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ABSTRACT 

 

In recent years many remote sensing instruments of various properties have been 

employed in an attempt to better characterize important geophysical phenomena. Satellite 

instruments provide an exceptional opportunity for global long-term observations of the 

land, the biosphere, the atmosphere, and the oceans. The collected data are used for 

estimation and better understanding of geophysical parameters such as land cover type, 

atmospheric properties, or ocean temperature. Achieving accurate estimations of such 

parameters is an important requirement for development of models able to predict global 

climate changes. One of the most challenging climate research problems is estimation of 

global composition, load, and variability of aerosols, small airborne particles that reflect 

and absorb incoming solar radiation.  

The existing algorithm for aerosol prediction from satellite observations is 

deterministic and manually tuned by domain scientist. In contrast to domain-driven 

method, we show that aerosol prediction is achievable by completely data-driven 

approaches. These statistical methods consist of learning of nonlinear regression models 

to predict aerosol load using the satellite observations as inputs. Measurements from 

unevenly distributed ground-based sites over the world are used as proxy to ground-truth 

outputs. Although statistical methods achieve better accuracy than deterministic method 

this setup is appropriate when data are independently and identically distributed (IID). 

The IID assumption is often violated in remote sensing where data exhibit temporal, 

spatial, or spatio-temporal dependencies. In such cases, the traditional supervised 

learning approaches could result in a model with degraded accuracy.  

Conditional random fields (CRF) are widely used for predicting output variables 

that have some internal structure. Most of the CRF research has been done on structured 

classification where the outputs are discrete. We propose a CRF model for continuous 
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outputs that uses multiple unstructured predictors to form its features and at the same 

time exploits structure among outputs. By constraining the feature functions to quadratic 

functions of outputs, we show that the CRF model can be conveniently represented in a 

Gaussian canonical form. The appeal of proposed Gaussian Conditional Random Fields 

(GCRF) model is in its conceptual simplicity and computational efficiency of learning 

and inference through use of sparse matrix computations. Experimental results provide 

strong evidence that the GCRF achieves better accuracy than non-structured models. We 

improve the representational power of the GCRF model by 1) introducing the adaptive 

feature function that can learn nonlinear relationships between inputs and outputs and 2) 

allowing the weights of feature functions to be dependent on inputs. The GCRF is also 

readily applicable to other regression applications where there is a need for knowledge 

integration, data fusion, and exploitation of correlation among output variables.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Understanding processes of the Earth’s atmosphere, land, and ocean is of greatest 

importance to human society. In recent years many remote sensing instruments of various 

properties have been employed in an attempt to better characterize important geophysical 

phenomena. The collected remote sensed data are used for estimation and better 

understanding of global dynamics of geophysical parameters such as land cover type, 

humidity, clouds, aerosols, greenhouse gases, or ocean temperature. Achieving accurate 

estimations of such parameters is an important requirement for development of models 

able to predict global climate changes. The report by the Intergovernmental Panel on 

Climate Change (IPPC) [1] points out that the estimation of global composition, load, and 

variability of aerosols is one of the largest unknowns in climate change studies.  

Aerosols are small airborne particles that reflect and absorb incoming solar 

radiation. Numerous ground and satellite based instruments are employed for monitoring 

aerosols whose observations could differ in spatial, temporal and spectral resolution, 

coverage, and quality. Aerosols are characterized by Aerosol Optical Depth (AOD), a 

quantity which represents total attenuation of radiation from the top of the atmosphere 
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down to the surface. The nontrivial process of obtaining aerosol estimates from the 

instrument’s raw observations is called the AOD prediction. The nature of the aerosol 

remote sensing creates significant methodological challenges for data mining. This 

research focuses on AOD prediction, although the developed methods are also readily 

applicable to a larger class of remote sensing problems.  

Chapter 2 contains background information related to remote sensing of aerosols. 

To clarify challenges in AOD prediction, Section 2.1 and Section 2.2 describe the aerosol 

remote sensing instruments and the physics of AOD prediction. Section 2.3 introduces 

deterministic satellite-based AOD prediction that relies on domain knowledge. This 

section also points out potential flaws of deterministic predictor. Section 2.4 describes the 

data fusion from different sensors. Finally, Section 2.5 defines multiple evaluation 

measures used for assessment of prediction quality.  

1.2. Main contributions 

In contrast to domain-driven methods, in Chapter 3 we demonstrate that accurate 

AOD prediction is achievable by a completely data-driven approach [2-8]. This statistical 

method consists of training a nonlinear regression model using the satellite observations 

as inputs and ground based AOD as outputs. Section 3.2 shows how to construct AOD 

predictor that works well over a range of accuracy measures defined in Section 2.5. We 

propose an approach that builds an ensemble of neural networks, each trained with 

slightly different measure. The outputs of the ensemble are then used as inputs to a meta-

level neural network that produces the actual AOD predictions. Results show that the 

proposed ensemble works well over all considered accuracy measures and at the same 
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time is more accurate than the deterministic algorithm. In Section 3.3 we study a budget-

cut scenario that requires a reduction in a number of ground-based sensors. We develop 

an iterative method that removes sensors one by one from locations where AOD can be 

predicted most accurately using training data from the remaining sites. Extensive 

experiments provide strong evidence that sensors selected using the proposed algorithm 

are more informative than the competing approaches that select sensors at random or that 

select sensors based on spatial diversity. In Section 3.4 we propose a method that 

automatically discovers homogeneous spatio-temporal partitions through the competition 

of regression models. We show that spatio-temporal partitioning followed by building 

specialized predictors results in increased prediction accuracy when compared to learning 

a single predictor on all the data and to learning specialized predictors on the data 

partitions used in deterministic algorithm. 

Although statistical methods from Chapter 3 achieve better accuracy than 

deterministic method this setup is appropriate when examples are independently and 

identically distributed (IID). The IID assumption is often violated in remote sensed data, 

where examples exhibit sequential, temporal, spatial, or spatio-temporal dependencies. In 

such cases, the traditional supervised learning approaches could result in a model with 

degraded prediction accuracy. Conditional random fields (CRF) are widely used for 

predicting output variables that have some internal structure. Most of the CRF research 

has been done on structured classification where the outputs are discrete. In Chapter 4 we 

propose a CRF probabilistic model for structured regression that uses multiple 

unstructured predictors to form its features and exploits structure among outputs. By 

constraining the feature functions as quadratic functions of outputs, we show in Section 
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4.3 that the model can be conveniently represented in a Gaussian canonical form [9]. In 

Section 4.5 we improve the representational power of the resulting Gaussian CRF model 

by 1) introducing the adaptive feature function that can learn nonlinear relationships 

between inputs and outputs and 2) allowing the weights of feature functions to be 

dependent on inputs. The appeal of proposed model is in conceptual simplicity and 

computational efficiency of learning and inference through use of sparse matrix 

computations. Results presented in Section 4.4 and Section 4.5 provide strong evidence 

that the proposed GCRF model achieves better accuracy than non-structured models. The 

proposed method is also readily applicable to other regression applications where there is 

a need for knowledge integration, data fusion, and exploitation of correlation among 

output variables.
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CHAPTER 2 

REMOTE SENSING OF AEROSOLS 

2.1. Remote sensing 

Remote sensing is defined as the acquisition of information about an object 

without being in physical contact with it [10]. A typical source of remote sensing data is 

electromagnetic radiation which is emitted or reflected from the observed object. 

Information about our environment could be obtained by imaging the Sun’s 

electromagnetic radiation that propagates through the atmosphere. Remote sensing of 

AOD relies on the concept that solar radiation is modified by aerosols as it travels 

through the atmosphere.  

2.2. Ground and Satellite Based Instruments  

There are two major types of instruments that collect aerosol related data: 1) 

satellite instruments, such as MODIS and MISR [11], POLDER [12], TOMS [13], 

SeWiFS [14], AVHRR/2 [15], and CALIPSO [16]; and 2) ground-based instruments, 

represented by AERONET [17]. The MODerate resolution Imaging Spectrometer 

(MODIS) is an instrument aboard NASA Terra and Aqua satellites that are part of the 

NASA’s coordinated fleet of satellites often referred to as Earth Observation System’s 

(EOS) [18]. Terra’s orbit is descending (southward) the equator observing the location 
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around 10:30 AM local time. Aqua’s orbit is ascending (northward) over the equator 

observing the location around 1:30 PM local time. MODIS measures radiation in the 

spectrum region from 0.41 μm to 14.235 μm [18]. The AErosol RObotic NETwork 

(AERONET) [17] is a federation of more than 200 operational sun/sky radiometers 

located at various places over the globe. Figure 2.1 shows that AERONET instruments 

are relatively dense over industrialized regions, while they are sparse elsewhere; oceans 

are severely underrepresented, but this is not a problem because aerosol predictions over 

oceans are of much higher quality than over land. Satellite instruments provide global 

coverage with high spatial resolution, have relatively low temporal resolution, and allow 

for moderately accurate AOD predictions. Ground-based instruments have limited spatial 

 

Figure 2.1. Global distribution of AERONET sites. 
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coverage, provide relatively large temporal resolution (few measurements per hour), but 

allow for highly accurate predictions. As a result, AERONET predictions are typically 

treated as ground-truth and used to validate quality of satellite-based predictions.  

 To illustrate the difference in coverage and resolution between ground-based and 

satellite-based instruments, Figure 2.2 shows AOD predictions of MODIS aboard Terra 

satellite and AERONET over the continental USA on September 9
th

, 2005. AOD 

predictions from 12 active AERONET sites are shown as blue circles. Terra orbit shifts in 

space each day and the cycle is repeated every 16 days. In Figure 2.2 Terra satellite 

passed over the US three times. Red dots correspond to AOD predictions from MODIS 

who observes the Earth in tracks (swaths) 2,330 km wide. With its large swath MODIS 

observes every location daily. Each red pixel is of size 10 × 10 km
2
. However, there are 

  

Figure 2.2. Coverage map of satellite and ground based instruments. Red dots – satellite 

instrument MODIS; blue circles – ground based instrument AERONET. 
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many holes within each red track with missing predictions caused by presence of clouds 

or unfavorable topography or land cover. 

Figure 2.2 describes a typical satellite instrument which measures the incoming 

Sun’s electromagnetic radiation. As it can be seen, the solar radiation interacts with the 

atmosphere, the Earth’s surface, and again with the atmosphere along its path to the 

satellite instrument. To predict AOD using satellite observations, one needs to accurately 

determine the exact amount of radiance reflected from the atmosphere (Path 2 in Figure 

2.3) as it conveys information directly related to AOD. In this case, radiance reflected 

 
 

Figure 2.3. Physics of remote sensing of aerosols. 
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from the surface (Paths 1, 3 and 4 in Figure 2.3) is considered as noise. The radiance 

observed by the instrument depends on properties of atmosphere as well as surface. 

Therefore, predicting the AOD is a highly non-linear and noisy problem. Accuracy of 

satellite based AOD prediction is one of the major limiting factors influencing climate 

change studies [11].  

2.3. Domain-driven AOD Predictors 

Most operational aerosol prediction algorithms are constructed as inverse 

operators of high-dimensional non-linear functions derived from forward-simulation 

models according to the domain knowledge of aerosol physical properties. Operational 

algorithms used to predict AOD from MODIS observations are based on matching the 

atmospheric component of the observed reflected radiation to the simulated values stored 

in lookup tables. The atmospheric component is obtained by removing the effect of the 

surface and is dominantly influenced by aerosol optical properties. Since aerosol 

properties and abundance change through time and over space, using a single model 

would not be able to fully describe the aerosol optical properties over a global scale. 

Recently developed operational AOD prediction algorithm, called C005, utilizes domain 

knowledge for spatio-temporal partitioning of the Earth. Figure 2.4 represents spatial 

partitioning of the globe over the four seasons [18]. For each spatio-temporal partition, 

C005 consults the look-up table constructed by forward simulations of the physical model 

of aerosol optical properties. For each component aerosol, the corresponding radiative 

properties are computed using wavelength, illumination, and view geometry information. 

The results are recorded in a look-up table. By using a modified linear mixing theory, the 
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radiative properties of a mixture are calculated during the prediction process. These 

simulated data are then compared to actual observations for the appropriate scene type 

(land or ocean). According to a set of goodness-of-fit criteria based on the domain 

knowledge, the matched aerosol model in the look-up table is used for AOD 

computation. The simplified flow of C005 algorithm is summarized in Table 2.1 [18].  

  
                                   a)                                                                      b) 

 

   
                                   c)                                                                      d) 

 

Figure 2.4. Domain based global spatio-temporal partitioning of dominant “fine” 

aerosol properties. Blue – absorbing; red – non absorbing; white – neutral.  

a) December, January, February; b) March, April, May; c) June, July, August; d) 

September, October, November. 
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Table 2.1. Domain based C005 AOD prediction algorithm. 

 

1. Lookup tables: one for “coarse” and three for “fine” aerosols (absorbing, 

non-absorbing and neutral). Tables contain the amount of multispectral 

radiances Ra reflected from the atmosphere that satellite would observe. Ra at 

0.44, 0.66 and 2.1μm were obtained by forward-simulations on seven discrete 

values of AOD (0, 0.25, 0.5, 1, 2, 3, 5), nine solar zenith angles, sixteen sensor 

zenith and relative azimuth angles. 

2. Inputs: multispectral satellite observations Rsat , view angles, elevation, 

spatio-temporal coordinates. 

