
Programiranje i programski jezici

•Prolog je logički programski jezik opšte namene povezan sa
veštačkom inteligencijom i kompjuterskom lingvistikom.

•Koreni Prologa se nalaze u predikatskom računu prvog reda,
formalnoj logici i za razliku od mnogih drugih programskih jezika
Prolog je deklarativan, tj. programska logika je izražena relacijskim
termima predstavljenim činjenicama i pravilima. Izračunavanja se
iniciraju pokretanjem upita nad ovim relacijama.

•Jezik je osmislila grupa predvođena Alain Colmerauer u Marseju
početkom 70tih, a prvi Prološki sistem je razvijen 1972 od strane
Colmerauer i Philippe Roussel

(Wikipedia)

PROgramming in LOGic

2

•U početku je bio dizajniran za
▫ obradu prirodnih jezika

 a danas se koristi u raznim oblastima poput:
▫Dokazivanje teorema
▫Ekspertni sistemi
▫Igre
▫Sistemi za automatsko odgovaranje
▫Ontologije
▫Sistemi za kontrolu

PROgramming in LOGic

3

•Baziran je proceduralnoj interpretaciji Hornovskih formula:
▫Iskazna slova p, q, r, ...
▫Formula oblika

•Osnovni mehanizmi zaključivanja su
▫Pravilo rezolucije
▫Backtracking

•Edinburška i Lispovska sintaksa –
▫Arity vs. Micro

rel(a1,…,an). ((rel a1 … an))
rel(…):-rel1(…),…,relk(…). ((rel …)(rel1 …)…(relk …))
•Programi mogu biti “proverni” i/ili “generatorni”

PROgramming in LOGic

4

•Svaki program u Prologu se sastoji od:
▫Činjenica
▫Pravila
▫Pitanja

•Imena relacija i objekata moraju početi MALIM SLOVOM
•Imena promenljivih moraju početi VELIKIM SLOVOM ili “_”
•Svaka činjenica ili pravilo mora se završiti TAČKOM – “.”

PROgramming in LOGic

5

•Imenovanje izvornih datoteka – ime.pl
•Učitavanje

Windows - Duplim klikom na izvornu datoteku se pokreće
SWI-Prolog i učitava datoteka

Linux – Zadavanjem komande prolog u terminalu
▫U okviru SWI-Prologa – navođenjem imena datoteka između
znakova [] – [ime].
▫Nakon izmena izvornih datoteka, ponovno učitavanje se obavlja
komandom make.

•Listanje
▫svih učitanih predikata(relacija) – listing.
▫određenih predikata(relacija) – listing(ime_predikata).

•Izlazak – halt.

SWI-Prolog

6

a(1). a(2).

b(X):-a(X).

•a(1).

•a(X). - ;

•a(X),write(X),nl,a(3).

•a(X),write(X),nl,fail.

•b(2).

•b(X),write(X),nl. - ;

Primer 1

7

a1(1). a1(2).
b1(77). b1(88).
c(X,Y):-a1(X),b1(Y).

c(X,Y),write(X),write(Y),nl,fail.

Primer 2

8

s(2).
s(X):-s(X).

d(X):-d(X).
d(1).

s(X),write(X),nl,fail.
d(X),write(X),nl,fail.

Primer 3

9

Porodično stablo

•Date su činjenice:
▫musko(X), zensko(X)
▫roditelj(X,Y) – X je roditelj od Y

•Definisati predikate:
▫majka(X,Y) – X je majka od Y

▫otac(X,Y) – X je otac od Y

▫sestra(X,Y), brat(X,Y)
▫baba(X,Y), deda(X,Y)
▫tetka(X,Y), ujak(X,Y), stric(X,Y)
▫teca(X,Y), ujna(X,Y), strina(X,Y)
▫…

Jednakost i unifikacija

•X = Y

•Algoritam unifikacije – algoritam kojim se ispituje da li su dva
terma ujednačva

