THE WORLDS OF DATABASE SYSTEMS

distributed among them. One popular approach is the creation of data ware-
houses, where information from many legacy databases is copied periodically,
with the appropriate translation, to a central database. Another approach is
the implementation of a mediator, or “middleware,” whose function is to sup-
port an integrated model of the data of the various databases, while translating
between this model and the actual models used by each database.

2 Overview of a Database Management
System

In Fig. 1 we see an outline of a complete DBMS. Single boxes represent system
components, while double boxes represent in-memory data structures. The solid
lines indicate control and data flow, while dashed lines indicate data flow only.
Since the diagram is complicated, we shall consider the details in several stages.
First, at the top, we suggest that there are two distinct sources of commands
to the DBMS:

1. Conventional users and application programs that ask for data or modify
data.

2. A database administrator: a person or persons responsible for the struc-
ture or schema of the database.

2.1 Data-Definition Language Commands

The second kind of command is the simpler to process, and we show its trail
beginning at the upper right side of Fig. 1. For example, the database admin-
istrator, or DBA, for a university registrar’s database might decide that there
should be a table or relation with columns for a student, a course the student
has taken, and a grade for that student in that course. The DBA might also
decide that the only allowable grades are A, B, C, D, and F. This structure
and constraint information is all part of the schema of the database. It is
shown in Fig. 1 as entered by the DBA, who needs special authority to exe-
cute schema-altering commands, since these can have profound effects on the
database. These schema-altering data-definition language (DDL) commands
are parsed by a DDL processor and passed to the execution engine, which then
goes through the index/file/record manager to alter the metadata, that is, the
schema information for the database.

2.2 Overview of Query Processing

The great majority of interactions with the DBMS follow the path on the left
side of Fig. 1. A user or an application program initiates some action, using
the data-manipulation language (DML). This command does not affect the
schema of the database, but may affect the content of the database (if the

THE WORLDS OF DATABASE SYSTEMS

o Database
User/application administrator
queries, transaction g DDL
updates commanas commands

Query Transaction DDL
compiler manager compiler
* »
query \\metadgtq, \ metadata
plan ‘w \
) Y \
Execution \ _| Logging and Concurrency | |
engine .| recovery control !
I >y ™ } } i
index, file, and o \ b
record requests Vo | v v
Y Y \\ ! r,
. oy log ! !
ot g]|
g o ! table /
‘ \ \ /
data, \ \ | //
page metadata,". } ,
commands indexes ~ _ /
NI - - -
. ‘;f ALYy
uffer
A
read/write
pages
Y
Storage
manager
Storage
\—/

Figure 1: Database management system components

THE WORLDS OF DATABASE SYSTEMS

action is a modification command) or will extract data from the database (if the
action is a query). DML statements are handled by two separate subsystems,
as follows.

Answering the Query

The query is parsed and optimized by a query compiler. The resulting query
plan, or sequence of actions the DBMS will perform to answer the query, is
passed to the execution engine. The execution engine issues a sequence of
requests for small pieces of data, typically records or tuples of a relation, to a
resource manager that knows about data files (holding relations), the format
and size of records in those files, and indez files, which help find elements of
data files quickly.

The requests for data are passed to the buffer manager. The buffer man-
ager’s task is to bring appropriate portions of the data from secondary storage
(disk) where it is kept permanently, to the main-memory buffers. Normally, the
page or “disk block” is the unit of transfer between buffers and disk.

The buffer manager communicates with a storage manager to get data from
disk. The storage manager might involve operating-system commands, but
more typically, the DBMS issues commands directly to the disk controller.

Transaction Processing

Queries and other DML actions are grouped into transactions, which are units
that must be executed atomically and in isolation from one another. Any query
or modification action can be a transaction by itself. In addition, the execu-
tion of transactions must be durable, meaning that the effect of any completed
transaction must be preserved even if the system fails in some way right after
completion of the transaction. We divide the transaction processor into two
major parts:

1. A concurrency-control manager, or scheduler, responsible for assuring
atomicity and isolation of transactions, and

2. A logging and recovery manager, responsible for the durability of trans-
actions.

2.3 Storage and Buffer Management

The data of a database normally resides in secondary storage; in today’s com-
puter systems “secondary storage” generally means magnetic disk. However, to
perform any useful operation on data, that data must be in main memory. It
is the job of the storage manager to control the placement of data on disk and
its movement between disk and main memory.