3. AOD prediction 

3.1. Determine fine aerosol model based on spatio-temporal coordinates. 

3.2. Interpolate lookup tables to observed geometry (eliminates dependence 

on geometry, Ra(AOD) becomes function of  AOD) 

3.3. For each discrete AOD find the amount of surface reflection at 2.1μm (S 

and T are parameters obtained during forward simulation) 

Rs2.1(AOD) = (Ra2.1(AOD) - Rsat2.1) / (S2.1 ∙ (Ra2.1(AOD) - Rsat2.1) - T2.1) 

3.4. Determine surface reflectance at 0.44 and 0.660μm (coefficients C 

depend on observation) 

Rs0.66(AOD) = C1 ∙ Rs2.1(AOD) + C2 

Rs0.44(AOD) = C3 ∙ Rs0.66(AOD) + C4 

3.5. For each discrete AOD an both models (fine and coarse) add surface 

reflectance to reflectance Ra. at 0.44, 0.66 and 2.1μm 

R(AOD) = Ra(AOD) + T ∙ Rs(AOD) / (1-S ∙ Rs(AOD))  

3.6. For each discrete fine/(fine+coarse) ratio η = -0.1, 0, 0.1, …1.1 

Rtotal(AOD) = η ∙ Rfine(AOD) + (1 - η) ∙ Rcoarse(AOD) 

3.7. Interpolate Rsat at 0.44 μm and find AOD  (R - linear interpolation 

between reflectance; AOD - logarithmic interpolation between optical 

depths). Interpolations of Rsat for each η give thirteen AOD(η). 

3.8. Interpolate AOD(η) and find Rest0.66(η) at 0. 66 μm. Difference between 

Rest0.66(η) and Rsat0.66 represents fitting error. 

4. OUTPUT: AOD that corresponds to minimal fitting error. 
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Potential drawbacks of deterministic prediction methods include 1) high 

computational cost due to inversion of nonlinear forward models; 2) slow development 

due to manual construction of the postulated physical models; 3) difficulties in describing 

complex radiance-aerosol relationships in all realistic scenarios; and 4) inaccuracies that 

are due both to the instrument limitations and imperfections in the prediction algorithms. 

2.4. Data Fusion 

Given a data set that consists of satellite observations and AERONET AOD 

measurements, a regression model can be trained to use satellite observations as inputs 

and predict the labels which are AERONET AODs. For that reason, satellite observations 

need to be collocated and merged with AERONET measurements. In this study we 

consider data from MODIS, an instrument aboard NASA’s Terra and Aqua satellites.  

MODIS has high spatial resolution (pixel is as small as 250 × 250 m
2
) and 

achieves global coverage daily. On the other hand, AERONET sites, situated at fixed 

geographical locations, acquire data at intervals of 15 min on average. This gives rise to 

the need for both spatial and temporal data fusion (Figure 2.5). The fusion method 

involves aggregating MODIS pixels into blocks of size 50 × 50 km
2
 and spatially 

collocating them with an AERONET site. The MODIS observations are said to be 

temporally collocated with the corresponding AERONET AOD predictions if there is a 

valid AERONET AOD prediction within 30 minutes of the satellite overpass. The data 

collocated in this way can be obtained from the official MODIS website of NASA [19]. 
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We extracted satellite-based observations, by consulting inputs to the MODIS 

operational prediction algorithm. The radiances at four wavelengths were taken from the 

MODIS range 0.44–2.1 μm, as these are sufficient to describe aerosol properties. We 

used average and standard deviation of radiances within 50 × 50 km
2
 as inputs. We also 

collected solar and sensor angles and surface elevation.  

 
 

Figure 2.5. Spatio-temporal collocation of MODIS and AERONET data. A is an 

AERONET site with AOD predicted within a short time before and after the satellite 

overpass (circle dots). The square regions are MODIS observations in a proximity of site 

A at the satellite overpass time. 
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Deterministic algorithm predicts AOD at 0.55 μm. Since AERONET instruments 

do not provide AOD value at that wavelength, we performed linear interpolation in the 

log scale of AERONET AOD at 0.44 μm and 0.66 μm to get AOD at 0.550 μm [18]. 

2.5. Evaluation Measures 

To demonstrate the need for multiple evaluation measures let us analyze the 

accuracy of currently operational NASA’s MODIS prediction algorithm C005 [18]. A 

scatter plot of C005 AOD prediction vs. ground based AOD prediction in period of three 

years from 2005 to 2007 over whole globe is presented in Figure 2.6. Solid line 

represents the perfect prediction, while dashed lines represent boundaries of an area 

within which predictions are acceptable to domain scientists. Large absolute errors are 

more tolerable when predicting large AOD than when predicting small AOD. Therefore, 

a fraction of data points inside the bounded area (FRAC) is a suitable accuracy measure. 

Mean squared error (MSE) measure is also used for AOD prediction, but it is not as 

informative because 1) prediction error increases with AOD, 2) distribution of AOD is 

skewed towards small values, and 3) there are many outliers. In addition to FRAC and 

MSE, domain scientists are also interested in the relative squared error that considers 

larger absolute errors more tolerable when predicting large AOD than when predicting 

small AOD. 
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Given vector t = [t1, t2, …, tN]
T
 of N true output values (i.e. true AOD values) and 

vector y = [y1, y2, …, yN]
T
 of the corresponding predictions, the standard mean squared 

error (MSE) is defined as 

  



N

i

ii ty
N

MSE
1

21
. (2.1) 

A closely related to MSE is root mean square error (RMSE) defined as  

 
 

Figure 2.6. Scatter plot of predicted vs. true AOD. Solid line – ideal predictions. 

Dashed lines - boundaries of acceptable predictions. 
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  
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 (2.2) 

RMSE is in the same units as the data while MSE is in square units of data. RMSE may 

give better understanding of errors than MSE. 

The coefficient of determination (R
2
) is defined as  
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where t  represents the mean value of vector t. R
2
 value describes fraction of the variance 

that the predictor successfully explains. The highest R
2
 is 1, while R

2
 of the model that 

simply predicts the output variable mean is 0. R
2
 of some poor predictors can even be 

negative.  

Another related measure, which is insensitive to the correctable bias, is 

correlation coefficient (CORR) 
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where y  represents the mean of vector y. 

We also consider several domain-specific measures. Geoscientists showed both 

theoretically and empirically that, taking into consideration the physical constraints of 

remote sensing of aerosols, the desired absolute AOD prediction error should be between 

0.05 and 0.1 for small AOD and that it could increase to 15-20% × AOD for large AOD 

[18]. Thus, the AOD prediction is considered successful if the absolute error is 

 iii tty 15.005.0  . (2.5) 

We may now define the fraction of successful predictions (FRAC) as  
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 %100
N

I
FRAC , (2.6) 

where I is the number of predictions that satisfy relation (2.5).  

Domain specific relative squared error (RSE) is defined as 

 


















N

i i

ii

t

ty

N
RSE

1

2

15.005.0

1
. (2.7) 

RSE values less than 1 indicate that AOD predictions are satisfactory. The closer RSE is 

to 0 the better performance of a predictor is. A related measure of accuracy is relative 

coefficient of determination (Rr
2
) defined as 
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where   iiir wtwt / , 2)15.005.0(  ii tw , represents the weighted mean of vector 

t. Rr
2
 is derived according to general definition of coefficient of determination [20]. The 

highest Rr
2
 is 1, while Rr

2
 of the model that predicts the output weighted mean is 0. 

Let us analyze the accuracy of the operational AOD prediction algorithm called 

C005 whose scatter plot is presented in Figure 2.6. The values of four different accuracies 

are shown in Table 2.2. C005 has an excellent performance based on CORR. However, R
2
 

tells us that there is a significant portion of variance which C005 was unable to explain. 

Table 2.2. C005 Vs AERONET prediction accuracy. 

 

Model R
2 

CORR Rr
2
 FRAC 

C005 0.70 0.87 0.28 64.8% 
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Furthermore, domain specific Rr
2
 accuracy is small which indicates lower than desired 

accuracy. Finally, FRAC measure shows that more than 35% of predictions are of 

insufficient accuracy.
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CHAPTER 3 

UNSTRUCTURED DATA-DRIVEN PREDICTORS 

3.1. Background 

A data mining approach for regression is based on learning relationships between 

inputs and the output variable. In the standard regression setting we are given a data set 

with N training examples, D = {(xi, yi), i = 1…N}, where xi  X  R
M

 is an M 

dimensional vector of inputs and y  R is a real-valued output variable. The objective of 

regression is to learn a non-linear mapping f from training data D that predicts the output 

variable y as accurately as possible given an input vector x. Typically the following data-

generating model is assumed 

 ),0(~,)( 2  xfy , (3.1) 

where ε is Gaussian additive noise with constant variance 2
. In AOD prediction 

application inputs x are multivariate observations collected from a satellite instrument 

spatio-temporally collocated with the corresponding ground-based AERONET AOD 

values y.  

Neural networks are often a regression model of choice in data-driven prediction 

of atmospheric properties [21], [22]. Neural networks have been trained to predict 

AERONET AOD over continental US [23] and whole globe [3], [5] using inputs derived 
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from satellite data. Comparing to the domain-based AOD predictions, neural network 

AOD predictions were significantly more accurate. 

In following sections we present methods for solving specific problems in AOD 

prediction application. 

3.2. Prediction across Multiple Accuracy Measures 

3.2.1. Introduction 

Ideally, one would like to have a predictor that provides good accuracy with 

respect to multiple accuracy measures. The complication is that predictors which perform 

well on one measure may not perform well on other measures. An important challenge is 

to train a predictor where the objective is not optimal performance on a single measure, 

but robust performance across several measures. 

To construct a model that is accurate with respect to FRAC, MSE and relative 

squared error measures defined in Section 2.5, we propose to train an ensemble of neural 

networks, each with a different relative error measure, and to combine their predictions. 

We explored different methods for combining ensemble predictions: 1) average of 

ensemble outputs, 2) a neural network which takes ensemble outputs and provides final 

AOD prediction and 3) weighted average of ensemble outputs according to a gating 

neural network that approximates probability of large AOD. Proposed predictors were 

compared to neural network models optimized for a single accuracy measure as well as to 

the operational MODIS AOD prediction algorithm C005. 
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3.2.2.  Adaptive Cost Function 

Neural networks are typically trained by minimizing MSE. This kind of cost 

function treats all errors equally regardless of the output value. Earth scientists prefer 

small relative errors rather than small absolute errors. Hence, MSE function is not the 

most appropriate cost function for this application. As a more general choice we 

introduce a function defined as the relative error (RELa,b) between predicted and ground 

truth AOD 
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Figure 3.1. Architecture of the proposed two-stage ensemble for AOD prediction. 
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where a and b are positive user defined parameters. Here, the level of penalization of 

prediction errors can be controlled by tuning parameters a and b. Note that REL1,0 is 

equivalent to MSE while REL0.05,0.15 is equal to RSE.  

We employ RELa,b as a cost function for training neural networks. When a is 

small, bti is dominant and so the emphasis is on reducing the error of predicting small 

AOD. On the other hand, when a is large, errors for small and large AOD have similar 

importance. Sensitivity of a neural network optimization to ti also depends on parameter 

b – for large b the network becomes more sensitive to the errors made when predicting 

small AOD. 

3.2.3.  Ensembles with Adaptive Cost Functions 

Minimization of RELa,b cost function with a = 0.05 and b = 0.15 directly leads to 

the optimization of domain specific measures mentioned in the Section 2.5 - 

maximization of FRAC and minimization of RSE. However, a neural network trained in 

this way would have decreased MSE accuracy. We are interested in construction of a 

model that is accurate with respect to all accuracy measures.  

REL0.05,0.15-optimized neural networks will be more accurate when AOD is small, 

while MSE-optimized networks will work better when AOD is large. However, the 

problem arises because it is not known in advance whether the AOD value is small or 

large. If we used the model which has the ability to decide whether AOD value is large or 

small, the accurate prediction of medium level AOD values would still be the problem. 

More specifically, such a model would either overestimate or underestimate AOD 
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depending on whether it was “classified” as large or small, respectively. To solve this 

problem we propose a two-stage approach: 

 

1. Constructing an ensemble of 2K neural networks among which K are specialized 

in predicting small AOD while the remaining K are specialized in predicting large 

AOD. This is achieved by using different values of parameters a and b. Since the 

distribution of AOD is skewed to the small AOD, by design all component 

networks are trained to penalize errors at small AOD. However, intensity of this 

penalization varies per component network.  

2. Combining outputs of the component networks to obtain an integrated AOD 

prediction. 

 

The architecture of the proposed system is illustrated in Figure 3.1. All first-stage 

component networks are trained using the same dataset. OS1, OS2,…, OSK correspond to 

networks specialized for smaller AOD, while OL1, OL2,…, OLK correspond to networks 

specialized for larger AOD. Those outputs are integrated at the second stage using one of 

the following methods. 

3.2.3.1. Integration by Averaging 

Here, the final AOD prediction is obtained as a simple average of OS and OL 

neural networks. We will refer to this approach as AVERAGE. 
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3.2.3.2. Integration by a Meta Neural Network 

Here, predictions of OS and OL neural networks are used to train a second-stage 

meta neural network. The meta neural network is optimized to minimize REL0.05,0.15. We 

will refer to this two stage structure as META. 

3.2.3.3. Integration by a Gating Neural Network 

In the GATING approach, the first-stage networks are linearly combined 

according to the weights assigned by a gating network. A gating neural network is built 

as a binary classifier that predicts whether AOD is small or large. If the gating network 

OG predicts large AOD, (i.e. OG is close to 1) larger weights are assigned to the OL neural 

networks specialized for predicting large AOD. On the other hand, OG close to 0 gives 

larger weights to OS networks. Finally, OG near 0.5 means that large and small AOD are 

equally likely, and weights of OS and OL are equal. To avoid bias sum of all weights is set 

to 1. The final AOD prediction is then computed as 
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where OLi and OSi are outputs of first-stage networks.  

