Programiranje i programski jezici

SWIroIog

PROgramming in LOGic
*Prolog je logicki programski jezik opste namene povezan sa
vestackom inteligencijom i kompjuterskom lingvistikom.

eKoreni Prologa se nalaze u predikatskom racunu prvog reda,
formalnoj logici i za razliku od mnogih drugih programskih jezika
Prolog je deklarativan, tj. programska logika je izrazena relacijskim
termima predstavljenim Cinjenicama i pravilima. IzraCunavanja se
iniciraju pokretanjem upita nad ovim relacijama.

Jezik je osmislila grupa predvodena Alain Colmerauer u Marseju
pocetkom 70tih, a prvi Proloski sistem je razvijen 1972 od strane

Colmerauer i Philippe Roussel
(Wikipediff

/\/

PROgramming in LOGic
U pocetku je bio dizajniran za
= obradu prirodnih jezika
a danas se koristi u raznim oblastima poput:

sDokazivanje teorema
sEkspertni sistemi
o|lgre
sSistemi za automatsko odgovaranje
sOntologije
sSistemi za kontrolu

/\/ ?

PROgramming in LOGic

*Baziran je proceduralnoj interpretaciji Hornovskih formula:
°|skazna slovap, g, r, ...
sFormula oblika

*Osnovni mehanizmi zakljucivanja su
°Pravilo rezolucije

sBacktracking
eEdinburska i Lispovska sintaksa —

sArity VS. Micro
rel(al,...,an). ((rel al ... an))

rel(...):-rel1(...),...,relk(...). ((rel ...)(rell ...)...(relk ...))
eProgrami mogu biti “proverni” i/ili “generatorni”

PROgramming in LOGic

*Svaki program u Prologu se sastoji od:

=Cinjenica

°Pravila

oPitanja
eImena relacija i objekata moraju poceti MALIM SLOVOM
eImena promenljivih moraju poceti VELIKIM SLOVOM ili “ ”

“w

«Svaka ¢injenica ili pravilo mora se zavrsiti TACKOM — “.

/SWI-ProIog

eImenovanje izvornih datoteka — ime.pl
eUcCitavanje
Windows - Duplim klikom na izvornu datoteku se pokrece
SWI-Prolog i ucCitava datoteka
JLinux — Zadavanjem komande prolog u terminalu
s okviru SWI-Prologa — navodenjem imena datoteka izmedu
znakova [| — [imel].
sNakon izmena izvornih datoteka, ponovno ucitavanje se obavlja
komandom make.
eListanje
asvih ucitanih predikata(relacija) — listing.
sodredenih predikata(relacija) — listing(ime_predikata).
|zlazak — halt.

()

Primer 1

atl). a(2).
b(X):-a(X).

a(l1).
oa(X) “

a(X),write(X), nl ,a(3).
ea(X),write(X),nl,fail.

b(2).
b(X),write(X),nl.

Primer 2

al(l). al(2).
b1(77) biligs)
c(X,Y):-al(X),bl(Y).

c(X,Y),write(X),write(Y),nl,fail.

Primer 3

sE2).
s(X):-s(X).

d(X):-d(X).
d(1).

s(X),write(X),nl,fail.
d(X),write(X),nl,fail.

Porodicno stablo

Date su Cinjenice:
smusko(X), zensko(X)
sroditelj(X,Y) — X je roditeljod Y
«Definisati predikate:
smajka(X,Y) — XjemajkaodY
sotac(X,Y) — XjeotacodY
ssestra(X,Y), brat(X,Y)
sbaba(X,Y), deda(X,Y)
stetka(X,Y), ujak(X,Y), stric(X,Y)
steca(X,Y), yjna(X,Y), strina(X,Y)

[m]
eooe

N

Jednakost 1 unifikacija

X=Y
«Algoritam unifikacije — algoritam kojim se ispituje da li su dva
terma ujednacva
stermi su neujednacivi
stermi su ujednacivi 1 bukvalno jednaki
stermi su ujednacivi i spisak zamena je X1 -> t1, X2 -> t2, ...
«vozi(student, bicikl) = vozi(student, X)
«tacka(X, Y, Z) = tacka(X1, Y1,71)
f(X, X) =1(a, b)
(X, a(b, ¢)) =1(Z, a(Z, ¢))
«a(b, C, d(e, F, g(h, i, J))) = a(B, c, d(E, {, G))

Poredjenje brojeva

«X =:=Y —X1iY su isti brojevi

«X =\=Y — X 1Y su razliciti brojevi
X<Y-XjemanjeodY
X>Y-XjevetceodY

X =<Y — Xjemanjeili jednako sa’Y
X >=Y — XjevecCeilijednakosaY

maksimuma i minimuma dva broja

max(A,B,A):-A>=B.
max(A,B,B) :-A<B.

min(A,B,A):-A<=B.
min(A,B,B):-A>B.

emax(3,6,3).
emax(3,6,X).
min(3,6,X).

Ko je vladao Srbijom?

kralj(stefan, 1217,1228).
kralj(radoslav,1228,1233).
kralj(vladisalv,1234,1243).
kralj(uros,1243,1276).
kralj(dragutin,1276,1282).
vladar(X,Y):-kralj(X,A,B), Y>=A,Y=<B.

evladar(stefan,1220).
evladar(X,1250).
evladar(nemanja,X).
evladar(X,1276).