In a simple database system, the storage manager might be nothing more
than the file system of the underlying operating system. However, for efficiency

THE WORLDS OF DATABASE SYSTEMS

purposes, DBMS’s normally control storage on the disk directly, at least under
some circumstances. The storage manager keeps track of the location of files
on the disk and obtains the block or blocks containing a file on request from
the buffer manager.

The buffer manager is responsible for partitioning the available main mem-
ory into buffers, which are page-sized regions into which disk blocks can be
transferred. Thus, all DBMS components that need information from the disk
will interact with the buffers and the buffer manager, either directly or through
the execution engine. The kinds of information that various components may
need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con-
straints on, the database.

3. Log Records: information about recent changes to the database; these
support durability of the database.

4. Statistics: information gathered and stored by the DBMS about data
properties such as the sizes of, and values in, various relations or other
components of the database.

5. Indexes: data structures that support efficient access to the data.

2.4 Transaction Processing

It is normal to group one or more database operations into a transaction, which
is a unit of work that must be executed atomically and in apparent isolation
from other transactions. In addition, a DBMS offers the guarantee of durability:
that the work of a completed transaction will never be lost. The transaction
manager therefore accepts transaction commands from an application, which
tell the transaction manager when transactions begin and end, as well as infor-
mation about the expectations of the application (some may not wish to require
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is
logged separately on disk. The log manager follows one of several policies
designed to assure that no matter when a system failure or “crash” occurs,
a recovery manager will be able to examine the log of changes and restore
the database to some consistent state. The log manager initially writes
the log in buffers and negotiates with the buffer manager to make sure that
buffers are written to disk (where data can survive a crash) at appropriate
times.

2. Concurrency control: Transactions must appear to execute in isolation.
But in most systems, there will in truth be many transactions executing

THE WORLDS OF DATABASE SYSTEMS

The ACID Properties of Transactions

Properly implemented transactions are commonly said to meet the “ACID
test,” where:

e “A” stands for “atomicity,” the all-or-nothing execution of trans-
actions.

e “I” stands for “isolation,” the fact that each transaction must appear
to be executed as if no other transaction is executing at the same
time.

e “D” stands for “durability,” the condition that the effect on the
database of a transaction must never be lost, once the transaction
has completed.

The remaining letter, “C,” stands for “consistency.” That is, all databases
have consistency constraints, or expectations about relationships among
data elements (e.g., account balances may not be negative after a trans-
action finishes). Transactions are expected to preserve the consistency of
the database.

at once. Thus, the scheduler (concurrency-control manager) must assure
that the individual actions of multiple transactions are executed in such
an order that the net effect is the same as if the transactions had in
fact executed in their entirety, one-at-a-time. A typical scheduler does
its work by maintaining locks on certain pieces of the database. These
locks prevent two transactions from accessing the same piece of data in
ways that interact badly. Locks are generally stored in a main-memory
lock table, as suggested by Fig. 1. The scheduler affects the execution of
queries and other database operations by forbidding the execution engine
from accessing locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the
locks that the scheduler grants, they can get into a situation where none
can proceed because each needs something another transaction has. The
transaction manager has the responsibility to intervene and cancel (“roll-
back” or “abort”) one or more transactions to let the others proceed.

2.5 The Query Processor

The portion of the DBMS that most affects the performance that the user sees
is the query processor. In Fig. 1 the query processor is represented by two
components:

10

THE WORLDS OF DATABASE SYSTEMS

1. The query compiler, which translates the query into an internal form

called a query plan. The latter is a sequence of operations to be performed
on the data. Often the operations in a query plan are implementations
of “relational algebra” operations. The query compiler consists of three
major units:

(a) A query parser, which builds a tree structure from the textual form
of the query.

(b) A query preprocessor, which performs semantic checks on the query
(e.g., making sure all relations mentioned by the query actually
exist), and performing some tree transformations to turn the parse
tree into a tree of algebraic operators representing the initial query
plan.

(¢) A query optimizer, which transforms the initial query plan into the
best available sequence of operations on the actual data.

The query compiler uses metadata and statistics about the data to decide
which sequence of operations is likely to be the fastest. For example, the
existence of an indez, which is a specialized data structure that facilitates
access to data, given values for one or more components of that data, can
make one plan much faster than another.

. The execution engine, which has the responsibility for executing each of

the steps in the chosen query plan. The execution engine interacts with
most of the other components of the DBMS, either directly or through
the buffers. It must get the data from the database into buffers in order
to manipulate that data. It needs to interact with the scheduler to avoid
accessing data that is locked, and with the log manager to make sure that
all database changes are properly logged.

	Table of Contents
	1. The Worlds of Database Systems