To train the gating network we assign large and small labels to AOD values. 

Domain knowledge suggests that AOD values that are less than 0.15 should be 

considered small [18]. To prevent problems related with training on imbalanced data, 

instead of using 0.15, we use median AOD value as the threshold. AOD values larger 

than threshold are considered as large while the remaining ones are considered as small. 
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3.2.4. Experimental Results and Discussion 

We used collocated data in years 2005-2007. Spatial-temporal cross-validation 

was applied in all experiments. First, we split AERONET locations into 5 subsets Si, i = 

1…5, and create five data sets Di, i = 1…5, each with data points from one of the 

AERONET subsets. Then, we split each Di into Di
56

 containing data from 2005 and 2006 

and Di
7
 containing data from 2007. We reserved one of Di

56
 datasets for testing and 

merged data from the remaining 4 datasets Dj
56

, j  i, for training. The trained predictor 

was tested on 3 datasets 

 

(TEST1) Di
56

 – data collected during 2005 and 2006 at the locations 

unobserved during training; 

(TEST2) {Dj
7
, j  i} – data collected during 2007 at the locations observed 

during 2005 and 2006; 

(TEST3) Di
7
 – data collected during 2007 at the locations unobserved 

during training. 

 

The procedure was repeated five times, for values j = 1…5, and the average accuracy 

over the 5 runs was reported. It is expected that TEST3 is the most challenging for 

prediction. 
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Table 3.1. Satellite-Based Vs. AERONET AOD prediction accuracy on TEST3 

(unobserved locations, unobserved time). 

Model R
2 

CORR Rr
2
 FRAC 

C005 0.65 0.86 0.13 63.9% 

SingleMSE 0.74 0.87 0.40 66.2% 

SingleREL 0.68 0.85 0.55 69.3% 

EnsembleMSE 0.76 0.88 0.45 68.9% 

EnsembleREL 0.67 0.86 0.56 70.6% 

DIFFREG 0.65 0.84 0.07 66.8% 

AVERAGE 0.75 0.88 0.54 70.5% 

META 0.75 0.87 0.50 69.5% 

GATING 0.76 0.88 0.53 70.9% 

 

 

 

Table 3.2. Gating Vs. AERONET AOD accuracy on different test sets: TEST1 – 

unobserved locations, observed time; TEST2 – observed locations, unobserved time; 

TEST3 – unobserved locations, unobserved time. 

Test set R
2 

CORR Rr
2
 FRAC 

TEST1 0.76 0.88 0.55 71.4% 

TEST2 0.79 0.89 0.61 73.5% 

TEST3 0.76 0.88 0.53 70.9% 
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3.2.4.1. Benchmark Methods 

Deterministic algorithm C005. The primary benchmark for comparison with our 

predictors was the most recent version of the MODIS operational algorithm C005.  

Single neural networks. As a baseline data mining algorithm we used single 

neural networks trained to predict AERONET AOD from MODIS observations. Two 

different single neural network models were evaluated. The first network is trained by 

minimizing a standard MSE cost function (SingleMSE), while the second network 

minimized our novel RELa,b measure (SingleREL). Parameters a and b were fixed to a = 

0.05 and b = 0.15.  

Simple ensembles of neural networks. We also compared the proposed methods 

to two ensemble algorithms. Each ensemble consisted of 10 neural networks. Outputs of 

the 10 neural networks were used as inputs to the second-level neural network. In 

EnsembleMSE approach, neural networks were trained using MSE cost function. In 

EnsembleREL the cost function for all networks was REL0.05,0.15.  

Ensemble of networks specialized for low and high AOD. In DIFFREG 

approach K = 5 neural networks were trained using a portion of training data with small 

AOD, while another K networks were trained using data with large AOD. To permit 

smooth transition in input space, overlapping between two training datasets was allowed. 

Small AOD was defined as AOD < threshold+ε while large AOD was defined as 

AOD > thresholdε, where ε was 0.05. All networks were trained to minimize MSE and 

the two sets of networks were integrated using the gating neural network described in 

previous section. 
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3.2.4.2. Results on TEST3 

Ensemble neural networks having 13 inputs, 10 neurons in a single hidden layer, 

and one in the output layer were used in all experiments. Sigmoid activation function was 

used in hidden neurons while the linear activation function was used for the output 

neuron. 

Average accuracies of the proposed AVERAGE, META, and GATING predictors 

and of six benchmark algorithms using R
2
, CORR, Rr

2
, and FRAC measures are reported 

in Table 3.1. These results were obtained on the most challenging TEST3 data. We note 

that averaging of coefficient of determination measure over 5 different cross validation 

experiments might be misleading since those measures depend on standard deviation of a 

particular test set. However, variation of R
2
 in five sets used in these experiments was 

negligible and so we decided to also report average R
2
. Let us look at the results in more 

detail. 

Operational prediction algorithm C005. C005 accuracies are shown in the first 

row of Table 3.1. As discussed in Section 2.5, C005 has an excellent performance based 

on CORR, but R
2
 accuracy reveals that it was not able to explain a large portion of 

variance. Also, domain specific Rr
2
 and FRAC measures indicate that C005 based 

predictions are of insufficient accuracy. 

Single neural networks. SingleMSE and SingleREL accuracies are in rows 2 and 

3 in Table 3.1. Both single neural networks were more accurate in predicting AOD than 

the operational C005 algorithm on all accuracy measures. However, their performance 

was quite different over individual accuracy measures; SingleMSE was more accurate 
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with respect to R
2
, and CORR, while SingleREL was a better choice with respect to Rr

2
 

and FRAC measures. 

Simple ensembles of neural networks. EnsembleMSE and EnsembleREL 

accuracies are listed in rows 4 and 5 of Table 3.1. Both predictors outperformed C005 in 

all accuracy measures. Also, they were more accurate than single neural networks. 

However, neither ensemble achieved consistently high accuracy on all four measures; 

EnsembleMSE achieved better accuracy than EnsembleREL with respect to R
2
 and 

CORR, while EnsembleREL was better according to Rr
2
 and FRAC measures.  

Ensemble of specialized neural networks. DIFFREG accuracies are listed in 

row 6 of Table 3.1. This benchmark method was quite unsuccessful, with accuracies 

below SimpleMSE and just slightly better than C005.  

Ensembles with adaptive cost neural networks. In AVEARGE, META, and 

GATING predictors, five neural networks of the ensemble were specialized for prediction 

of small AOD. This was achieved by using RELa,b cost function with a = 0.05 and b 

changing from b = 0.03 to b = 0.15 in the steps of 0.03. Another five neural networks in 

the ensemble were specialized for prediction of large AOD by using a = 1 and b changing 

from b = 0.03 to b = 0.15 in the steps of 0.03.  

Results for AVERAGE, META and GATING adaptive cost ensembles are 

presented in last 3 rows of Table 3.1. All 3 predictors were robust across all accuracy 

measures. GATING ensemble with a second-level gating neural network was slightly 

more accurate than the alternatives. On standard measures (R
2
 and CORR) GATING was 

as good as the most successful benchmark method on these measures (EnsembleMSE) 

and it had similar accuracy with the best benchmark method EnsembleREL on domain 
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specific measures (Rr
2
 and FRAC). This result shows that it is possible to simultaneously 

achieve high accuracy on disparate measures using a two-level ensemble neural network 

architecture. 

3.2.4.3. Results on TEST1 and TEST2 

Accuracies on TEST1 and TEST2 experiments were fully consistent with TEST3 

results reported at Table 3.1. Our experiments showed that if a certain method was more 

accurate than an alternative method on TEST3, it was most often also more accurate on 

TEST1 and TEST2. In particular, in all three tests GATING method was the most 

accurate over all four measures. The results of GATING method over three types of tests 

are compared in Table 3.2.  

Experiments over three types of tests showed that all methods were most accurate 

when tested on data at unobserved time but over previously seen locations (TEST2). 

Predicting AOD at unseen locations during the same two years (TEST1) was a more 

challenging objective but not as difficult as predicting AOD at unseen locations and in an 

unseen year (TEST3). These results suggest that in our data temporal correlation was 

stronger than spatial correlation, but also that both kinds of correlation could be exploited 

to improve quality of AOD predictions. 
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3.3. Reduction of Ground Based Sensor Sites 

3.3.1. Introduction 

Ground based stations are often located without a rigorous statistical design. 

Decisions are typically based on practical circumstances (e.g. overrepresentation in urban 

regions and industrialized nations) and according to domain experts’ assumptions about 

the importance of specific sites. Furthermore, the total number of sensor sites depends on 

financial constraints. Costs related to equipment, location, and the availability of trained 

staff often dictate the number of sites and their global distribution. As shown in Figure 

2.1, AERONET sites are not uniformly distributed over the globe. The highest density is 

within the U.S. and Europe. On the other hand, continental Asia, Africa, and Australia are 

poorly covered. Given these circumstances, the aims are to evaluate performance of the 

current design of AERONET sensor network and to apply data mining techniques to 

assist in future modifications of the sensor network. 

A specific scenario considered assumes that there is a pending budget cut for 

maintenance of the existing AERONET sites. The objective is to shut down a fraction of 

the AERONET sites while making sure that the utility of the remaining sites is as high as 

possible. We make a simplifying assumption that operational costs for each AERONET 

site around the globe are equal. 

Common to most selection techniques originating from the spatial statistics is a 

tendency to overlook the time dimension of data collected by the sensor network. For the 

problem of selecting a subset of data collection sites, we consider series of observations 

and propose to optimize AERONET sensor selection based on the concept of prediction 
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accuracy. The intuition behind our proposal is straightforward. Each AERONET site 

provides a time series which can be used in training a regression model to predict future 

AOD. Sites that can be removed are those whose observations are best predicted by the 

model built on data from the remaining sites. The performance of the proposed approach 

is compared with the random site selection and with the classical selection principle of 

selecting spatially dispersed sites. 

3.3.2. Determining an Appropriate Output Transformation 

The assumption of constant variance is a basic requirement in constructing a 

traditional model defined in Section 3.1. In many cases there is strong reason to suspect 

that the error variance is not constant. Variance stabilizing transformations of output 

variable are often useful in these cases [24]. The strength of transformation depends on 

its curvature. Square root and logarithmic transformations are popular in practice. In 

square root transformation, a regression model that predicts YZ   is trained and the 

prediction is provided as 2ˆˆ ZY   while in logarithmic transformation )log(YZ   and 

)ˆexp(ˆ ZY  . Square transformation is considered as a relatively mild [24] comparing to 

the logarithmic and is often applied when variance of residuals increases linearly with 

predicted variable. In the experimental section we compared both of them with the 

standard approach that does not transform the output variable. 
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3.3.3. Selection of Informative Sensor Sites 

Let us assume that a mission objective is to close down a fraction (33% or 66% in 

our experiments) of AERONET sites as to reduce ground-based data collection costs. 

Given such a budget cut situation, question of our interest is how to select L (<K) of the 

currently available K AERONET sites such that this subset captures as much information 

as possible compared to the entire set S of AERONET sites. The goodness criterion for a 

selection is accuracy of a regression model built on labeled data from the retained sites.  

Intuitively, it appears that the selection of sites that are spatially dispersed would 

be a better choice than a random elimination. Such a spatial selection might be aided by 

domain experts - they would prefer to keep representative sites around the globe that 

cover a variety of meteorological and environmental conditions. However, regardless of 

the experts’ effort, spatial representatives selected this way may not be optimal with 

respect to the quality of the resulting regression model f.  

The sites selected by a domain expert are likely to be spatially diverse. To 

approximate the decision-making process of domain experts, for benchmarking purposes 

we use the spatial selection strategy based on spatial distance among sites. In the first step 

two sites that are closest to each other are determined. One of them whose removal better 

preserves global coverage is excluded from the set S. To decide which one is going to be 

removed, we are consulting the nearest neighbors of those two sites. The site which has 

the closer second nearest neighbor is removed. This procedure is iteratively repeated until 

the desired number of L sites is reached.  

Our proposed strategy for selection of L sites out of K is accuracy-based. At the 

first step, the regression model f is trained on the data from the entire set of AERONET 
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sites. At successive steps, every location is taken out and a model is built on data from 

the remaining sites. By Ŷ we denote AOD prediction obtained by a model trained on 

whole dataset and by Ŷ
(i)

 AOD prediction obtained by a model trained on S\Si sites that 

exclude examples from site Si. The intuition is that if AODs from site Si can be estimated 

with a model which has not seen that site, then site Si can be considered as redundant and 

therefore can be removed. To quantitatively define redundancy, we measure the 

difference in AOD prediction accuracy between the model trained on the whole dataset 

and model trained on a dataset without examples from site Si. The difference in prediction 

accuracy is measured at data from site Si as a sum of squared differences in predicted 

AODs computed over all points from site Si 

  
t

i

tii yySSE 2)( )ˆˆ( . (3.4) 

A site that is removed is the one with the smallest SSE as its AOD is the easiest to 

estimate given data from the remaining sites. Once a site is removed the proposed 

procedure is repeated. It continues by comparing the reduced models to the model built 

on the entire data, where data from the most recently excluded site are used for 

calculating SSE based loss. 

