Density Problems in Sobolev’s Spaces on Time Scales
 Download PDF
 Download PDF
Authors: A. B. CHERIF AND F. Z. LADRANI
DOI: 10.46793/KgJMat2102.215C
Abstract:
In this paper, we present a generalization of the density some of the functional spaces on the time scale, for example, spaces of rd-continuous function, spaces of Lebesgue Δ-integral and first-order Sobolev’s spaces.
Keywords:
Time scale, Lebesgue’s spaces, Sobolev’s spaces.
References:
[1] M. Bohner and A. C.Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser Boston, Boston, 2001.
[2] M. Bohner and A. C. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser Boston, Boston, 2003.
[3] A. Cabada and D. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral, application to the calculus of Δ-antiderivatives, Math. Comput. Modelling 43 (2006), 194–207.
[4] S. Hilger, Ein Maβkettenakalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 (in German).
[5] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
[6] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1996.
[7] R. B. Agarwal, V. O. Espinar, K. Perera and D. R. Vivero, Basic properties of Sobolev’s spaces on time scales, Adv. Difference Equ. (2006), 1–14.
 [8]   A. Benaissa Cherif, A. Hammoudi and F. Z. Ladrani, Density
    problems in LpΔ space, Electronic Journal of Mathematical
    Analysis and Applications 1(2) (2013), 178–187.
 space, Electronic Journal of Mathematical
    Analysis and Applications 1(2) (2013), 178–187.
    
[9] Y. H. Sua and Z. Fengb, Variational approach for a p-Laplacian boundary value problem on time scales, Appl. Anal. 97(13) (2017), DOI 10.1080/00036811.2017.1359566.
