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Introduction

The problem of finding eigenvalues and eigenvectors of a matrix
arises in a wide variety of practical applications.

The mathematical models of many engineering problems are systems
of differential and difference equations whose solutions are often
expressed in terms of the eigenvalues and eigenvectors of the matrices
involved in the discretization of these systems.

Furthermore, many important characteristics of physical and
engineering systems, such as stability, can often be determined only
by knowing the nature and location of the eigenvalues.

In particular, in several applications only the largest or the smallest
eigenvalues and the corresponding eigenvectors are needed.
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An Example: Convergence of Iterative Methods for
solving Linear Systems

The iterative method

x(k) = D−1Cx(k−1) + D−1b, k = 0, 1, . . . ,

for solving the linear system

Ax = b, A = D + C,

converges to the solution x for an arbitrary choice of the initial
approximation x(0) if and only if the spectral radius

ρ(D−1C) < 1.

Thus only the knowledge of the largest eigenvalue of D−1C is

needed.
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Dominant and Subdominant Eigenvalues

There are other applications where only the first few largest or
smallest eigenvalues and the corresponding eigenvectors play an
important role.

The largest eigenvalue of a matrix is also called dominant eigenvalue
and the corresponding eigenvector is called dominant eigenvector.

The second eigenvalue in magnitude is called subdominant eigenvalue
and the corresponding eigenvector is called subdominant eigenvector.

Analogously, the smallest eigenvalue in magnitude and the
corresponding eigenvector are called least dominant eigenvalue and
least dominant eigenvector, respectively; the second smallest
eigenvalue in magnitude and the corresponding eigenvector are called
next least dominant eigenvalue and next least dominant eigenvector,
respectively.
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An example: The Population Study

It is well-known that a Population System can be modeled by

pk+1 = Apk, k = 0, 1, . . . ,

where pk is the population vector.

Let λ1, λ2, . . . , λn be the eigenvalues of A in decreasing order and
suppose that A has a set of independent eigenvectors v1, v2, . . . , vn.
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An example: The Population Study

The population pk at any time k > 0 is given by

pk = α1λ
k
1v1 + · · ·+ αnλ

k
nvn,

where p0 = α1v1 + · · ·+ αnvn.

Then

if |λ1| < 1 the population decreases to zero as k becomes large;
if |λ1| > 1

there is a long-term growth in the population;
the original population approaches a final distribution that is
defined by the eigenvector of the dominant eigenvalue;
the subdominant eigenvalue determines how fast the original
population distribution is approaching the final distribution.

if |λ1| = 1 over the long-term there is neither growth nor decay
in the population.
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Power Method and Inverse Power Method

You have already studied the Power method for approximating the
dominant eigenpair, i.e., the dominant eigenvalue and the
corresponding eigenvector.

By strictly modifying the Power Method, it is possible to deduce the
Inverse Power method for approximating the least dominant eigenpair,
i.e., the least dominant eigenvalue and the corresponding eigenvector.

Moreover, a strictly modification of the Inverse Power method let us
to improve a known approximation of one of the eigenvalues and to
compute the corresponding eigenvector.

Maria Carmela De Bonis, Ph.D. - University of Basilicata, Italy Computing the Subdominant Eigenvalues and Eigenvectors



Inverse Power Method

Let A be a diagonalizable n× n matrix and let λ1, λ2, . . . , λn denote
its eigenvalues in decreasing order such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| > |λn|,

i.e., the smallest eigenvalue λn has algebraic multiplicity 1 and other
eigenvalues with the same modulus do not exist. Let x1, . . . , xn

denote the corresponding eigenvectors.

The matrix A−1 has eigenvalues 1
λi
, i = 1, . . . , n, such that

1
|λn|

>
1

|λn−1|
≥ · · · ≥ 1

|λ1|

and 1
λn

is its largest eigenvalue.

Then, in order to approximate the smallest eigevalue of A it is possible
to apply the Power Method to the matrix A−1.This is the reason why
the corresponding method is known as Inverse Power Method.