Operacije sa brojevima

X +Y — zbir

«X — Y —razlika

«X *Y — proizvod

«X /Y — koliénik

*X // Y — celobrojni koli¢nik

«X mod Y — ostatak pri deljenju

«Dodela vrednosti se vrsi operatorom is

/\/

Proloski algoritam za izracunavanje
zbira prvih N prirodnih brojeva.

suma(0,0).
suma(N,S):-N>0, N1 is N-1, suma(N1,S1),S is
S1+N.

esuma(2,Y).
oY=3
esuma(3,6).
yes

N

Prologki algoritam za odredivanje
faktorijela broja.

fakt(o,1).
fakt(X,Y):-U is X-1,fakt(U,Z),Y is X*Z.

fakt(3,6).
fakt(4,X).
ofakt(2,X),write(X),nl,fail.

/\/

Proloski algoritam za odredivanje
faktorijela broja.

fakt(o,1).
fakt(X,Y):-X>0,U is X-1,fakt(u,z),Y is X*z.

fakt(3,6).
fakt(4,X).
ofakt(2,X),write(X),nl,fail.

e

Strukture, stabla, liste

-roditelji(nikola, marija, djordje) roditelj
e e
nikola marija djordje
ea+b*c 1i +(a, *(b, c)) =
e
a *
-
b C
*book(moby_dick, author(herman, melville))
book
/\
moby dick author
e

herman melville

/\/

Strukture, stabla, liste

[a,b,c] 1li [a]|[b|[c|[1]
[]

°[a, V1, b, [X, Y]]

]

e

a b e 1
L
Koy

Primer

p([1,2,3]).

p([anJCJ [dJZZ) per\a]])'

p(
p(
p(
p(

X|YD).
»»X]).
_,_IX1).

L e

" Proloski algoritam za ispitivanje da i

je x element liste vy

elem(X,[X]| _1).
elem(X,[|V]):-elem(X,V).

eelem(5,[1,2,5,4]).
eelem(7,[]).
eelem(X,[1,2,3,4]),write(X),nl,fail.

N

" Proloski algoritam za ispitivanje da i
je x lista

islist([]).
islist([|B]):-islist(B).

eislist([1,2,3,4]).
eislist([1,2,[3,4],5]).
eislist([]).
eislist(a).

eislist(X).

Nenegativan ceo broj

is _integer(0).
is _integer(X):-is_integer(Y),X is Y+1.

eis_integer(123).
eis _integer(X).
eis _integer(X),write(X),nl,fail.

rl1(1). r1(2). ri(3).

rl(X),write(X),nl,fail.
rl(3).

P e

Rez

plElLy pH2) =t P32

rl(X),write(X),nl,fail.
rl(3).

Rez
pisi(0):-1!.

pisi(X):-write(X),nl,X1 is X-1,pisi(X1).

episi(3).
episi(3),fail.

Rez

aa(l). aa(2). aa(3). bb(11l). bb(22).
bb(X):-aa(X),!. bb(33).

cc(111). cc(222).

dd(X,Y):-aa(X),cc(Y),!. dd(7,77).
ee(X,Y):-aa(X),!,cc(yY). ee(8,88).
f(X,Y):-1,aa(X),cc(Y). ££(9,99). £(100).

ebb(X),write(X),nl,fail.

odd(X,Y),write(X),write(“ °),write(Y),nl,fail.
eee(X,Y),write(X),write(“ °),write(Y),nl,fail.
off(X,Y),write(X),write(“ °),write(Y),nl,fail.

Predikat append

.append([1,2,3],[a,b,c,d],X).
.append(x)[1J2)3]J[[an]Jch)z)B])'
'append(xJ[1J2:3]:[[an]JcJ1:2])°
«append([a,b,c],X,Y).
-append(X,Y,[a,b,c]).

app([],X,X):-!.
app([A|B],C,[A[D]):-app(B,C,D).

Presek dve liste

pres([],_,[1]).
pres([A|B],Y,[A]|Z]):-member(A,Y),pres(B,Y,Z).
pres([_|B],Y,Z):-pres(B,Y,Z).
presek(X,Y,Z):-pres(X,Y,Z),!.

pres([3,1,2,4],[1,3,5],X).
epres([3,1,2,4],[1,3,5],X),write(X),nl,fail.
presek([3,1,2,4],[1,3,5],X).
.presek([3,1,2,4],[1,3,5],X),write(X),nl,fail.

Unija dve liste

unijal([],X,X).
unijal([X|L1],L2,[X]|L]):-not(member(X,L2)),
unijal(L1,L2,L).

unijal([X|L1],L2,L):-member(X,L2),
unijal(L1,L2,L).

unija(X,Y,Z):-unijal(Xx,Y,z2),!.

Razlika dve liste
razlikal([],X,[]).
razlikal([X|L1],L2,L):-member(X,L2),
razlikal(bl L2, 1),

razlikal([X|L1],L2,[X]|L]):-not(member(X,L2)),
razlikal(L1,L2,L).

razlika(X,Y,Z):-razlikal(X,Y,Z),!.

/////ééfjj

Simetricna razlika dve liste

simraz(X,Y,Z):-pegla(X,X1), pegla(Y,Yl), razlika(X1,Y1,Z1),
razlika(Y1,X1,Z2), unija(Z1,Z22,Z).

peglal([]1,[1).
peglal([X|L],L1):-member(X,L),peglal(L,L1).
peglal([X|L],[X]|L1]):-not(member(X,L)),peglal(L,L1).
pegla(X,Y):-peglal(X,Y),!.

razlikal([],X,[]).
razlikal([X]|L1],L2,L):-member(X,L2),razlikal(L1,L2,L).
razlikal([X]|L1],L2,[X|L]):-not(member(X,L2)),razlikal(L1,L2,L).
razlika(X,Y,Z):-razlikal(X,Y,Z),!.

unijal([],X,X).
unijal([X|L1],L2,[X]|L]):-not(member(X,L2)),unijal(L1,L2,L).
unijal([X|L1],L2,L):-member(X,L2),unijal(L1,L2,L).
unija(X,Y,Z):-unijal(Xx,Y,z),!.