3.3.4. Experimental Results and Discussion 

Collocated data are distributed over entire globe at 217 AERONET sites during 

years 2005 and 2006. To assess efficiency of the proposed methods, we performed 

training on 2005 data and used 2006 data for testing. However, during that time period 

measurements from AERONET sites were not uniformly distributed, neither temporally 
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or spatially. There were many more points from June to August than from January to 

May. Also, at some cloudy locations it was not possible to measure AOD and those 

locations contained a small number of data points. To maintain uniformity of the training 

dataset, in each training session we randomly selected 30 sites in year 2005 as the initial 

set S. Only 70 randomly chosen observations from each of those AERONET site were 

retained and remaining ones were removed. Finally, the training set consisted of 2,100 

data points distributed over 30 AERONET sites each containing 70 collocated 

observations. As the test set, we randomly sampled 50 points from each site in 2006. 

Sites with less than 50 valid observations were excluded. The constructed test set 

contained 3,500 data points distributed over 70 AERONET sites each having 50 

collocated observations. It is worth mentioning that among 70 test sites, 30 were the same 

as in the training set, while 40 sites were not seen during training. To evaluate the 

proposed approach, we report R
2
 accuracy on the test set. 

3.3.4.1. Determining an Appropriate AOD Transformation 

To validate the assumption that error variance is not constant, we performed the 

following experiment. Thirty sites in 2005 were chosen randomly. Three regression 

models, one with data preprocessed by the square root transformation (NNSQ), one with 

data preprocessed by the log transformation (NNLG) and the other without the 

transformation (NN), were trained on the selected dataset and compared on the test set. 

As a regression model we used a neural network with ten hidden neurons trained to 

optimize standard MSE function. 
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This procedure was repeated ten times for different sets of 30 randomly selected 

sites. We report R
2
 accuracy achieved on the fixed test set covering the 70 sites during 

2006. To estimate sensitivity of constructed models to distribution of the initial 30 sites, 

we report mean, standard deviation, median and minimum and maximum of R
2
 in those 

ten iterations. The results are presented in Table 3.3. These results provide strong 

evidence that the neural networks trained to predict AOD squared root (NNSQ) are more 

accurate than those trained to predict raw AOD (NN) or log-AOD (NNLG). Additionally, 

the presented results reveal that prediction accuracy is sensitive to the choice of the initial 

set of S sites. Although each time the selected 30 sites were globally distributed covering 

all parts of the world, in some cases accuracy dropped significantly. A possible 

explanation could be that some of those sites have noisy data that negatively influence 

model performance.  

 

Table 3.3. R
2
 statistics on 2006 data for neural network models without (NN) or with log 

(NNLG) or square root (NNSQ) transformed output each built on ten different sets of 30 

randomly selected sites using 2005 data. 

Model 
R

2
 

Mean
 

Std Median Min Max 

NN 0.659 0.086 0.671 0.459 0.742 

NNLG 0.664 0.091 0.703 0.444 0.721 

NNSQ 0.746 0.042 0.754 0.644 0.789 
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a) 

 

 
b) 

 

 
c) 

  

Figure 3.2. Variance stabilizing effect of output transformations. Error variance as a 

function of a) predictions without transformation b) predictions with log transformation 

c) predictions with square root transformation. 
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To better illustrate the effect of the square root transformation, we show variance 

of prediction errors as a function of predictions in Figure 3.2. As can be seen, if the 

transformation is not used, the error variance is large when large AODs are predicted. On 

the other hand, when the strong log-transformation is used, the error variance is large 

when small AODs are predicted. Finally, when square root transformation is used, error 

variance is practically constant and does not depend on the value of predicted AOD. 

Thus, minimizing MSE assuming constant variance (as in (3.1)) is justified for the 

square-root transformed AOD. 

3.3.4.2. Selection of Informative Sites 

We are considering a scenario when current operational AERONET sites have to 

be reduced by 33% or 66%. In all experiments, we started from a set of 30 AERONET 

sites and applied the proposed method and the two alternatives (spatial and random 

selection) to identify a subset of 20 or 10 AERONET sites to be retained. The NNSQ 

models were trained on labeled data from 2005. To test the goodness of the identified 

subset we tested the NNSQ models on 70 sites from 2006 (as described in the beginning 

of Section 3.3.4.).  

The R
2 

results averaged over 10 repetitions are presented in Figure 3.3a. We 

noticed that in some cases R
2
 drops significantly when spatial and random selection 

strategies are used. Therefore, we also report median values of R
2
 after 10 repetitions 

(Figure 3.3b). In our experiments, the proposed accuracy-based selection achieved 

consistently better results than the alternatives. Also, accuracy of the proposed site 

reduction method did not change much even after removing 20 of the 30 AERONET 
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a) 

 

 
b) 

Figure 3.3. R
2
 in 10 iterations for different initial sets of 30 AERONET sites a) mean, b) 

median. 
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sites. Interestingly, on average, the spatial selection strategy performed slightly worse 

than the random selection strategy. 

Let us now consider the effect of the proposed sites reduction method on 

predictions at the site ‘BSRN_BAO_Boulder’ (40ºN, -105ºW). Sensor platform is on the 

rooftop of the building which is located on the high plains about 15 miles east of Boulder, 

CO, USA. Surrounding farmers’ fields make satellite AOD retrieval easier in some yearly 

seasons. Satellite predictions are more accurate over green regions which are often 

considered as dark [18] and therefore do not have an influence on observed radiation. 

Time series of AOD predictions at this site for a single placement of 30 training sites are 

presented in Figure 3.4. NNSQ model trained on a reduced dataset was able to predict 

 
 

Figure 3.4. AOD predictions at site ‘BSRN_BAO_Boulder’ by NNSQ models trained 

on entire and reduced dataset.  
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ground-truth AOD slightly less accurately than the model trained on data from all 30 

sites. In terms of R
2
 accuracy, NNSQ trained on a reduced dataset achieved R

2
 = 0.64 

while NNSQ trained on non-reduced dataset achieved R
2
 = 0.72 at the site 

‘BSRN_BAO_Boulder’. The conclusion is that accuracy-based reduction retains most of 

the accuracy of the model built on non-reduced dataset. 

In Figure 3.5 and Figure 3.6 we illustrate site reduction for one initial placement 

of 30 AERONET sites. Spatial-based selection of AERONET sites nicely covers whole 

globe but it is not necessarily optimal for data-driven AOD prediction problem as we 

already noticed (Figure 3.3). On the other hand, some regions of the world were 

underrepresented when an accuracy-based principle was applied (Figure 3.6b). The 

accuracy was retained to a certain extent although no site from East US or from middle 

Asia was selected. 
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a) 

 

 
b) 

 

 
c) 

 Figure 3.5. a) Initial set of 30 AERONET sites b) spatial-based reduction to 20 sites c) 

accuracy-based reduction to 20 sites.  
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a) 

 

 
b) 

 

Figure 3.6. a) spatial-based reduction to 10 sites b) accuracy-based reduction to 10 sites.  
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3.4. Spatio-temporal Partitioning for Improving Prediction Accuracy 

3.4.1. Introduction 

In different spatio-temporal regions relations among the inputs can be different. 

Therefore, a single global predictor constructed using the entire dataset could be biased 

toward the dominant distribution while being less accurate on data points that do not 

follow the dominant distribution. If both space and time are partitioned in such a way that 

the observed inputs in each spatio-temporal subset have the same distribution, training 

specialized predictors on the identified subsets can be beneficial. Applying those local 

predictors on the corresponding spatio-temporal partitions would increase overall 

prediction accuracy as compared to the accuracy achieved by applying a single predictor 

on the entire dataset.  

When the data generating process changes as a function of time and location, the 

same values of observed inputs could result in very different output values at various 

spatial-temporal regions. Therefore, proximity in the input space does not necessarily 

mean the data points should belong to the same spatio-temporal partition. In this 

situation, unsupervised clustering algorithms are not suitable for discovering spatio-

temporal partitions. 

The method for spatio-temporal partitioning explored in this Section is inspired 

by competition-based algorithm for learning from spatial data generated by a mixture of 

distributions [25]. In this approach multiple regression models are learned on disjoint 

spatial partitions followed by repartitioning based on competition between models where 

a data point is assigned to the model which has the highest prediction accuracy on it. The 
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competition process is iterated as long as it leads to the accuracy gains. The method was 

successfully applied for discovering homogeneous regions in heterogeneous spatial data. 

A similar idea was successfully exploited for improving accuracy of nonstationary time 

series prediction through competition based on time partitioning [26]. The novel 

challenge addressed in this Section is how to deal with the distributional change that 

occurs over both spatial and temporal dimension. 

The hypothesis we investigated is that, due to the variability of aerosol, AOD 

predictors specialized to specific spatio-temporal regions should result in the increased 

AOD prediction accuracy. We argue that the existing domain-based spatio-temporal 

partitioning used in C005 algorithm is not necessarily the best choice because of the 

fundamental differences in the nature of data-driven and domain-based AOD prediction 

approaches. For example, while the domain-based algorithms such as C005 eliminate 

surface effects from the satellite observations as a preprocessing step, data-driven 

algorithms use the observations directly as the inputs. The goal is to develop a method 

that automatically discovers a successful spatial-temporal partitioning for AOD 

prediction through the competition of regression models as an alternative to the domain 

based partitioning of space and time. 

3.4.2. Statistical Foundation 

When the data generating process changes over time and space, prediction 

accuracy can be significantly improved by learning a number of regression models 

specialized for certain spatio-temporal partitions as compared to a single (global) model 

learned on whole dataset. Let us assume that a spatio-temporal dataset is a union of K 
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disjoint partitions Pi, i = 1,…,K, where the number of partitions and their spatio-temporal 

locations are not known in advance. The data generating process for Pi can be represented 

as 

 istststist PstNeefy  ),,0(~,)( 2x ,  (3.5) 

where fi is the regression function of partition Pi, xst and est are the input vector and the 

error term of observation at location s and time t. Domains of the observed inputs at 

different partitions generally overlap, which means that the same vector x can produce 

quite different outputs at different partitions.  

Without any prior knowledge about the spatio-temporal partitions, learning a 

global prediction model over the entire dataset would result in learning the global 

regression function defined as 

 ])([(minarg)( 2

|
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*
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for any given x. The MSE of the global prediction model h
*
 on the data from partition Pi, 

msei, can be expressed as [25] 
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 (3.7) 

over the domain Di that corresponds to the partition Pi. The term noisei corresponds to an 

unavoidable error which would be obtained by a local predictor specialized for partition 

Pi and the term biasi corresponds to the bias of the global prediction model on the data 
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from partition Pi. If spatio-temporal partitions were already known, the biasi from the 

previous equation would be eliminated by learning a local model on each partition. 

3.4.3. Competition Based Spatio-temporal Partitioning 

As we showed in Section 3.4.2, introducing local prediction models can improve 

prediction accuracy when data generating process is heterogeneous. We propose a 

method that discovers the appropriate spatio-temporal partitions.  

We first describe an algorithm by ignoring information about location and time of 

data points. The algorithm relies on the competition among specialized predictors for 

each point in the dataset D. It starts by randomly dividing the entire dataset into K 

disjoint subsets Di, i = 1…K, where K is the number of the specialized prediction models. 

A specialized predictor Mi is trained on each subset Di, i = 1…K. The resulting predictors 

are competing for points from dataset D such that all the points that are best predicted 

with predictor Mi are assigned to subset Di. The competition procedure is repeated until 

convergence. The described competition algorithm is noise-sensitive because it can easily 

lead to assignment of points near in space and time to different subsets. This is clearly an 

undesirable behavior and we need a mechanism that prevents this from happening. 

Our solution is to group the data into spatio-temporal cells that contain multiple 

data points close in space and time and to run the competition procedure over the cells 

instead of the individual points. Similarly to the original algorithm, the cell is assigned to 

the prediction model that achieves the smallest average prediction error over the data 

points in the cell. After reassigning all cells, competition procedure is iteratively repeated 

until there is no improvement in prediction accuracy. 
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The choice of the cell size is important because the small cells are sensitive to 

noise while the large cells could be heterogeneous. In the first case, the partitioning 

procedure would be unstable and the resulting specialized predictors would be just the 

artifacts of the procedure. In the second case, the partitioning would be too constrained 

and would result in highly similar specialized predictors. To achieve the best possible 

partitioning several choices for time period length should be considered.  

 
 

 

Figure 3.7. The simple example of partitioning procedure. Top picture – three spatial 

locations, data points are assigned to two models gray and white. Bottom picture – 

reassigned models. 
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Let us demonstrate on a simple example how the proposed method operates. In 

the Figure 3.7, in the top picture, all spatio-temporal data points from three locations are 

assigned to one of the two models – ‘gray’ or ‘white’. In our example entire time interval 

is divided into three parts. Therefore, there are nine spatio-temporal cells. Models are 

trained and predictions for all data points are obtained. Data points in a cell are assigned 

to the model achieving better accuracy. The resulting partitioning results in the 

temporally more homogeneous partitions. The competition procedure iterates until stable 

solution is found. 

3.4.4. Experimental Results and Discussion 

The primary benchmark AOD predictor for comparison with our approach is the 

most recent version of the MODIS operational algorithm, C005, as validation studies 

show that version C005 is significantly more accurate than the previous version C004 

[18]. However, at the time of study, C005 predictions were available only for the first 

eight months of 2005. In order to give a more complete evaluation of our partitioning 

algorithm, we compared our algorithm with C004 predictions that were available during 

the longer period, between April 2003 and November 2005. The C004 data set consisted 

of 23,903 data points containing MODIS observations, C004 AOD predictions, and 

collocated AERONET AOD measurements from 129 AERONET sites over the globe. 