Maria Carmela De Bonis, Ph.D. - University of Basilicata, Italy Computing the Subdominant Eigenvalues and Eigenvectors



Inverse Power Method

Starting from the Power Method:
uk = Atk−1

k = 1, 2, . . .

tk =
uk

max{uk}

where t0 = α1x1 + · · ·+ αnxn with ‖t0‖∞ = 1,

lim
k→+∞

max{uk} = λ1, lim
k→+∞

tk = x1,

the Power Method applied to A−1, becomes
Auk = tk−1

k = 1, 2, . . .

tk =
uk

max{uk}

lim
k→+∞

max{uk} =
1
λn
, lim

k→+∞
tk = x1.
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Inverse Power Method

Note that:

Since for any k = 1, 2, . . . it is necessary to solve the linear
system Auk = tk−1, in order to reduce the computational cost, it
is better to perform the factorization ΠA = LU before starting
the iterations and then solve the triangular systems:

Lyk = Πtk−1

k = 1, 2, . . .
Uuk = yk

If the method requires m iterations, the computational cost is
O
(

n3

3 + mn2
)

.

The convergence order is
∣∣∣ λn
λn−1

∣∣∣k, that is the larger the distance
between λn−1 and λn, the faster the convergence.
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Inverse Power Method to improve a known
approximation of an eigenvalue and compute its
eigenvector

Let A be a diagonalizable n× n matrix and assume that µ is an
approximation of the eigenvalue λ of A. We can write

(A− µI)x = Ax− µx = λx− µx = (λ− µ)x, being Ax = λx.

Then
λ− µ is an eigenvalue of the matrix A− µI and x is the
corresponding eigenvector.
η = 1

λ−µ is an eigenvalue of the matrix (A− µI)−1 and x is the
corresponding eigenvector.
If µ is very close to λ then η = 1

λ−µ is the dominant eigenvalue
of (A− µI)−1.

Therefore the computation of η = 1
λ−µ and then of λ = µ+ 1

η can be
performed applying the Inverse Power Method to the matrix
(A− µI)−1.
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Inverse Power Method to improve a known
approximation of an eigenvalue and compute its
eigenvector

Note that:
If the approximation µ of λ is not sufficiently good, the
convergence of the method becomes very slow.
If the approximation µ is very close to λ, the matrix (A− µI) is
obviously ill conditioned. Consequently, this ill-conditioning
might affect the computed approximations of the eigenvector.
Fortunately, in practice the ill-conditioning of the matrix
(A− µI) is exactly what we want: the error at each iteration
grows toward the direction of the eigenvector and, it is the
direction of the eigenvector in which we are interested.Wilkinson
(1965, pp. 620-621) has remarked that in practice uk is
remarkably close to the solution of

(A− µI + F)uk = tk−1, F small.
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Matrix Deflation

Once the dominant eigenpair (the dominant eigenvalue and the
corresponding eigenvector) or the least dominant eigenpair (the least
dominant eigenvalue and the corresponding eigenvector) have been
computed, the subdominant eigenvalue or the next least dominant
eigenvalue can be computed by using deflation.

The basic idea behind deflation is to replace the original matrix by
another matrix of the same or lesser dimension computed by using the
dominant or the least dominant eigenpair.

Such matrix called deflated matrix has the same eigenvalues as the
original one except the one used to deflate.
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Deflation Schemes

Two deflation schemes are commonly used in practice:

Hotelling Deflation

Householder Deflation
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Hotelling Deflation for approximating the subdominant
eigenpair

Let A be a diagonalizable n× n matrix and let λ1, λ2, . . . , λn denote
its eigenvalues in decreasing order. Then λ1 and λ2 are the dominant
and subdominant eigenvalues of A, respectively.

The Hotelling Deflation is a process that replaces the original matrix
A =: A1 by another matrix A2, of the same order of A1, having as
eigenvalues 0, λ2, . . . , λn. Then λ2 is the dominant eigenvalue of A2.

