Ostrowski–Grüss Type Inequalities and a 2D Ostrowski Type Inequality on Time Scales Involving a Combination of $\Delta$-Integral Means
Download PDF
Authors: S. KERMAUSUOR AND E. R. NWAEZE
DOI: 10.46793/KgJMat2001.127K
Abstract:
In this paper, we derived two Ostrowski–Grüss type inequalities on time scales involving a combination of Δ-integral means. One of the inequalities is sharp. We also obtained 2-dimensional Ostrowski type inequality involving a combination of Δ-integral means. Our results extend some known results in the literature. Furthermore, we apply our results to the continuous, discrete and quantum calculus to obtain some interesting inequalities in these directions.
Keywords:
Montgomery identity, Ostrowski’s inequality, Ostrowski–Grüss inequality, Δ-integral means, double integrals, time scales.
References:
[1] R. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4(4) (2001), 535–557.
[2] M. Bohner and T. Matthews, The Grüss inequality on time scales, Commun. Math. Anal. 3(1) (2007), 1–8.
[3] M. Bohner and T. Matthews, Ostrowski inequalities on time scales, Journal of Inequalities in Pure and Applied Mathematics 9(1) 2008, Article ID 6.
[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Boston, MA, 2001.
[5] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Series, Birkhäuser Boston, Boston, MA, 2003.
[6] M. Bohner and G. S. Guseinov, Partial differentiation on time scales, Dynam. Systems Appl. 13(3–4) (2004), 351–379.
[7] M. Bohner and G. S. Guseinov, Multiple integration on time scales, Dynam. Systems Appl. 14(3–4) (2005), 579–606.
[8] P. Cerone, A new Ostrowski type inequality involving integral means over end intervals, Tamkang J. Math. 33 (2002), 109–118.
[9] S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl. 33 (1997), 15–20.
[10] S. S. Dragomir and N. S. Barnett, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, Indian J. Math. 66(1-4) (1999), 237–245.
[11] S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988.
[12] S. Hussain, M. A. Latif and M. Alomari, Generalized double integral Ostrowski type inequalities on time scales, Appl. Math. Lett. 24(8) (2011), 1461–1467.
[13] W. Irshad, M. I. Bhatti and M. Muddassar, Some Ostrowski type integral inequalities for double integral on time scales, J. Comput. Anal. Appl. 20(5) (2016), 914–927.
[14] Y. Jiang, H. Rüzgar, W. J. Liu and A. Tuna, Some new generalizations of Ostrowski type inequalities on time scales involving combination of Δ-integral means, J. Nonlinear Sci. Appl. 7 (2014), 311–324.
[15] S. Kermausuor, E. R. Nwaeze and D. F. M. Torres, Generalized weighted Ostrowski and Ostrowski-Grüss type inequalities on time scale via a parameter function, J. Math. Inequal. 11 (2017), 1185–1199.
[16] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamic Systems on Measure Chains, Mathematics and its Applications 370, Kluwer Academic Publishers Group, Dordrecht, 1996.
[17] W. J. Liu, Q. A Ngô and W. Chen, Ostrowski type inequalities on time scales for double integrals, Acta Appl. Math. 110(1) (2010), 477–497.
[18] W. J. Liu, Q. A. Ngô and W. Chen, On new Ostrowski type inequalities for double integrals on time scales, Dynam. Systems Appl. 19 (2010), 189–198.
[19] W. J. Liu and A. Ngô, A new generalization of Ostrowski type inequality on time scales, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 17(2) (2009), 101–114.
[20] W. J. Liu and A. Ngô, An Ostrowski–Grüss type inequality on time scales, Comput. Math. Appl. 58 (2009), 1207–1210.
[21] Q. A. Ngô and W. J. Liu, A sharp Grüss type inequality on time scales and application to the sharp Ostrowski–Grüss inequality, Commun. Math. Anal. 6(2) (2009), 33–41.
[22] E. R. Nwaeze, A new weighted Ostrowski type inequality on arbitrary time scale, Journal of King Saud University 29(2) (2017), 230–234.
[23] A. M. Ostrowski, Über die Absolutabweichung einer Differentiebaren Funktion von ihrem Inte-gralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.
[24] U. M. Özkan and H. Yildirim, Ostrowski type inequality for double integrals on time scales, Acta Appl. Math. 110(1) (2010), 283–288.
[25] A. Tuna and S. Kutukcu, New generalization of the Ostrowski inequality and Ostrowski type inequality for double integrals on time scales, J. Comput. Anal. Appl. 21(6) (2016), 1024–1039.
[26] A. Tuna and D. Daghan, Generalization of Ostrowski and Ostrowski–Grüss type inequalities on time scales, Comput. Math. Appl. 60 (2010), 803–811.