▫termi su neujednačivi
▫termi su ujednačivi i bukvalno jednaki
▫termi su ujednačivi i spisak zamena je X1 -> t1, X2 -> t2, …

•vozi(student, bicikl) = vozi(student, X)
•tacka(X, Y, Z) = tacka(X1, Y1,Z1)
•f(X, X) = f(a, b)
•f(X, a(b, c)) = f(Z, a(Z, c))
•a(b, C, d(e, F, g(h, i, J))) = a(B, c, d(E, f, G))

Poredjenje brojeva

•X =:= Y –X i Y su isti brojevi
•X =\= Y – X i Y su različiti brojevi
•X < Y – X je manje od Y

•X > Y – X je veće od Y

•X =< Y – X je manje ili jednako sa Y

•X >= Y – X je veće ili jednako sa Y

Prološki algoritam za određivanje

maksimuma i minimuma dva broja

max(A,B,A):-A>=B.
max(A,B,B):-A<B.

min(A,B,A):-A<=B.
min(A,B,B):-A>B.

•max(3,6,3).

•max(3,6,X).

•min(3,6,X).

Ko je vladao Srbijom?

kralj(stefan, 1217,1228).

kralj(radoslav,1228,1233).

kralj(vladisalv,1234,1243).

kralj(uros,1243,1276).

kralj(dragutin,1276,1282).

vladar(X,Y):-kralj(X,A,B), Y>=A,Y=<B.

•vladar(stefan,1220).

•vladar(X,1250).

•vladar(nemanja,X).

•vladar(X,1276).

Operacije sa brojevima

•X + Y – zbir

•X – Y – razlika

•X * Y – proizvod

•X / Y – količnik

•X // Y – celobrojni količnik

•X mod Y – ostatak pri deljenju

•Dodela vrednosti se vrši operatorom is

Prološki algoritam za izračunavanje

zbira prvih N prirodnih brojeva.

suma(0,0).

suma(N,S):-N>0, N1 is N-1, suma(N1,S1),S is
S1+N.

•suma(2,Y).
•Y=3

•suma(3,6).

•yes

Prološki algoritam za određivanje

faktorijela broja.

fakt(0,1).

fakt(X,Y):-U is X-1,fakt(U,Z),Y is X*Z.

•fakt(3,6).

•fakt(4,X).

•fakt(2,X),write(X),nl,fail.

Prološki algoritam za određivanje

faktorijela broja.

fakt(0,1).

fakt(X,Y):-X>0,U is X-1,fakt(U,Z),Y is X*Z.

•fakt(3,6).

•fakt(4,X).

•fakt(2,X),write(X),nl,fail.

Strukture, stabla, liste

•roditelji(nikola, marija, djordje)

•a + b * c ili +(a, *(b, c))

•book(moby_dick, author(herman, melville))

roditelji

nikola djordje marija

+

b

a *

c

book

herman

moby_dick author

melville

Strukture, stabla, liste

•[a, b, c] ili [a | [b | [c | []]]]

•[a, V1, b, [X, Y]]

. . .

a

[]

b c

. . . . []

a
V

1
b . . []

X Y

Primer

p([1,2,3]).

p([a,b,c,[d,22,pera]]).

•p([X|Y]).

•p([_,_,X]).

•p([_,_|X]).

•p([_,_,_,[_|X]]).

Prološki algoritam za ispitivanje da li

je x element liste y

elem(X,[X|_]).

elem(X,[_|V]):-elem(X,V).

•elem(5,[1,2,5,4]).

•elem(7,[]).

•elem(X,[1,2,3,4]),write(X),nl,fail.

Prološki algoritam za ispitivanje da li

je x lista

islist([]).

islist([_|B]):-islist(B).

•islist([1,2,3,4]).

•islist([1,2,[3,4],5]).

•islist([]).

•islist(a).

•islist(X).