The construction of A2 is done using the spectral decomposition of the
matrix A.

In order to introduce it we premise some definitions.
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Right and Left eigenvectors

Let A be a diagonalizable n× n matrix and let λ1, λ2, . . . , λn denote
its eigenvalues.

A has a complete set of n linearly independent right eigenvectors
{xi}i=1,...,n as well as left eigenvectors {yi}i=1,...,n such that

Axi = λixi, yT
i A = λiyT

i , i = 1, . . . , n.

The name right eigenvector is often abbreviated to just eigenvector, in
which case the “right” qualifier is tacitly understood.

The left eigenvectors of A are the right eigenvectors of its transpose
AT , in fact, from the latter equality, we deduce

ATyi = λiyi, i = 1, . . . , n.
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Biorthonormal Right and Left eigenvectors

A set of left and right eigenvectors {xi}i=1,...,n and {yi}i=1,...,n is said
to be biorthonormal with respect to A if they verify

yT
i xj = xT

i yj = δi,j, i, j = 1, . . . , n,

where δi,j denotes the Kronecker delta.

Consequently, if the right and left eigenvectors {xi}i=1,...,n and
{yi}i=1,...,n are biorthonormalized, we have

yT
i Axi = λi, xT

i ATyi = λi, i = 1, . . . , n.
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Biorthonormal Right and Left eigenvectors

The biorthonormalized eigenvectors {xi}i=1,...,n and {yi}i=1,...,n can
be collected into two n× n eigenvector matrices built by stacking
eigenvectors as columns:

Y = [y1y2 · · · yn], X = [x1x2 · · · xn].

These matrices satisfy

YTX = XTY = I, X−1 = YT , Y−1 = XT .

Denoting by Λ the diagonal matrix having as diagonal entries the
eigenvalues λ1, λ2, . . . , λn of A, we get

YTAX = X−1AX = Λ

and
XTATY = Y−1ATY = Λ.
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Biorthonormal Right and Left eigenvectors

The biorthonormalized eigenvectors {xi}i=1,...,n and {yi}i=1,...,n can
be collected into two n× n eigenvector matrices built by stacking
eigenvectors as columns:

YT = [yT
1 yT

2 · · · yT
n ], X = [x1x2 · · · xn].

These matrices satisfy

YTX = XTY = I, X−1 = YT , Y−1 = XT .

Denoting by Λ the diagonal matrix having as diagonal entries the
eigenvalues λ1, λ2, . . . , λn of A, we get

YTAX = X−1AX = Λ

and
XTATY = Y−1ATY = Λ.
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Spectral decomposition of A

Starting from
X−1AX = Λ,

multiplying both sides of it on the left by X we get

AX = XΛ.

Moreover, multiplying both sides of the latter equation on the right by
X−1 = YT , we deduce the so-called spectral decomposition of A

A = XΛYT =

n∑
i=1

λixiyT
i .
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Symmetric Real Matrices

Symmetric real matrices are diagonalizable and thus posses complete
set linearly independent eigenvectors. Right and left eigenvectors
coalesce: yi = xi, i = 1, . . . , n, and such qualifiers may be omitted.

The eigenvectors xi, i = 1, . . . , n, can be orthonormalized so that

xT
i xj = δi,j, xT

i Axi = λi, i, j = 1, . . . , n.

If eigenvectors are stacked as columns of a matrix X, the foregoing
orthonormality conditions can be compactly stated as

XTX = I, XTAX = Λ

and the spectral decomposition of A becomes

A = XΛXT =
n∑

i=1

λixixT
i .

The above properties hold true also for the more general class of
Hermitian matrices, replacing the transpose operator by the conjugate
transpose.
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Hotelling Deflation for approximating the subdominant
eigenpair

Suppose that the dominant eigenvalue λ1 with associated right
eigenvector x1 and left eigenvector y1 are known.

Taking into account the spectral decomposition of A

A =

n∑
i=1

λixiyT
i ,

the deflated matrix A2 is computed as follows

A2 = A− λ1x1yT
1 .

