Existence, Uniqueness and Stability of Periodic Solutions for Nonlinear Neutral Dynamic Equations


Download PDF

Authors: F. BOUCHELAGHEM, A. ARDJOUNI AND A. DJOUDI

DOI: 10.46793/KgJMat2002.189B

Abstract:

The nonlinear neutral dynamic equation with periodic coefficients

[u(t) −  g(u (t − τ (t)))] Δ
= p(t) a(t)uσ(t) a(t)g(uσ(t τ(t))) h(u(t),u(t τ(t)))
is considered in this work. By using Krasnoselskii’s fixed point theorem we obtain the existence of periodic and positive periodic solutions and by contraction mapping principle we obtain the uniqueness. Stability results of this equation are analyzed. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [?].

Keywords:

Fixed point, periodic solutions, stability, dynamic equations, time scales.



References:

[1]   M. Adivar and Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electron. J. Qual. Theory Differ. Equ. 2009(1) (2009), 1–20.

[2]   A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Malaya Journal of Matematik 2(1) (2013), 60–67.

[3]   A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a time scale, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52(1) (2013), 5–19.

[4]   A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3061–3069.

[5]   A. Ardjouni and A Djoudi, Stability in neutral nonlinear dynamic equations on time scale with unbounded delay, Stud. Univ. Babeç-Bolyai Math. 57(4) (2012), 481–496.

[6]   A. Ardjouni and A. Djoudi, Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale, Rend. Semin. Mat. Univ. Politec. Torino 68(4) (2010), 349–359.

[7]   M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001.

[8]   M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.

[9]   T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.

[10]   S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universität Würzburg, 1988.

[11]   E. R. Kaufmann and Y. N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl. 319 (2006) 315–325.

[12]   E. R. Kaufmann and Y. N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equation with functional delay on a time scale, Electron. J. Differential Equations 2007(27) (2007), 1–12.

[13]   V. Lakshmikantham, S. Sivasundaram and B. Kaymarkcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.

[14]   M. B. Mesmouli, A. Ardjouni and A. Djoudi, Existence and stability of periodic solutions for nonlinear neutral differential equations with variable delay using fixed point technique, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 54(1) (2015), 95–108.

[15]   R. Olach, Positive periodic solutions of delay differential equations, Appl. Math. Lett. 26 (2013), 1141–1145.

[16]   D. R. Smart, Fixed Points Theorems, Cambridge University Press, Cambridge, UK, 1980.

[17]   Y. Yuan and Z. Guo, On the existence and stability of periodic solutions for a nonlinear neutral functional differential equation, Abstr. Appl. Anal. 2013 (2013), 1–8.