine migration. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI ’07, pages 229–242,
Cambridge, MA, USA, April 2007. USENIX Association.

233. Gene T.J. Wuu and Arthur J. Bernstein. Efficient solutions to the replicated log and dictionary
problems. In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed
Computing, PODC ’84, pages 233–242, New York, NY, USA, 1984. ACM.

234. Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu, and Hakan
Hacigumus. Intelligent management of virtualized resources for database systems in cloud
environment. In Proceedings of the 27th IEEE International Conference on Data Engineer-
ing, ICDE ’11, pages 87–98, Washington, DC, USA, 2011. IEEE Computer Society.

202 References

235. Lamia Youseff, Maria Butrico, and Dilma Da Silva. Towards a unified ontology of cloud
computing. In GCE, 2008.

236. Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Improving
MapReduce performance in heterogeneous environments. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI ’08, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association.

237. Kamal Zellag and Bettina Kemme. How consistent is your cloud application? In Proceedings
of the 3rd ACM Symposium on Cloud Computing, SoCC ’12, pages 6:1–6:14, New York, NY,
USA, 2012. ACM.

238. Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant Kalagnanam,
and Henry Chang. QoS-Aware Middleware for Web Services Composition. IEEE Trans.
Software Eng., 30(5):311–327, 2004.

239. Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl., 1(1):7–18, May 2010.

240. Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. iMapReduce: A distributed
computing framework for iterative computation. J. Grid Comput., 10(1):47–68, March 2012.

241. Liang Zhao, Anna Liu, and Jacky Keung. Evaluating cloud platform architecture with the
CARE framework. In Proceedings of the 17th Asia Pacific Software Engineering Conference,
APSEC ’10, pages 60–69, Washington, DC, USA, 2010. IEEE Computer Society.

242. Liang Zhao, Sherif Sakr, and Anna Liu. Application-managed replication controller for
cloud-hosted databases. In Proceedings of the 5th IEEE International Conference on Cloud
Computing, CLOUD ’12, pages 922–929, Washington, DC, USA, 2012. IEEE Computer
Society.

243. Marcin Zukowski, Peter A. Boncz, Niels Nes, and Sándor Héman. MonetDB/X100 - A
DBMS In The CPU Cache. IEEE Data Eng. Bull., 28(2):17–22, 2005.

	Foreword
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter
1 Introduction
	Chapter
2 Cloud Computing
	2.1 Definitions
	2.2 Related Technologies for Cloud Computing
	Virtualization
	Grid Computing
	Utility Computing

	2.3 Cloud Service Models
	2.4 Cloud Deployment Models
	2.5 Public Cloud Platforms: State-of-the-Art
	2.6 Business Benefits of Cloud Computing

	Chapter
3 Cloud-Hosted Data Storage Systems
	3.1 Introduction
	3.2 NoSQL Key Systems
	Google: Bigtable
	Yahoo: PNUTS
	Amazon: Dynamo

	3.3 NoSQL Open Source Projects
	3.4 Database-as-a-Service
	Google Datastore
	Amazon: S3/SimpleDB/Amazon RDS
	Microsoft SQL Azure

	3.5 Virtualized Database Servers
	3.6 Web Scale Data Management: Trade-Offs
	3.7 Discussion and Conclusions

	Chapter
4 Performance Evaluation Framework of Cloud Platforms
	4.1 The CARE Framework
	Measurement Terminology
	Test Scenarios
	Load Test Strategies
	Building a Test Set with CARE

	4.2 Application of CARE to Cloud Platform Evaluation
	4.3 Experiment Results and Exception Analysis
	Qualitative Experience of Development Utilities
	Quantitative Results of Test Sets
	High Stress Round-Trip
	Low Stress Database Read and Write
	High Stress Database Read and Write
	Low Stress Large File Read, Write, and Delete

	Exception Analysis and Error Details
	Overall Error Details
	Average Errors Over Different Time Periods
	Average Connection Error Rates Under Different Loads

	4.4 Discussion

	Chapter
5 Database Replication of NoSQL Database-as-a-Service
	5.1 Architecture of Benchmark Application
	5.2 Staleness of Data on Different Cloud Platforms
	Amazon SimpleDB
	Access Patterns
	Read-Your-Write Consistency
	Monotonic Read Consistency

	Amazon S3
	Microsoft Windows Azure Table Storage and Blob Storage
	Google App Engine Datastore

	5.3 Trade-Off Analysis of Amazon SimpleDB
	Response Time and Throughput
	Monetary Cost

	5.4 Discussion

	Chapter
6 Replicating Virtualized Database Servers
	6.1 Design of Benchmark Application
	Customized Cloudstone
	MySQL Replication with a Fine-Grained Time/Date Function
	Clock Synchronization in Cloud

	6.2 Implementation of Benchmark Application
	6.3 Trade-Off Analysis of Virtualized Database Servers
	End-to-End Throughput
	Replication Delay

	6.4 Discussion

	Chapter
7 SLA-Driven Database Replication on Virtualized Database Servers
	7.1 SLA Management for Virtualized Database Servers
	7.2 Architecture of SLA Management Framework
	Monitor Module
	Control Module
	Action Module

	7.3 Implementation of SLA Management Framework
	7.4 Evaluation of SLA Management Framework
	End-to-End Throughput
	Replication Delay

	7.5 Provisioning the Database Tier Based on SLA of Transaction Response Times
	7.6 Related work
	7.7 Discussion

	Chapter
8 QoS-Aware Service Compositions in Cloud Computing
	8.1 Preliminaries
	Service Compositions in Cloud Computing
	QoS Model
	Genetic Algorithms

	8.2 QoS-Aware Service Composition in Cloud Computing
	Genetic Algorithm Based Approach
	Handling Multiple Data Flow Graphs

	8.3 Experiment and Evaluation
	Creation of Experimental Scenarios
	Experiments Results

	8.4 Related Work
	8.5 Conclusion

	Chapter
9 Big Data Processing Systems
	9.1 Introduction
	9.2 MapReduce Framework: Basic Architecture
	9.3 Extensions and Enhancements of the MapReduce Framework
	Processing Join Operations
	Supporting Iterative Processing
	Data and Process Sharing
	Support of Data Indices and Column Storage
	Effective Data Placement
	Pipelining and Streaming Operations
	System Optimizations

	9.4 Systems of Declarative Interfaces for the MapReduceFramework
	Sawzall
	Pig Latin
	Hive
	Tenzing
	Cheetah
	SQL/MapReduce
	HadoopDB
	Jaql

	9.5 Conclusions

	Chapter
10 Conclusions
	10.1 True Elasticity
	10.2 Data Replication and Consistency Management
	10.3 SLA Management
	10.4 Transaction Support
	10.5 Summary

	References