Obviously this has a spectral decomposition identical to the one of A
except that λ1 is replaced by 0. Then 0, λ2, . . . , λn are the eigenvalues
of A2 and λ2 is its dominant eigenvalue.

If A is symmetric, y1 = x1 and also A2 is symmetric.
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Algorithm: Hotelling Deflation for approximating the
subdominant eigenpair

Step 1 Compute the dominant eigenvalue λ1 and the dominant right
eigenvector x1 of the matrix A using the power method

Step 2 Compute the dominant right eigenvector y1 of the matrix AT

using the inverse power method. y1 is also the dominant left
eigenvector of A.

Step 3 Compute the biorthonormalized eigenvectorsx1 = x1√
yT

1 x1
, y1 = y1√

yT
1 x1

if yT
1 x1 > 0

x1 = − x1√
−yT

1 x1
, y1 = y1√

−yT
1 x1

if yT
1 x1 < 0

Step 4 Compute A2 = A− λ1x1yT
1

Step 5 Compute the dominant eigenvalue λ2 and the dominant right
eigenvector x2 of the matrix A2 using the power method. λ2 and
x2 are the subdominant eigenpair of A.
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Computational Cost of Hotelling Deflation for
approximating the subdominant eigenpair

Step 1 Compute the dominant eigenvalue λ1 and the dominant right
eigenvector x1 of the matrix A using the power method. O(m1n2)

Step 2 Compute the dominant right eigenvector y1 of the matrix AT

using the inverse power method. y1 is also the dominant left
eigenvector of A. O

(
n3

3 + m2n2
)

Step 3 Compute the biorthonormalized eigenvectors O(n)x1 = x1√
yT

1 x1
, y1 = y1√

yT
1 x1

if yT
1 x1 > 0

x1 = − x1√
−yT

1 x1
, y1 = y1√

−yT
1 x1

if yT
1 x1 < 0

Step 4 Compute A2 = A− λ1x1yT
1 O(n2)

Step 5 Compute the dominant eigenvalue λ2 and the dominant right
eigenvector x2 of the matrix A2 using the power method. λ2 and
x2 are the subdominant eigenpair of A. O(m3n2)
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Computational Cost of Hotelling Deflation for
approximating the subdominant eigenpair

Summing up the computational cost of the method is

O
(

n3

3
+ m1n2 + m2n2 + m3n2

)
.

If the matrix A is symmetric the computational cost becomes

O
(
m1n2 + m3n2).
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Hotelling Deflation cannot be used for approximating
the next least dominant eigenpair

Suppose that the least dominant eigenvalue λn with associated right
eigenvector xn and left eigenvector yn are known.

Taking into account the spectral decomposition of A

A =

n∑
i=1

λixiyT
i ,

the deflated matrix A2 becomes

A2 = A− λnxnyT
n .

Then λ1, λ2, . . . , λn−1, 0 are the eigenvalues of A2 and 0 is its least
dominant eigenvalue!
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Householder Deflation for approximating the
subdominant eigenpair

Let A be a diagonalizable n× n matrix and let λ1, λ2, . . . , λn denote
its eigenvalues in decreasing order. Then λ1 and λ2 are the dominant
and subdominant eigenvalues of A, respectively.

The Householder Deflation constructs a deflated matrix A2, of order
n− 1, using a similarity transformation on A := A1.

A2 has the same eigenvalues of A1 except for λ1. Then λ2 is the
dominant eigenvalue of A2.

The construction of A2 is done using a Householder matrix.

In order to introduce it we premise some definitions.
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Householder Matrix

A Householder matrix is a matrix of the following form

H = I − 2uuT ,

where u is a nonzero vector such that ‖u‖2 = 1. It is also known as
elementary reflector or Householder transformation.

Next figure gives a geometric interpretation of a Householder
transformation.
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Householder Matrix

Powered by TCPDF (www.tcpdf.org)

Let us consider a nonzero vector x and let us denote by v its
component parallel to u and by w its component orthogonal to u.
Then

v = αu, α ∈ R, uTw = 0.

