New Upper and Lower Bounds for Some Degree-based Graph Invariants
Download PDF
Authors: A. GHALAVAND, A. ASHRAFI AND I. GUTMAN
DOI: 10.46793/KgJMat2002.181G
Abstract:
For a simple graph G with vertex set V (G) and edge set E(G), let deg(u) be the degree of the vertex u ∈ V (G). The forgotten index of G and its coindex are defined as F(G) = ∑ v∈V (G) deg 3(v) and F(G) = ∑ uv⁄∈E(G) deg 2(u) + deg 2(v). New bonds for the first Zagreb index M1(G) = ∑ v∈V (G) deg(v)2, forgotten index, and its coindex are obtained.
Keywords:
Degree (of vertex), coindex, forgotten index, F-index, Zagreb index.
References:
[1] H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F-index, Kuwait J. Sci. 44(4) (2017), 1–8.
[2] S. Akhter and M. Imran, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb. 14 (2017), 70–79.
[3] S. Akhter, M. Imran and M. R. Farahani, Extremal unicyclic and bicyclic graphs with respect to the F-index, AKCE Int. J. Graphs Comb. 14 (2017), 80–91.
[4] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184–1190.
[5] B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017), 17–100.
[6] Z. Che and Z. Chen, Lower and upper bounds of the forgotten topological index, MATCH Commun. Math. Comput. Chem. 76 (2016), 635–648.
[7] N. De, S. M. Abu Nayeem and A. Pal, F-index of some graph operations, Discrete Math. Algorithms Appl. 8 (2016), ID 1650025.
[8] N. De, S. M. Abu Nayeem and A. Pal, The F coindex of some graph operations, Springer Plus 5 (2016), Paper ID 221.
[9] W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil and M. R. Farahani, Forgotten topological index of chemical structure in drugs, Saudi Pharma. J. 24 (2016), 258–264.
[10] S. Ghobadi and M. Ghorbaninejad, The forgotten topological index of four operations on some special graphs, Bulletin of Mathematical Sciences and Applications 16 (2016), 89–95.
[11] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83–92.
[12] I. Gutman, A. Ghalavand, T. Dehghan-Zadeh and A. R. Ashrafi, Graphs with smallest forgotten index, Iranian Journal of Mathematical Chemistry 8 (2017), 259–273.
[13] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972), 535–538.
[14] A. Khaksari and M. Ghorbani, On the forgotten topological index, Iranian Journal of Mathematical Chemistry 8 (2017), 327–338.
[15] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004), 57–62.
[16] I. Ž. Milovanović, E. I. Milovanović, I. Gutman and B. Furtula, Some inequalities for the forgotten topological index, International Journal of Applied Graph Theory 1 (2017), 1–15.
[17] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croatica Chemica Acta 76 (2003), 113–124.
[18] S. Zhang and H. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006), 427–438.