Neural networks were trained on 16,328 collocated data points, collected between 

April 2003 and November 2004. The remaining 7,575 data points, from December 2004 

to November 2005, were used as test set for accuracy estimation. It should be noted that 

the test data covered the consecutive four seasons that were not seen during training. By 
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dividing dataset in this way, we avoided the problem of memorizing training data, which 

would have occurred if the training-test split was performed randomly. The memorization 

would occur because of the temporal correlation in AOD values that can remain 

significant over periods of up to a few weeks. 

Neural networks with one hidden layer and one neuron in the output layer were 

used throughout all experiments. The sigmoid activation function has been used for all 

hidden neurons while the linear activation function was used for the output neuron. The 

neural networks were trained using MSE function as a cost function. 

3.4.4.1. Experiments on Predictors Specialized for C005 Spatio-temporal Partitions 

C005 utilizes domain knowledge for spatio-temporal partitioning of the Earth. For 

each spatio-temporal partition, C005 consults the look-up table constructed by forward 

simulations of the physical model of aerosol optical properties.  

C005 defines four aerosol models corresponding to prevalent atmospheric 

conditions over several characteristic spatio-temporal regions of Earth (Figure 2.4) [18]. 

The partitioning was obtained by studying observations from AERONET ground-based 

instruments and combining this information with the climatology domain knowledge. 

One of those four models is invariant through time and can be applied globally while the 

other three models, used to adjust the global model, depend on the location and time. 

When defining aerosol models as a function of location and time, the assumption was that 
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a) December, January, February 

 
b) March, April, May 

 
c) June, July, August 

 
d) September, October, November 

 

Figure 3.8. AERONET sites assigned to the spatio-temporal models of operational C005 

AOD prediction algorithm. Three models are represented by white, gray and black colors. 
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aerosol properties would not change a lot during a three-month season. For each 

AERONET site and each season, the percentage of data points best described by each of 

three models was determined. This was used to assign the dominant aerosol type to each 

AERONET site during each season. The resulting data partitioning used in C005 divides 

the world into three spatial-temporal regions that differ based on the location and the time 

of the year as summarized at Figure 2.4 and Figure 3.8. 

To test whether spatio-temporal partitions defined in operational C005 algorithm 

could be used in data-driven AOD prediction approach, we trained neural networks 

specialized for the three regions presented in Figure 3.8. Each of the three neural 

networks was trained on data belonging to one of the partitions (white, gray, or black) 

depicted in Figure 3.8. We used data between April 2003 and November 2004 for 

training, while the test set was taken between December 2004 and November 2005.  

The results are presented in Table 3.4. While the performance achieved was better 

than the performance of C004 algorithm, considering all accuracy measures, it was 

surprisingly worse than the performance of a single neural network predictor. 

3.4.4.2. Experiments with Predictors Trained on Spatio-temporal Partitions 

Discovered by Competition 

The previous results indicate that domain-based partitioning is not suitable for 

learning specialized AOD predictors. Instead, we applied the proposed competition 

method to find spatio-temporal partitions. 

To run the procedure, we have to choose an appropriate size of spatio-temporal 

cells. Each cell is defined as a time interval for a specific AERONET site. We evaluated 
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several cell size choices, empirically. The largest temporal size we considered was T = 12 

months as the aerosol concentration is periodic with yearly cycles. In addition, we 

considered smaller temporal sizes of T = 6, T = 4 and T = 1 months. Cell temporal size is 

fixed during the competition procedure. The competition starts with K = 2 models. In the 

first step, the entire dataset is divided randomly into K equal sized subsets. Next, neural 

network predictors were trained on each of the two subsets. Data from each AERONET 

site were partitioned into the consecutive, disjoint temporal cells of size T. Given 

predictions of the competing predictors on all examples within a cell, the cell is assigned 

to the model achieving the smallest prediction error. The competition iterated until a 

stable solution was found. The experiment was repeated for a number of different 

parameter values K and T. Finally, all possible partitioning were evaluated on the 

independent test set and the best one was chosen as the final solution. 

There were several additional issues that had to be addressed. First, we wanted to 

avoid making evaluations of the competing predictors on the training data. Instead of 

training competing neural networks on the complete training data set, we applied 4-cross-

validation procedure. Data from each month were partitioned into 4 weekly intervals; one 

week was used for validation, while the remaining three weeks were merged and used for 

training.  

Second, the cost function for training the neural networks in the competition 

procedure had to be determined. Due to an abundance of outliers in the training data, the 

standard MSE function was not the most appropriate choice because the training 

procedure would be dominated by the outliers and it would be difficult to find a stable 
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solution. To overcome this problem we used REL0.05,0.15 from (3.2) as a cost function. As 

we showed this function is less sensitive to the outliers.  

Third, prediction models compete for the cells based on the prediction error, 

which has to be defined. To avoid the possibility that outliers could dominate the 

competition procedure, we used average REL0.05,0.15 error over the cell to determine the 

winning model. The model that achieves minimal REL0.05,0.15 was considered the winner. 

Finally, the neural network predictors were built on the discovered spatio-temporal 

partitions. Those networks had to be trained using the standard MSE cost function, since 

networks trained with REL0.05,0.15 as a cost function tend to underestimate large AOD 

values. 

Table 3.4. Different predictors Vs. AERONET AOD accuracy. 

Model 
T 

(month)
 MSE R

2
 CORR RSE FRAC 

C004 - 0.034 0.46 0.79 5.36 52% 

NN, Single - 0.021 0.67 0.82 1.95 60% 

NN on C005  - 0.023 0.63 0.80 2.40 61% 

NN, 2 models 12 0.017 0.73 0.85 1.80 65% 

NN, 2 models 6 0.015 0.75 0.87 1.55 68% 

NN, 2 models 3 0.19 0.70 0.84 1.76 64% 

NN, 2 models 1 0.017 0.73 0.85 1.82 65% 

NN, 3 models 12 0.19 0.70 0.84 1.83 65% 

NN, 3 models 6 0.018 0.72 0.85 1.77 67% 

NN, 3 models 3 0.018 0.72 0.85 1.70 66% 

NN, 3 models 1 0.022 0.65 0.82 2.23 67% 
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The competition procedure was applied on the explained training data from 

between April 2003 and November 2004. The learned spatio-temporal partitions were 

evaluated on the test data between December 2004 and November 2005. The results for 

the different K and T values are presented in Table 3.4. 

 
a) 

 
b) 

 

Figure 3.9. AERONET spatio-temporal partitions obtained by competition procedure a)  

two partitions for winter-spring months, b) two partitions for summer-fall months. 
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Based on the results from Table 3.4, we can conclude that the proposed 

competition-based spatio-temporal data partitioning approach resulted in large accuracy 

improvements. The best results were obtained for cell size of six months (T = 6), where 

one interval covered winter-spring months and another summer-fall months, and for 

spatio-temporal partitioning that results in two specialized predictors (K = 2). 

The resulting spatio-temporal partitions are shown in Figure 3.9. From Figure 3.9, 

we can see that during the winter-spring months the whole U.S. was assigned to the same 

partition, while during the summer-fall months some U.S. sites moved to the other 

partition. Also, AERONET sites in Africa did not change their assignment during the 

year. It is interesting to mention that average AOD in the ‘gray’ partition is 0.13 with 

standard deviation 0.12 while average AOD in white partition is 0.29 with standard 

variation 0.35. Although it might appear that the competition procedure discovered 

partitions based on the average AOD values, the standard deviation suggests that the 

underlying process is more complicated.
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CHAPTER 4 

STRUCTURED DATA-DRIVEN PREDICTORS 

4.1. Introduction 

Traditional supervised learning models, like neural networks (NN), are powerful 

tools for learning non-linear mappings. However, such models mainly focus on the 

prediction of a single output and could not exploit relationships that exist between 

multiple outputs. In structured learning, the model learns a mapping f: X
N
→R

N
 to 

simultaneously predict all outputs given all input vectors. For example, let us assume that 

the value of yi is dependent on that of yi−1 and yi+1, as is the case in temporal data. Let us 

also assume that input xi is noisy. A traditional model that uses only information 

contained in xi to predict yi might predict the value for yi to be quite different from those 

of yi-1 and yi+1 because it treats them individually. A structured predictor uses 

dependencies among outputs to take into account that yi is more likely to have value close 

to yi-1 and yi+1 thus improving final predictions. In structured learning we usually have 

some prior knowledge about relationships among the outputs y. Mostly, those 

relationships are application-specific where the dependencies are defined in advance, 

either by domain knowledge or by assumptions, and represented by statistical models. 
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4.2. Related Work 

There has been a rich body of work in spatial statistics that aims to exploit the 

correlation in structured data. Previous studies [27], [28] showed that the Spatial 

AutoRegression model (SAR), a generalization of the linear regression model that 

accounts for spatial autocorrelation, improves classification and prediction accuracy for 

many spatial datasets. An extension of the Gaussian Processes (GP) framework to 

structured outputs was proposed in [29]. In that approach by assuming outputs to be 

linear combinations of latent functions, GP priors are placed over each of the latent 

functions. In geostatistics this approach is known as Linear Model of Coregionalization 

(LMC) [30]. LMC achieves better prediction accuracy over the models that do not 

account for spatial correlation. Twin Gaussian Processes (TGP) [31] is a recently 

proposed structured prediction method that captures not only the interdependencies 

between inputs, as classical GP do, but also the correlations among outputs. TGP was 

successfully applied for recovery of 3D human pose estimation from an image. However, 

original TGP is impractical for large size problems as it requires the inversion of 

covariance matrices. This was overcome by TGPKNN that reduces input set to K nearest 

neighbors of test set.  

Relationships among outputs can be represented by graphical models. The 

advantage of the graphical models is that one can make use of sparseness in the 

interactions between outputs and develop efficient learning and inference algorithms. In 

learning from spatial-temporal data, the Markov Random Fields [32] and the more 

recently proposed Conditional Random Fields (CRF) [33] are among the most popular 

graphical models. Originally, CRF were designed for classification of sequential data 
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[33] and have found many applications in areas such as computer vision [34] and 

computational biology [35]. 

CRF for regression is a less explored topic. The Conditional State Space Model 

(CSSM) [36], an extension of the CRF to a domain with the continuous multivariate 

outputs, was proposed for regression of sequential data. It is an attractive discriminative 

alternative to Linear Dynamic Systems (LDS), a generative model also known as the 

Kalman filter. Unlike LDS, CSSM is an undirected model that makes no independence 

assumptions between outputs, which results in a more flexible modeling framework. 

Continuous CRF (CCRF) [37] is a ranking model that takes into account relations among 

ranks of objects in document retrieval. In [38], a conditional distribution of pixels given a 

noisy input image is modeled using the weighted quadratic factors obtained by 

convolving the image with a set of filters. Feature functions in [38] were specifically 

designed for image de-noising problems and are not readily applicable to regression. 

Most CRF models represent linear relationships between attributes and outputs. 

On the other hand, in many real-world applications this relationship is highly complex 

and nonlinear and cannot be accurately modeled by a linear function. CRF that models 

nonlinear relationship between observations and outputs has recently been applied to the 

problem of image de-noising [38]. Integration of CRF and Neural Networks (CNF) [39-

41] has been recently proposed for classification problems to address these limitations by 

adding a middle layer between attributes and outputs. This layer consists of a number of 

gate functions, each acting as a hidden neuron, that capture the nonlinear relationships. 

As a result, such models can be much more expressive than CRF. 
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4.3. Gaussian Conditional Random Fields 

4.3.1. Continuous Conditional Random Fields Model  

Conditional Random Fields (CRF) provide probabilistic framework for exploiting 

complex dependence structure among outputs by directly modeling the conditional 

distribution P(y|x). In regression problems, the output yi is associated with input vectors 

x = (x1,… xN) by a real-valued function called association potential A(α,yi,x), where α is 

K-dimensional set of parameters. The larger the value of A is the more yi is related to x. 

Usually, A is a combination of functions. We can use as many association functions as we 

find necessary to model input-output relations in data. In general, A takes as input all 

input data x to predict a single output yi meaning that it does not impose any 

independency relations among inputs xi. 

To model interactions among outputs, a real valued function called interaction 

potential I(β,yi,yj,x) is used, where β is an L dimensional set of parameters. Interaction 

potential represents the relationship between two outputs and in general can depend on an 

input x. Different applications can have different interaction potentials. For example, in 

the AOD prediction problem, interaction potential can be modeled as a correlation 

between neighboring (in time and space) outputs. The larger the value of the interaction 

potential, the more related outputs are. 

For the defined association and interaction potentials, continuous CRF models a 

conditional distribution P(y|x), y = (y1…yN), according to the associated graphical 

structure (an example of the structure is shown in Figure 4.1.) 
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where j~i denotes the connected outputs yi and yj (connected with solid line at Figure 4.1) 

and where Z(x,α,β) is normalization function defined as  
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The learning task is to choose values of parameters α and β to maximize the conditional 

log-likelihood of the set of training examples 

 

 

Figure 4.1. Continuous CRF graphical structure. x-inputs (observations); y-outputs; 

dashed lines-associations between inputs and outputs; solid lines-interactions between 

outputs. 
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This can be achieved by applying standard optimization algorithms such as gradient 

descent. To avoid overfitting, we regularize L(α,β) by adding α
2
/2 and β

2
/2 terms to log-

likelihood in formula (4.3) that prevents the parameters from becoming too large. 