Nenegativan ceo broj

is_integer(0).

is_integer(X):-is_integer(Y),X is Y+1.

•is_integer(123).

•is_integer(X).

•is_integer(X),write(X),nl,fail.

Rez

r1(1). r1(2). r1(3).

•r1(X),write(X),nl,fail.

•r1(3).

Rez

r1(1). r1(2):-!. r1(3).

•r1(X),write(X),nl,fail.

•r1(3).

Rez

pisi(0):-!.

pisi(X):-write(X),nl,X1 is X-1,pisi(X1).

•pisi(3).

•pisi(3),fail.

Rez

aa(1). aa(2). aa(3). bb(11). bb(22).

bb(X):-aa(X),!. bb(33).

cc(111). cc(222).

dd(X,Y):-aa(X),cc(Y),!. dd(7,77).

ee(X,Y):-aa(X),!,cc(Y). ee(8,88).

ff(X,Y):-!,aa(X),cc(Y). ff(9,99). ff(100).

•bb(X),write(X),nl,fail.

•dd(X,Y),write(X),write(‘ ‘),write(Y),nl,fail.

•ee(X,Y),write(X),write(‘ ‘),write(Y),nl,fail.

•ff(X,Y),write(X),write(‘ ‘),write(Y),nl,fail.

Predikat append

•append([1,2,3],[a,b,c,d],X).

•append(X,[1,2,3],[[a,b],c,1,2,3]).

•append(X,[1,2,3],[[a,b],c,1,2]).

•append([a,b,c],X,Y).

•append(X,Y,[a,b,c]).

app([],X,X):-!.

app([A|B],C,[A|D]):-app(B,C,D).

Presek dve liste

pres([],_,[]).

pres([A|B],Y,[A|Z]):-member(A,Y),pres(B,Y,Z).

pres([_|B],Y,Z):-pres(B,Y,Z).

presek(X,Y,Z):-pres(X,Y,Z),!.

•pres([3,1,2,4],[1,3,5],X).

•pres([3,1,2,4],[1,3,5],X),write(X),nl,fail.

•presek([3,1,2,4],[1,3,5],X).

•presek([3,1,2,4],[1,3,5],X),write(X),nl,fail.

Unija dve liste

unija1([],X,X).
unija1([X|L1],L2,[X|L]):-not(member(X,L2)),
unija1(L1,L2,L).

unija1([X|L1],L2,L):-member(X,L2),
unija1(L1,L2,L).

unija(X,Y,Z):-unija1(X,Y,Z),!.

Razlika dve liste

razlika1([],X,[]).
razlika1([X|L1],L2,L):-member(X,L2),
razlika1(L1,L2,L).

razlika1([X|L1],L2,[X|L]):-not(member(X,L2)),
razlika1(L1,L2,L).

razlika(X,Y,Z):-razlika1(X,Y,Z),!.

Simetrična razlika dve liste
simraz(X,Y,Z):-pegla(X,X1), pegla(Y,Y1), razlika(X1,Y1,Z1),
razlika(Y1,X1,Z2), unija(Z1,Z2,Z).

pegla1([],[]).
pegla1([X|L],L1):-member(X,L),pegla1(L,L1).
pegla1([X|L],[X|L1]):-not(member(X,L)),pegla1(L,L1).
pegla(X,Y):-pegla1(X,Y),!.

razlika1([],X,[]).
razlika1([X|L1],L2,L):-member(X,L2),razlika1(L1,L2,L).
razlika1([X|L1],L2,[X|L]):-not(member(X,L2)),razlika1(L1,L2,L).
razlika(X,Y,Z):-razlika1(X,Y,Z),!.

unija1([],X,X).
unija1([X|L1],L2,[X|L]):-not(member(X,L2)),unija1(L1,L2,L).
unija1([X|L1],L2,L):-member(X,L2),unija1(L1,L2,L).
unija(X,Y,Z):-unija1(X,Y,Z),!.