Letting x = v + w, we get

Hx = Hv + Hw = v− 2uuTv + w− 2uuTw = v + w− 2uuTv

and, since u(uTv) = αu = v, we have

Hx = −v + w,

i.e., H reflects x with respect to the axis through the origin
perpendicular to u.
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Householder Matrix

The Householder matrix H verifies the following properties:

H is symmetric, then H = HT ;

H2 = I, then H reflects a vector to the other side of the axis
perpendicular to u and H2 reflects a vector back to itself;

H is orthogonal, then HHT = HTH = I.

det(H) = −1. Letting P = {w ∈ Rn : uTw = 0}, P is a
(n− 1)-dimensional subspace of Rn having n− 1 linearly
independent vectors y1, . . . , yn−1. It is
Hyi = yi, i = 1, . . . , n− 1, then 1 is an (n− 1)-fold eigenvalue.
Moreover, since Hu = −u, −1 is a simple eigevalue of H.
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Householder Matrix

The importance of Householder matrices lies in the fact that they can
also be used to create zeros in a vector.

Teorema
Given a nonzero vector x = (x1, . . . , xn) 6= e1 = (1, 0, . . . , 0)T , the
elementary reflector

H = I − uuT

β
,

with u = x + σe1, β = uT u
2 and σ = ±‖x‖2 is such that

Hx = −σe1.
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Proof

It is easy to verify that

Hx = x− uTx
β

u.

Since

uTx = (x+σe1)Tx = (xT+σeT
1 )x = xTx+σeT

1 x = σ2+σx1 = σ(σ+x1)

and

β =
uTu

2
=

1
2

(x+σe1)T(x+σe1) =
1
2

(xTx+2σx1+σ2) = σ(σ+x1),

we get
Hx = x− u = x− (x + σe1) = −σe1. �
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Remarks

The couple (u, β) of n + 1 real numbers is sufficient to uniquely
determine the matrix H having n2 entries. The Householder
matrix itself does not have to be formed in practice.
The matrix-vector product with a Householder matrix can be
performed just by using the couple (u, β) with only O(n) flops.
In fact, for any nonzero vector a,

Ha = (I − uuT

β
)a = a− uTa

β
u.

The usual matrix-vector product requires O(n2) flops.
The matrix-matrix products with a Householder matrix can be
performed just by using the couple (u, β) with only O(n2) flops.
In fact,

HA = H(a1, a2, . . . , an) = (Ha1,Ha2, . . . ,Han)

and
AH = (HAT)T .

The usual matrix-matrix product requires O(n3) flops.
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Householder Deflation for approximating the
subdominant eigenpair

Suppose that the dominant eigenvalue λ1 and the corresponding
eigenvector x1 are known.

The method is based upon the following result:

Teorema
Let (λ1, x1) be the dominant eigenpair of the n× n matrix A and let H
be the Householder matrix such that Hx1 = −σe1, σ ∈ R. Then

HAH =

(
λ1 bT

0 A2

)
,

where A2 is a (n− 1)× (n− 1) matrix and its eigenvalues are the
same as those of A except for λ1.
In particular the dominant eigenvalue of A2 is λ2, which is the
subdominant eigenvalue of A.
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Proof

Since Ax1 = λ1x1 and H2 = I, we have

HAHHx1 = λ1Hx1

and, taking into account that Hx1 = −σe1 we get

HAHσe1 = λ1σe1

and, then
HAHe1 = λ1e1.

This means that the first column of HAH is λ1 times the first column
of the identity matrix I. Thus HAH must have the form

HAH =

(
λ1 bT

0 A2

)
.

Moreover, since
det(A− λI) = det(HAH − λI) = det(λ1 − λ) det(A2 − λI), it follows
that the eigenvalues of A2 are the same as those of A minus λ1. �
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Algorithm: Householder Deflation for approximating
the subdominant eigenpair

Step 1 Compute the dominant eigenvalue λ1 and the dominant
eigenvector x1 of the matrix A using the power method

Step 2 Compute the Householder matrix H such that Hx1 = −σe1.