The inference task is to find the outputs y for a given set of observations x and 

estimated parameters α and β such that the conditional probability P(y|x) is maximized 

 ))|((maxargˆ xyy
y

P . (4.4) 

Learning and inference in models with real valued outputs pose quite different 

challenges than in the discrete-valued case. The most important difference is that the 

normalizing function Z is an integral instead of the sum. Discrete valued models are 

always feasible as Z is a finite number defined as a sum over finitely many possible 

values of y. On the contrary, to have a feasible model with real valued outputs, Z must be 

integrable. Proving directly that Z is integrable might be difficult due to the complexity of 

association and interaction potentials. 

In CRF applications, A and I could be defined as linear combinations of a set of 

fixed features in terms of α and β [33] 
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The use of features to define the model is convenient because it allows us to 

include arbitrary properties of input-output pairs into the compatibility measure. This 

way, any potentially relevant feature could be included to the model because parameter 

estimation automatically determines their actual relevance by feature weighting. 

4.3.2. Feature Functions 

Construction of appropriate feature functions in CRF is a manual process that 

depends on prior beliefs of a practitioner about what features could be useful. The choice 

of features is often constrained to simple constructs to reduce the complexity of learning 

and inference from CRF. In general, to evaluate P(y|x) during learning and inference, one 

would need to use time consuming sampling methods. However, if A and I are defined as 

quadratic functions of y, we will show that P(y|x) becomes multivariate Gaussian 

distribution and that learning and inference can be accomplished in a computationally 

efficient manner. 

In the following, we describe the proposed feature functions that lead to Gaussian 

CRF. Let us assume we are given K unstructured predictors, Rk(x), k=1,…K, that predict 

single output yi taking into account x (as a special case, only xi can be used as x). To 

model the dependency between the prediction and output, we introduce quadratic feature 

functions 

 KkRyyf kiik ,...1,))((),( 2  xx . (4.6) 

These feature functions follow the basic principle for association potentials in that their 

values are large when predictions and outputs are similar. To model the correlation 

among outputs, we introduce the quadratic feature function 
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ijjil yySeyyg  xx , eij
(l)

 =1 if (i,j)  Gl, eij
(l)

 = 0, otherwise,  (4.7) 

that imposes that outputs yi and yj have similar values if they have an edge in the graph 

Gl. It should be noted that using multiple graphs Gl can facilitate modeling of different 

aspects of correlation between outputs (for example, spatial and temporal). Sij
(l)

(x) 

function represents similarity between outputs yi and yj, that depends on inputs x. The 

larger Sij
(l)

(x) is, the more similar the outputs yi and yj are. 

4.3.3. Gaussian Canonical Form 

In this section, we show that P(y|x) for CRF model (4.1), which uses quadratic 

feature functions defined in Section 4.3.2, can be represented as a multivariate Gaussian 

distribution. The resulting CRF model can be written as 
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The exponent in (4.8), which we denote as E, is a quadratic function in terms of y. 

Therefore, P(y|x) can be transformed to a Gaussian form by representing E as 

 constE T  
μΣyyΣyμyΣμy

1T1T1

2

1
)()(

2

1 . (4.9) 

To transform P(y|x) to the Gaussian form, we determine Σ and μ by matching (4.8) and 

(4.9). We first represent the quadratic terms of y in the association and interaction 

potentials as y
T
Q1y and y

T
Q2y, respectively, and combine them to get  

 Σ
1 

= 2(Q1+Q2). (4.10) 

By combining the quadratic terms of y from the association potential, it follows that Q1 is 

diagonal matrix with elements 



65 

 

 

 




















.,0

,
1

1

ji

ji

Q

K

k

k

ij



 (4.11) 

By repeating this for the interaction potential, it follows that Q2 is symmetric with 

elements 
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To get μ, we match linear terms in E with linear terms in the exponent of (4.8) and obtain  

 μ = Σb, (4.13) 

where b is vector with elements 

 ))((2
1


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
K

k

kki Rb x . (4.14) 

By calculating Z using the transformed exponent, it follows 

 )exp()2(),,(
2/12/ constZ N

Σxβα  . (4.15) 

Since exp(const) terms from Z and P(y|x) cancel out, we finally get  

 )
2

1
exp(

)2(

1
)|(

2/12/
μ)(yΣμ)(y

Σ
xy

1T  

N
P


, (4.16) 

where Σ and μ are defined in (4.10) and (4.13). Therefore, the resulting conditional 

distribution is Gaussian with mean μ and covariance Σ. We observe that Σ is a function 

of parameters α and β, interaction potential graphs Gl, and similarity functions S, while μ 

is also a function of inputs x. We call the resulting CRF the Gaussian CRF (GCRF). 
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4.3.4. Learning 

The learning task is to choose α and β to maximize the conditional log-likelihood, 

  )|(log),(   where)),,((maxarg)ˆ,ˆ(
,

xyβαβαβα
βα

PLL . (4.17) 

Models with real valued outputs pose quite different challenges than in the discrete-

valued case. Discrete valued models are always feasible because Z is finite and defined as 

a sum over finitely many possible values of y. On the contrary, to have a feasible model 

with real valued outputs, Z must be integrable. Proving that Z is integrable in general 

might be difficult due to the complexity of association and interaction potentials. Let us 

analyze the feasibility condition for GCRF model. In order for the model to be feasible, 

the precision matrix Σ
1

 has to be positive semi-definite. Σ
1

 is defined as a double sum 

of Q1 and Q2. Q2 is a symmetric matrix with a property that the absolute value of a 

diagonal element is equal to the sum of absolute values of non-diagonal elements from 

the same row 

 



ij

ijii QQ |||| 22 . (4.18) 

By Gershgorin's circle theorem [42], a symmetric matrix is positive semi-definite if all 

diagonal elements are non-negative and if matrix is diagonally dominant. Therefore, one 

way to ensure that GCRF model is feasible is to impose the constraint that all elements of 

α and β are greater than 0. In this setting, learning is a constrained optimization problem. 

To convert it to the unconstrained optimization, we adopt a technique used in [37] that 

applies the exponential transformation on α and β parameters to guarantee that they are 

positive  



67 

 

 

 

,1for  ,

1for  ,ku

,...Lle

,...Kkeα

lv

l

k







 (4.19) 

where u and v are real valued parameters. As a result, the new optimization problem 

becomes unconstrained. 

All parameters are learned by the gradient-based optimization. To apply it, we 

need to find the gradient of the conditional log-likelihood. Let us start from the 

expression for logP 

 ΣμyΣμy
1 log

2

1
)()(

2

1
log  TP . (4.20) 

The first term in (4.20) is a product of three matrices of dimensions [1 × N], [N × N], and 

[N × 1], respectively. Hence, the product is scalar. Knowing that trace Tr of a matrix has 

nice properties such as Tr(ABC) = Tr(BCA) = Tr(CAB), Tr(AB) = Tr(BA) for matrices 

A, B, and C, when these products are defined, and Tr(scalar) = scalar, we can replace the 

first term with its trace and apply Tr(ABC) = Tr(BCA). Therefore,  

 ΣμyμyΣ
1 log

2

1
)))(((

2

1
log   TTrP . (4.21) 

The derivative of log|A| = Tr(A
-1

dA), derivative of trace is trace of derivative, and by 

treating Σ
-1

(y- μ)(y- μ)
T
 as a product of Σ

-1
 and quadratic form (y- μ)(y- μ)

T
, we get 

 )(
2

1
))(2))(((

2

1
log ΣΣμμyΣμyμyΣ

111 dTrddTrPd TT   . (4.22) 

Equation (4.22) can be simplified by using the following expressions for the derivative of 

an inverse matrix 
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By replacing (4.23) in (4.22) and using the fact that Σ
T
=Σ, as Σ is symmetric, we obtain 
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By applying again the algebra of traces, we get 
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111   dTrdddPd TTT . (4.25) 

From (4.25) we can calculate derivatives ∂logP/∂αk and ∂logP/∂βl. The expression for 

∂logP/∂αk is 
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To calculate ∂logP/∂βl, we use ∂b/∂βl=0 to obtain 
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Gradient ascent algorithm cannot be directly applied to a constrained optimization 

problem [37]. Here we use previously defined exponential transformation on α and β and 

then use gradient ascent. Specifically, we maximize log-likelihood with respect to uk = 

logαk and vl = logβ instead to αk and βl. As a result, the new optimization problem 

becomes unconstrained. Derivatives of log-likelihood function and updates of α’s and β 

in gradient ascent can be computed as 
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 (4.28) 

where η is is the learning rate. 

The negative log-likelihood is a convex function of parameters α and β and its 

optimization leads to globally optimal solution. To show that negative log-likelihood is 

convex, let us derive negative log-likelihood from (4.8). Negative log-likelihood is equal 

to  

 
y

ydeEP Eloglog , (4.29) 

where E is defined in (4.9). Logarithm of an integral of exponential is convex if E is 

concave [43]. E is linear function of parameters α and β which means it can be 

considered as concave and convex at the same time. Therefore, negative likelihood is 

convex function with respect to parameters α and β. Exponential function is bijective so 

the change of variables to u and v does not affect convexity. 
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4.3.5. Inference 

In inference, since the model is Gaussian, the prediction will be expected value, 

which is equal to the mean μ of the distribution, 

 Σbxyy
y

 )|(maxargˆ P . (4.30) 

Vector μ is a point estimate that maximizes P(y|x), while Σ is a measure of uncertainty. 

The simplicity of inference that can be achieved using matrix computations is in stark 

contrast to a general CRF model defined in (4.1) that usually requires advanced inference 

approaches such as Markov Chain Monte Carlo or belief propagation. Moreover, by 

exploiting the sparsity of precision matrix Q, which is inherent to spatio-temporal data, 

the inference can be performed without the need to calculate Σ explicitly which reduces 

computational time to even linear with the dimensionality of y (depends on the level of 

sparsity).  

4.3.6. Computational Complexity and Memory Requirements 

If size of the training set is N and gradient ascent lasts T iterations, the 

straightforward matrix computation results in O(T·N
3
) time to train the model. The main 

cost of computation is matrix inversion, since during the gradient-based optimization we 

need to find Σ as an inverse of Σ
-1

. However, this is the worst case performance. Since 

matrix Σ
-1

 is typically very sparse (it depends on the imposed neighborhood structure), 

the training time can be decreased to O(T·N
2
). 

Let us assume that Σ
-1

 is sparse. Instead of calculating A=Σ·dΣ
-1

 directly, we can 

solve the system Σ
-1

·A= dΣ
-1

. To solve the system, we first convert Σ
-1

 to a banded 
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matrix using the Reverse Cuthill-McKee algorithm [44]. A banded matrix is a sparse 

matrix with all elements around the main diagonal. Then, we apply the Cholesky 

transformation to Σ
-1

 and we get Σ
-1

=LL
T
, where L is banded lower triangular matrix. 

For each column ci of dΣ
-1

 we solve Lvi=ci for vi and then L
T
ai=vi, for ai, where ai is the 

i-th column of A. This process needs to be repeated for each column of A. The total 

computation time depends on the neighborhood structure of the interaction potential in 

Gaussian CRF. For example, [45] indicates that time scaling is O(T·N
3/2

) if the 

neighborhood is spatial and O(T·N
2
) if it is spatio-temporal. As we eventually need to 

calculate the trace of matrix A, only element from ai that corresponds to the main 

diagonal should be stored. Therefore, memory requirements are proportional to O(N).  

4.3.7. An extension of the GCRF by Indicator Functions 

Multiple predictors Rk, may have large variability in prediction accuracy 

depending on the underlying conditions. For example, in aerosol application a certain 

algorithm might be preferred over specific land surfaces while it might underperform 

elsewhere. This issue can be addressed by enhancing the feature functions (4.6) and (4.7) 

as  
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where δm are the indicator functions that have value 1 if some conditions are satisfied and 

0 otherwise. The effect of indicator functions on model (4.8) is in replacing αk with sum 

Σmδm(x)αmk and βl with sum Σmδm(x)βml. By introducing indicator functions we essentially 
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partition the whole data set into smaller subsets. α represents belief in Rk in different 

subsets, corresponding to different prediction conditions. β represents level of correlation 

in different subsets. 

4.3.8.  An extension of the GCRF to Handle Missing Observations and Partially 

Labeled Outputs 

By utilizing previously defined indicator functions, Gaussian CRF can be 

extended to handle missing observations unlike Gaussian process based approaches [46] 

that deal with missing observations externally either by ignoring such data or by 

interpolating the missing observations. We introduce a special type of indicator function 

from (4.31), where δk = 1 if all observations needed to apply Rk are available and δk = 0 

otherwise. In this case, precision matrix Q might become singular as we are decreasing 

the values on main diagonal and Q may not be strictly diagonally dominant any more. In 

order to avoid potential numerical problems with Q, we introduce a constant function R0 

that, for example, predicts mean value of y on labeled data and is always active (δ0 is 

fixed to 1).  

We also propose an extension of GCRF if y is partially labeled, namely if part of 

observations is labeled (yL) and another part is unlabeled (yU). Having the Gaussian CRF 

model with joint probability (yL,yU) from (4.8), where μ=[μL
T
 μU

T
]

T 
and Q=[QLL QLU; 

QUL QUU], we can calculate the conditional probability of unlabeled data as  

P(yU|yL,x) ~ Gaussian(μ
*
,Q

*
) 

 where μ
*
 = μU + QUU

-1
 QUL (yL – μL), Q

*
 = QUU. (4.32) 
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This directly solves the problem of inference. It should be observed that the conditional 

probability distribution utilizes all the available information for prediction. This approach 

is closely related to semi-supervised learning on graphs using Gaussian random fields 

[47]. In [47] a Gaussian random field is built on the top of the partially labeled graph. All 

available information was utilized by conditioning unobserved variables on observed 

ones. GCRF approach is different in the sense that it naturally estimates parameters along 

with utilizing unlabeled data.  

