На улазу се задају природни бројеви N и K који означавају број елемената скупа чије комбинације са понављањем тражимо, односно класу тих комбинација. Након задавања тих параметара, корисник уноси елементе скупа. Програм треба да ради за скупове објеката било којег типа.
Алгоритам конструкције комбинација са понављањем произвољног скупа заснива се на генерисању комбинација са понављањем скупа природних бројева од 0 до N-1. Нека је А коначан скуп чије комбинације тражимо(|A|=N). Тада можемо успоставити бијективно пресликавање f:A→{0,…,N-1}. Нека је b1b2…bk произвољна k-комбинација са понављањем скупа {0,…,N-1}. Одговарајућа комбинација са понављањем скупа А је f-1(b1b2…bk).
Нека важи да је N=3 и K=3. Комбинације са понављањем скупа {0,1,2} су:
Нека је b1b2…bk једна комбинација са понављањем скупа {0,…,N-1}. Наредну добијамо следећим поступком:
КОРАК 1: Пронаћи највеће s> = са особином да је bs < N - 1 1)
КОРАК 2: Увећати bs за 1
КОРАК 3: Уписати нову вредност bs у свако bt, s < t < k - 1
Уочимо комбинацију 022 у претходном примеру. КОРАК 1: За s = 0, b0=0 < 2 (Проналак првог десног елемента са леве стране који је мањи од N-1) КОРАК 2: Увећамо b0 за 1. КОРАК 3: Препишемо 1 од b0 до b2 Добијена комбинација са понављањем је 111, што се слаже са примером. Да смо алгоритам применили на последњу комбинацију, 222, не бисмо пронашли ненегативно s, што би значило да наредне комбинације са понављањем нема.
int sledeca(int *komb, int k, int n){ int i,s; s=k-1; while(s>=0 && !(komb[s]<n-1)) s--; if(s<0) return 0; komb[s]=komb[s]+1; for(i=s;i<k-1;i++) komb[i+1]=komb[i]; return 1; }
Уколико наредна комбинација постоји, функција враћа 1. У супротном 0.
У сажетку алгоритма већ је објашњено на који начин проналазимо комбинације са понављањем произвољног скупа А. Наиме, не генеришемо директно његове комбинације, већ налазимо комбинације скупа {0,…,|A|-1}. На основу њих, штампамо тражене. Уместо да одштампамо комбинацију 002, одштампаћемо први елемент скупа А два пута, а затим трећи једном.
#include <stdio.h> #include <stdlib.h> #include <string.h> int sledeca(int *komb, char **skup, int k, int n){ int i,s; s=k-1; while(s>=0 && !(komb[s]<n-1)) s--; if(s<0) return 0; komb[s]=komb[s]+1; for(i=s;i<k-1;i++) komb[i+1]=komb[i]; return 1; } void ispis (int komb[],int k,char *skup[],int n){ int i; for(i=0;i<k;i++) printf("%s|",skup[komb[i]]); putchar('\n'); } main(){ char **skup; int n; int k; int i; int *komb; int s; char string[50]; printf("N i K?\n"); skup=(char**)malloc(n*sizeof(char*)); komb=(int*)malloc(k*sizeof(int)); scanf("%d%d",&n,&k); for(i=0;i<n;i++) { scanf("%s",string); skup[i]=(char*)malloc(sizeof(string)+1); strcpy(skup[i],string); } printf("Skup\n"); for(i=0;i<n;i++) printf("%s|",skup[i]); putchar('\n'); printf("Kombinacije sa ponavljanjem klase %d.\n",k); for(i=0;i<k;i++) komb[i]=0; do ispis(komb,k,skup,n); while(sledeca(komb,k,n)); }
Поменута бијекција f је додељивање броја i објекту који уносимо. Њој инверзна функција је проналажење елемента коме је додељен број i.
Ова верзија третира елементе скупа А као стрингове зато што тако најједноставније можемо учитати целе бројеве, реалне бројеве, знакове и саме стрингове. Међутим, на тај начин се може трошити више меморије него што је потребно. Такође, уколико су објекти чије комбинације са понављањем тражимо реченице, програм није одговарајући. Наредне верзије програма се могу остварити овим напоменама.