Step 3 Compute the matrix HAH

Step 4 Compute the matrix A2, dropping the first row and the first
column of HAH

Step 5 Compute the dominant eigenvalue λ2 of the matrix A2 using the
power method. λ2 is the subdominant eigenvalue of A

Step 6 Compute the dominant eigenvector x2 of the matrix A using the
inverse power method.
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Computational cost of Householder Deflation for
approximating the subdominant eigenpair

Step 1 Compute the dominant eigenvalue λ1 and the dominant
eigenvector x1 of the matrix A using the power method.
O
(
m1n2

)
Step 2 Compute the Householder matrix H such that Hx1 = −σe1.

O (n)

Step 3 Compute the matrix HAH O
(
2n2
)

Step 4 Compute the matrix A2, dropping the first row and the first
column of HAH

Step 5 Compute the dominant eigenvalue λ2 of the matrix A2 using the
power method. λ2 is the subdominant eigenvalue of A. O

(
m2n2

)
Step 6 Compute the dominant eigenvector x2 of the matrix A using the

inverse power method. O
(

n3

3 + m3n2
)

Maria Carmela De Bonis, Ph.D. - University of Basilicata, Italy Computing the Subdominant Eigenvalues and Eigenvectors



Computational cost of Householder Deflation for
approximating the subdominant eigenpair

Summing up the computational cost of the method is

O
(

n3

3
+ m1n2 + m2n2 + m3n2

)
.
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Algorithm: Householder Deflation for approximating
the next least dominant eigenpair

Step 1 Compute the least dominant eigenvalue λn and the least
dominant eigenvector xn of the matrix A using the inverse power
method.

Step 2 Compute the Householder matrix H such that Hxn = −σe1.

Step 3 Compute the matrix HAH

Step 4 Compute the matrix A2, dropping the first row and the first
column of HAH

Step 5 Compute the least dominant eigenvalue λn−1 of the matrix A2
using the inverse power method. λn−1 is the next least dominant
eigenvalue of A.

Step 6 Compute the next least dominant eigenvector xn−1 of the matrix
A using the inverse power method.
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Computational cost of Householder Deflation for
approximating the next least dominant eigenpair

Step 1 Compute the least dominant eigenvalue λn and the least
dominant eigenvector xn of the matrix A using the inverse power
method. O

(
n3

3 + m1n2
)

Step 2 Compute the Householder matrix H such that Hxn = −σe1.
O (n)

Step 3 Compute the matrix HAH. O
(
2n2
)

Step 4 Compute the matrix A2, dropping the first row and the first
column of HAH.

Step 5 Compute the least dominant eigenvalue λn−1 of the matrix A2
using the inverse power method. λn−1 is the next least dominant
eigenvalue of A. O

(
n3

3 + m2n2
)

Step 6 Compute the next least dominant eigenvector xn−1 of the matrix
A using the inverse power method. O

(
n3

3 + m3n2
)
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Computational cost of Householder Deflation for
approximating the next least dominant eigenpair

Summing up the computational cost of the method is

O
(

2
n3

3
+ m1n2 + m2n2 + m3n2

)
.
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Conclusions

Approximation of the subdominant eigenpair

Hotelling Deflation O
(

n3

3
+ m1n2 + m2n2 + m3n2

)
flops. If A

is symmetric O
(
m1n2 + m3n2) flops.

Householder Deflation O
(

n3

3
+ m1n2 + m2n2 + m3n2

)
flops

Approximation of the next least dominant eigenpair

Householder Deflation O
(

2
n3

3
+ m1n2 + m2n2 + m3n2

)
The Hotelling Deflation has rather poor numerical stability
(Wilkinson, 1965, pp. 585).

Maria Carmela De Bonis, Ph.D. - University of Basilicata, Italy Computing the Subdominant Eigenvalues and Eigenvectors