4.3.9.  An extension of GCRF to Discrete Outputs 

Relaxation of discrete outputs to continuous output space may bring many 

appealing properties [47]. Discrete output models require approximate learning and 

inference approaches (such as Markov Chain Monte Carlo) on structures which are more 

complex than one dimensional chain. In contrast to such models, GCRF offers closed 

form solution for learning and inference on any structure through matrix multiplications. 

Furthermore, defining correlations directly on discrete outputs may introduce 

unnecessary noise to the model in many applications like action tracking in social 

networks [48]. As it is suggested in [48] to avoid introducing unnecessary noise it may be 

beneficial to define correlations on a latent continuous variable space z that follows 

GCRF. 

Without losing generalization we assume that yi are discrete binary outputs (the 

approach can be easily extended to multi-label outputs). Then, we assume each yi is 

conditionally independent given zi and we assign each yi to a continuous latent variable zi 

as 
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σ can be learned along with other parameters of the model or set by cross-validation. 

Continuous z follows GCRF 
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The joint conditional probability density function of y and z can be defined as 
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where 
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and 
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where by = 0 and bz is defined in (4.14).  

In order for P(y,z|x) to be valid we need to prove that Qjoint is positive definite 

matrix. We observe that Qjoint is [2N × 2N] block matrix. Let Syy be the Schur 

complement of Qyy in Qjoint, namely Syy = Qzz - Qyz
T
 Qyy

-1
Qyz. Qjoint is positive definite if 

and only if Qyy and Syy are both positive definite [49]. Qyy is positive definite as a 
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diagonal matrix with all positive elements on a main diagonal. Knowing that Qyz = - Qyy, 

and Qzz = Q + Qyy the Schur complement becomes Syy = Q + Qyy - QyyQyy
-1

Qyy = Q + 

Qyy - Qyy = Q which is positive definite from (4.34). Therefore Qjoint is positive definite.  

Parameters of the joint distribution with a latent variable can be learned by the 

Expectation-Maximization (EM) algorithm [50]. EM algorithm starts with an initial guess 

of parameters α and β and then iteratively updates them by an expectation (E-step) and 

maximization (M-step) until convergence. In the E-step the EM algorithm finds an 

estimate of the posterior probability of z given y, x and all parameters. If the current 

parameter estimates are α
old

 and β
old

, the E-step can be defined as 

 )(),,,|( yzy
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oldold
μyQQμβαxyz  E . (4.38) 

The EM algorithm updates parameters α and β in M-step to maximize 
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The conditional expectation can be expressed as (for the simplicity we will assume that x, 

α
old

 and β
old

 are known and we will omit them from the equations)  
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Then by using linear algebra apparatus we get 
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Since N is constant and does not depend on parameters α
 
and β

 
we can omit it. If we 

replace (4.42) in (4.41) and then (4.41) in (4.40) we will get 
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(4.43) is identical to (4.20) and we can apply the same gradient ascent technique to find 

optimal values of α
 
and β. EM algorithm iterates between (4.38) and (4.43) until 

convergence. 

Inference can be done as in [47], [48]. Since y and z are unknown, we can first 

calculate marginal expectation for z. To find discrete y we find an average value of z over 

positive examples z
1
 and an average value of z over negative examples z

0
. We decide 

about the y as 
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4.3.10. Related Work Revisited: Spatial Statistics 

Given spatial random variable y kriging can be represented as multivariate 

Gaussian distribution Gaussian(μ,Σ) where Σ is a covariance matrix that accounts for 

spatial correlation [51]. When μ is constant, we get the ordinary kriging, or Gaussian 

process (GP) model. In universal kriging μ is a linear function of attributes x, μ = β
T
x, 

where β is a parameter vector. Learning consists of fitting covariance kernel for Σ and 

learning β. In inference universal kriging provide predictions for xi given a set of 
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neighboring locations where xj are known. The main difference between the GCRF and 

universal kriging is that universal kriging parameterizes covariance matrix directly which 

is usually full while GCRF parameterizes inverse covariance matrix which is usually very 

sparse. Therefore, GCRF through the linear algebra apparatus permits learning and 

inference on much larger data than kriging does. Also, during inference partial 

information from neighboring locations cannot be handled directly by universal kriging. 

As we showed in Section 4.3.8, GCRF can handle partial observations by using indicator 

functions. 

Markov random field (MRF) and the related conditional autoregressive (CAR) 

and simultaneous autoregressive (SAR) models [52] are generative approaches that 

represent posterior through joint probability P(y|x) ~ P(y,x) = P(x|y)P(y) by modeling 

prior P(y) and conditional P(x|y). Correlation between y is modeled by P(y) as MRF. For 

computational tractability, P(x|y) is often assumed to have a factorized form P(x|y) = 

ΠiP(xi|yi). MRF has several important limitations when compared to GCRF. The first is 

limited representational power due to the conditional independence assumption for 

P(x|y). GCRF models P(y|x) directly without any assumptions about inputs x. Second, 

P(y) does not depend on inputs x. This means that correlations between outputs are data 

independent. On the other hand, GCRF models correlations that can vary with input data 

providing more flexibility than MRF. 

4.3.11. Limitations of Proposed Approach and Future Directions 

Learning of GCRF parameters brings set of challenges. The simple gradient 

ascent algorithm that we used to learn parameters of GCRF is acceptable if the number of 
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parameters in GCRF is small. In learning of GCRF with large number of parameters 

standard gradient ascent algorithm will have extremely slow convergence. In future work 

we will consider the conjugate gradient approach that was successfully applied in many 

similar problems [53]. Another issue to be addressed is that simultaneously learning of all 

may lead to serious overfitting. Although we suggested L2-norm we may need to explore 

other approaches like L1-norm regularization [54].  

A diagonal dominance criterion, which is satisfied for GCRF if all parameters are 

larger than 0, is sufficient but not necessary condition for positive definites. It is also 

know that diagonal dominance criterion is too conservative [45]. Let us examine on a 

simple example how restrictive diagonal dominance criterion is. We assume model with 

only two outputs. Two dimensional precision matrix can be parameterized as  

 

                                  a)                                                              b) 

Figure 4.2. Valid parameter space for two dimensional precision matrix a) by diagonal 

dominance criterion b) by definition of positive definite matrix. 
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which is in agreement with parameterization of our GCRF model. Diagonal dominance 

criterion gives us conditions for positive definites α1 + β1 > 0 and β1 > 0. This implies that 

the parameter search space is restricted to α1 > 0 and β1 > 0. On the other hand, sufficient 

and necessary conditions for positive definites give us α1 + β1 > 0 and (α1 + β1)
2
 - β1

2
 > 0. 

Valid parameter spaces are presented in Figure 4.2. Diagonal dominance criterion 

reduces the search so that negative interactions between outputs are not allowed. This 

condition may be too strong in some applications (for example social networks). Instead 

of relying on diagonal dominance criteria we will use convex optimization apparatus to 

perform searches in broader parameter space [55]. 

4.4. Gaussian Conditional Random Fields for Regression in Aerosol Prediction 

4.4.1.  GCRF Model for AOD Prediction 

In the following we describe in detail the proposed CRF for regression in remote 

sensing, using the AOD prediction as the motivating example. As we showed in Chapter 

3 given a data set that consists of satellite observations and ground based AOD 

measurements, a statistical prediction model (SP) can be trained to use satellite 

observations as attributes and predict the labels which are ground-based AODs. We also 

showed in Chapter 2 that the deterministic AOD prediction models (DP) are based on 

solid physical principles and tuned by domain scientists. GCRF model is able to ingrate 
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SP and DP through the association potential. To model the association potential, i.e. the 

dependency between the predictions and target AOD, we introduce two feature functions  
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where for a given observation xi, SP(xi) and DP(xi) are outputs of statistical and 

deterministic models, respectively. These feature functions follow the basic principle for 

association potentials (their values are larger for more accurate predictions). Learned 

parameters α of the linear combination of these features  

 2
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1 ))(())((),,( iii xxxα DPySPyyA iii   , (4.47) 

provide some insight on how much to trust the SP and DP prediction algorithms. For 

example, large α1 places large penalty on mistakes of SP model and is an indicator of 

large quality of this predictor.  

To improve expressiveness of the CRF model we introduce various indicator 

functions. Here are some examples of possible indicator functions 
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Association potential now becomes 

 



J

j

ijjijji DPySPyyA
1

2

2

2

1 )))()(())()(((),,( iiiii xxxxxα  , (4.49) 



82 

 

 

where J is number of indicator functions. By introducing indicator functions we 

essentially partition the whole data set into smaller subsets. Learned α represents our 

belief in SP and DP in different subsets, corresponding to different prediction conditions.  

To model the interaction potential we introduce feature function 

 
2

1 )(),,( jiijji yywyyg x . (4.50) 

In AOD prediction problem data are irregularly sampled in both space and time. Weight 

wij is positive number representing a measure of spatio-temporal proximity between data 

points i and j (closer points are given larger weight). The corresponding interaction 

potential is 

 
2)(),,,( jiijji yywyyI   x . (4.51) 

4.4.2. Experimental results and discussion 

4.4.2.1. Data 

For this experiment we collected MODIS Terra observations collocated with 

AERONET Level 2.0 points. In addition to average and standard deviation of radiances 

at four wavelengths in 50 × 50 km
2
 blocks, solar and sensor angles, and surface elevation 

we extracted information about the spatio-temporal location of each data point (time, 

longitude and latitude) and a quality of observation (QA) assigned to each point provided 

by domain scientist. There are four levels of qualities from lowest quality QA = 0 to 

highest quality QA = 3. We collected 28,374 data points distributed over entire globe at 

217 AERONET sites during years 2005 and 2006. 
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4.4.2.2. Evaluation 

To assess the efficiency of the proposed methods, we performed training on 2005 

data and used 2006 data for testing. Because we trained neural network (NN) on 2005 

data and then use its predictions as inputs to CRF, we applied a nested cross-validation. 

First, we split AERONET locations into 5 subsets and created five data sets Di, i = 1,…5, 

each with data points from one of the AERONET subsets in year 2005. We reserved one 

of Di datasets for testing and merged data from the remaining 4 datasets Dj, j ≠ i, for 

training. The trained NN predictor was tested on Di. The procedure was repeated five 

times, for values j = 1,…5. Finally, we get five NN models and NN predictions for all 

points in training set.  

4.4.2.3. Benchmark Methods 

Deterministic prediction algorithm C005. The primary benchmark for 

comparison with our predictors was the most recent version of the MODIS deterministic 

algorithm C005.  

Statistical prediction by neural network. As a baseline statistical algorithm we 

used a neural network trained to predict AERONET AOD from all MODIS attributes 

except location information and quality flag. The neural network has a hidden layer with 

10 nodes and an output layer with one node. In nested 5-cross-validation experiments we 

trained 5 neural networks. When tested on 2006 data, we used a single network trained on 

the whole training set. 
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4.4.2.4. The GCRF model 

Integration of models. We first consider the case when interaction potential does 

not exist (β = 0). NN and C005 predictions are inputs to CRF. We partitioned the world 

into five regions: North America, South America, Europe, Africa, and Asia and Australia. 

Asia and Australia were treated together due to the small number of data points in each of 

them. Then, we defined five indicator functions. Each function indicates belonging to one 

of five regions. We determined ten α parameters corresponding to C005 and NN 

predictions over these regions. Results are presented in Table 4.1. Over all regions GCRF 

achieved better accuracy than either NN or C005 alone. Values of obtained α parameters 

suggest that we should trust NN more in the North America (ratio of α’s is NN:C005 = 

24:13 approximately) while in Africa we should trust C005 a little bit more (ratio of α’s 

is NN:C005 = 8:9 approximately). Also, GCRF improves domain-based accuracy 

measure FRAC (Table 4.2). 

Second, we check how much we should rely on NN and C005 over observations 

with different qualities. We partitioned data into four subsets having quality flags QA = 

0, 1, 2, and 3. We introduced four indicator functions to indicate belonging to each of 

subsets. We determined eight α parameters corresponding to C005 and NN predictions 

over these subsets. Results are presented in Table 4.3. For all data qualities GCRF 

achieved better accuracy than either NN or C005 alone. As expected, error of the 

deterministic predictor C005 decreases as data quality increases. Values of obtained α 

parameters also suggest that we should trust NN more for low data quality QA = 0 (ratio 

of α’s is NN:C005 = 21:10 approximately) while for high data quality we should equally 
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trust to C005 and NN (ratio of α’s is NN:C005 = 16:16 approximately). FRAC is also 

improved by GCRF, Table 4.4. 

Integration of spatio-temporally correlated models. Here we consider the case 

when interaction potential does exist (β ≠ 0). NN and C005 predictions are inputs to 

GCRF. To model interaction potential we need to define weights wij in (4.51). After 

analysis of spatial and temporal AOD autocorrelation (Figure 4.3) we decided to define 

spatial-temporal neighbors as a pair of observations where temporal distance 

temporalDist(i,j) is less than 60 days and spatial distance spatialDist(i,j) is less than 100 

km. As a measure for temporal distance temporalDist we used absolute difference 

between timestamps ti and tj temporalDist(i,j) = |ti - tj|. As a measure for spatial distance 

spatialDist we used haversine formula [56] that gives a distance along great circle 

between two points specified by longitudes and latitudes on a sphere. We used weighted 

distance for defining wij, weights are multiplication of Gaussians 
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where σs = 50 and σt = 10 were determined based on spatial and temporal correlation. 

Taking into account spatio-temporal correlation and comparing to the GCRF 

model with (β = 0) when the world was partitioned into five regions, we get better results 

globally and over all regions separately except Africa where two models were equally 

good and Asia&Australia where the latter model was better (Table 4.1). This result 

suggests that level of spatio-temporal correlation is different in different regions, and 
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each region should have its own β. β was estimated to 0.049, which does not indicate 

significant correlation, but it is still enough to improve single-output based predictors.  

Including spatial-temporal correlation in the model when data were partitioned 

based on quality also improves final prediction (Table 4.3), β was estimated to 

0.06.
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Table 4.1. RMSE of C005, NN, and NN+GCRF using features defined over five 

regions, without (β = 0) and with spatio-temporal correlation (β ≠ 0). 

Region 
RMSE 

C005 NN GCRF, β=0 GCRF, β≠0 

Whole Globe 0.123 0.112±0.001 0.107±0.001 0.105±0.001 

N. America 0.098 0.085±0.001 0.083±0.001 0.081±0.001 

S. America 0.140 0.110±0.005 0.104±0.003 0.098±0.002 

Europe 0.080 0.080±0.001 0.073±0.001 0.072±0.001 

Africa 0.172 0.154±0.001 0.152±0.001 0.149±0.001 

Asia & Aus. 0.161 0.156±0.001 0.145±0.001 0.148±0.001 

 

 

 

Table 4.2. FRAC of C005, NN, and NN+GCRF using features defined over five 

regions, without (β = 0) and with spatio-temporal correlation (β ≠ 0). 

Region 
FRAC 

C005 NN GCRF, β=0 GCRF, β≠0 

Whole Globe 0.65 0.667±0.002 0.704±0.003 0.708±0.004 

N. America 0.64 0.667±0.008 0.71±0.01 0.71±0.01 

S. America 0.55 0.56±0.01 0.58±0.02 0.60±0.02 

Europe 0.76 0.762±0.005 0.807±0.006 0.812±0.006 

Africa 0.53 0.560±0.006 0.568±0.007 0.577±0.006 

Asia & Aus. 0.64 0.66±0.01 0.71±0.01 0.70±0.01 
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Table 4.3. RMSE of C005, NN, and NN+GCRF using features defined over four 

subsets of data of different quality (QA = 0 lowest, QA = 3 highest), without (β = 0) 

and with spatio-temporal correlation (β ≠ 0). 

Region 
RMSE 

C005 NN GCRF, β=0 GCRF, β≠0 

Entire set 0.123 0.112±0.001 0.107±0.001 0.105±0.001 

QA = 0 0.151 0.128±0.002 0.123±0.001 0.121±0.001 

QA = 1 0.130 0.108±0.001 0.109±0.001 0.107±0.002 

QA = 2 0.118 0.110±0.002 0.104±0.001 0.101±0.001 

QA = 3 0.105 0.104±0.002 0.097±0.001 0.096±0.001 

 

 

 

Table 4.4. FRAC of C005, NN, and NN+GCRF using features defined over four 

subsets of data of different quality (QA = 0 lowest, QA = 3 highest), without (β = 0) 

and with spatio-temporal correlation (β ≠ 0). 

Data quality 
FRAC 

C005 NN GCRF, β=0 GCRF, β≠0 

Entire set 0.65 0.667±0.002 0.705±0.004 0.709±0.004 

QA = 0 0.59 0.60±0.01 0.64±0.01 0.64±0.01 

QA = 1 0.58 0.623±0.006 0.65±0.01 0.652±0.005 

QA = 2 0.64 0.65±0.01 0.686±0.007 0.689±0.007 

QA = 3 0.70 0.714±0.007 0.755±0.003 0.761±0.002 
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a) 

 
b) 

 

Figure 4.3. AOD a) spatial variogram; b) temporal autocorrelation. 
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4.5. Neural Gaussian Conditional Random Fields 

In this section we further enhance GCRF model to increase its representational 

power.  

4.5.1. Adaptive Feature Function 

The expert predictors Rk in feature functions of the GCRF model are developed 

externally, before model learning. For example, the neural network used in Section 4.3 

was trained by minimizing mean squared error (MSE), which is not necessarily an 

optimal strategy with respect to maximizing the log-likelihood of the Gaussian CRF. 

Motivated by the recently proposed Conditional Neural Fields [41], we will consider 

using the adaptive feature function defined as 

 2)),((),( wxx aiia Ryyf   (4.53) 

where Ra(x,w) is a function of weights w that can be trained simultaneously with other 

GCRF parameters.  

Ra(x,w) will be trained directly with the goal of maximizing the log-likelihood 

such that it complements the existing predictors Rk. Let us assume that predictor Ra(x,w) 

is a feed-forward neural network. Training of the network, by keeping other CRF 

parameters constant, can be done by maximizing the log-likelihood of GCRF. To apply a 

gradient-based method for learning weights w, we need to find the gradient of the 

conditional log-likelihood ∂logR/∂Ra and use it in back-propagation algorithm to learn w. 
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4.5.2.  Parameters α and β as Functions 

As defined in (4.5), Gaussian CRF assigns weights α and β to the feature 

functions. Considering that feature functions for the association potential are defined as 

squared errors of unstructured predictors, the role of weights α is to measure their 

prediction uncertainty. Since it is likely that the quality of different predictors changes 

with x, we enhance GCRF such that parameters αk and βl are replaced with the 

uncertainty functions αk(θk, x) and βl(ψl, x), where θk and ψl are the parameters. We allow 

using feed-forward neural networks for the uncertainty functions. 

αk(θk, x) models the varying degree of importance of predictor Rk over 

different conditions. Similarly, βl(ψl, x) models varying importance of correlation 

between outputs. As a result, Σ from becomes dependent on inputs thus allowing for 

error heteroscedasticity (error depends on x). Conditional distribution of the 

enhanced GCRF is still Gaussian as in (4.16). 

Since both adaptive feature and uncertainty functions are assumed to be feed-

forward neural networks, we call the resulting model the Neural GCRF. 

4.5.3.  Learning and Inference in Neural GCRF 

For the Neural GCRF (NGCRF) we find parameters (θ, ψ, w) by maximizing the 

log-likelihood. To ensure feasibility of the model, we apply an exponential 

transformation on α and β parameters as 

 ),(),(),(u
            1for  ,k xψxxθ llaak v

l

u

ak ee,...Kkeα    , (4.54) 
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where u and v are differentiable functions with respect to parameters θ and ψ. To apply 

the gradient-based method for learning, we need to find the gradient of the conditional 

log-likelihood. The derivatives of logP with respect to θ, ψ, and w are  
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Terms ∂logP/∂αk and ∂logP/∂βl are defined in (4.26) and (4.27). As α and β are functions 

of x, these derivatives are diagonal matrices. From (4.55), it follows ∂αk/∂uk=αk and 

∂βl/∂vl=βl. Terms ∂uk/∂k and ∂vl/∂l depend on the chosen functions uk and vl.  

The gradient of logP with respect to w depends on the functional form of Ra. 

Since Σ
1

 does not depend on Ra, ∂logP/∂Ra becomes  

 )(2
log
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. (4.56) 

Table 4.5. Pseudocode for NGCRF learning. 

 

1. Learn (θk, ψl) k = 1,…K, l = 1,…L not taking into account Ra 

2. Initialize θa 

3. Repeat until convergence 

3.1. Learn predictor Ra using (4.43) 

3.2. Apply gradient-based optimization to learn θ 
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We observe that an update for the adaptive predictor Ra is proportional to the difference 

between true output and the mean of NGCRF distribution. This means that Ra will be 

updated only if NGCRF is not able to predict the output correctly and Ra will be updated 

more aggressively when the error is larger. This justifies our hypothesis that Ra will work 

as a complement of the existing unstructured predictors.  

We propose the iterative procedure in Table 4.5 for learning model parameters 

according to update equations derived earlier in this section. 

To avoid overfitting, which is a common problem for maximum likelihood 

optimization, we add regularization terms for α, θ, β, ψ to the log-likelihood. In this way, 

we penalize large outputs of α and β as well as large weights θ and ψ. 

Since the NGCRF model is Gaussian, inference is identical to GCRF. 

4.5.4. Experimental Results and Discussion 

4.5.4.1. Data 

For this experiment we the same data as in Section 4.3. In addition to average and 

standard deviation of radiances at four wavelengths in 50 × 50 km
2
 blocks, solar and 

sensor angles, and surface elevation we extracted information about the spatio-temporal 

location of each data point (time, longitude and latitude) and a quality of observation 

(QA) assigned to each point provided by domain scientist. The QA flag has four possible 

values, from the lowest quality QA = 0 to the highest quality QA = 3. Our data set had 

28,374 observations collected during 2005 and 2006 at 217 AERONET sites over the 

globe. 
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4.5.4.2. Benchmark Methods  

Deterministic prediction algorithm (C005). The primary benchmark for 

comparison with our GCRF predictors was the most recent version of the MODIS 

operational algorithm C005.  

Statistical prediction by a neural network (NN). As a baseline statistical 

algorithm we used a neural network model trained to predict AOD from MODIS 

observations excluding information about location and QA flag. The neural network was 

trained to minimize the mean squared error of the AOD prediction. It has been shown 

previously that neural network achieves higher accuracy than C005. The neural network 

had a hidden layer with 10 nodes and an output layer with one node. In the nested 5-

cross-validation experiments we trained 5 neural networks on 2005 data. When tested on 

2006 data, we used a single network trained on the entire training set.  

Structured prediction by GCRF. We use the GCRF model defined in Section 

4.3 Association potential utilizes C005 and NN. C005 and NN are the deterministic 

prediction algorithm and neural network predictor defined above. In addition, we 

partitioned data into four subsets corresponding to quality flags QA = 0, 1, 2, and 3. For 

unstructured predictors C005 and NN, we created feature functions over these subsets by 

enhancing GCRF with the indicator functions that have value 1 if some condition QA is 

satisfied and 0 otherwise. Spatial-temporal neighbors defined as a pair of observations 

within certain spatio-temporal are used to define the interaction potential. 
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4.5.4.3. The Neural GCRF Model for Aerosol Prediction 

In addition to the feature functions of GCRF explained in Section 4.3, Neural 

GCRF used an adaptive feature function with prediction model (Ra), being a neural 

network with 10 hidden nodes. Its weight αa followed the definition in (4.57). 

We also used functions instead of parameters α. Instead of defining manual 

partitions of the dataset using the QA flag, we used all observations as inputs to the α 

functions. We defined α as an exponential function of linear combinations of inputs. To 

incorporate the potential bias, one input was vector with all ones. 

 
i
ll xi

k ex


 ),( , (4.57) 

where x1
i
 was a vector with all ones, x2,3,4,5

i
 were quality flags.  

To model spatio-temporal correlation, we used spatial and temporal distance 

between i and j as two inputs for the β function. Similar to (4.57), we defined β as 

 
ji

ll xji ex
,

),( , 
 , (4.58) 

where x1
i,j

 was a vector with all ones, x2
i,j

 represented spatial distance between i and j and 

x3
i,j

 represented their temporal proximity. 

4.5.4.4. Results 

RMSE error of four models is presented in Table 4.6, where smaller numbers 

mean more accurate predictions. FRAC accuracy of these four models is also shown in 

Table 4.6 where larger numbers correspond to better predictions. We can see that in our 

experiments NN was more accurate than operational C005 algorithm. GCRF showed an 

improvement in accuracy over both NN and C005, by taking advantage of combination of 
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models and spatio-temporal correlation in data. Finally, Neural GCRF achieved even 

better accuracy by utilizing nonlinear weights, an adaptive statistical model, and learning 

instead of assuming the level of correlation between neighboring observations. 

Convergence of NGCRF was achieved after a small number of iterations as illustrated in 

Figure 4.3 where it is shown how the RMSE accuracy changed on training data during 

iterative learning over 4 iterations.

Table 4.6. RMSE and FRAC of C005, NN, GCRF and NGCRF on data with four quality 

flags Vs AERONET prediction accuracy. 

 

 C005
 

NN GCRF NGCRF 

RMSE 0.123 0.112 0.105 0.102 

FRAC 0.65 0.68 0.71 0.74 

 

 

Figure 4.4. NGCRF convergence 

 
 

 

0 1 2 3 4
0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iteration

R
M

S
E



97 

 

CONCLUSION 

Structured learning, as a fairly new research area in machine learning, had great 

success in classification, but its application on regression problems has not been explored 

sufficiently. In this paper, we proposed a Gaussian CRF model that is able to combine the 

outputs of unstructured regression models, such as pre-trained neural networks or other 

available predictors, and exploit the correlation between output variables. The proposed 

neural GCRF extends the GCRF model, by training an additional neural network to 

further improve accuracy by maximizing the log likelihood of the GCRF model and by 

introducing uncertainty functions that can account for changing quality of the baseline 

predictors as a function of inputs.  

The proposed method was applied to a challenging remote sensing problem of 

predicting aerosols from satellite-based observations. The obtained results provide strong 

evidence that the GCRF and Neural GCRF can be successfully applied to the remote 

sensing problem where a small improvement of prediction quality could be very 

beneficial to many geophysical studies that rely on AOD predictions. The proposed 

method is also readily applicable to other regression applications where there is a need 

for knowledge integration, data fusion, and exploitation of correlation among output 

variables. 
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