Numerical Radius Inequalities in 2-Inner Product Spaces


Download PDF

Authors: P. HARIKRISHNAN, H. R. MORADI AND M. E. OMIDVAR

DOI: 10.46793/KgJMat2003.415H

Abstract:

In this paper, we have obtained the analogue results on numerical radius inequalities from the classical inner product spaces to 2-inner product spaces. We have established several related reverse inequalities and some well known results in 2-inner product spaces.



Keywords:

2-inner product space, linear 2-normed space, numerical range, numerical radius.



References:

[1]   Y. Cho, C. Lin, S. Kim and A. Misiak, Theory of 2-inner Product Spaces, Nova Science Pub Inc, Huntington, 2001.

[2]   C. Diminnie, 2-inner product spaces, Demonstr. Math. 6 (1973), 525–536.

[3]   S. S. Dragomir, Y. J. Cho, S. S. Kim and A. Sofo, Some Boas-Bellman type inequalities in 2-inner product spaces, Journal of Inequalities in Pure and Applied Mathematics 6(2) (2005), Article ID 55.

[4]   R. Ehret, Linear 2-Normed Spaces, Doctoral Dissertation, Saint Louis University, 1968.

[5]   R. Freese, S. S. Dragomir, Y. J. Cho and S. S. Kim, Some companions of gruss inequality in 2-inner product spaces and applications for determinantal integral inequalities, Commun. Korean Math. Soc. 20 (2005), 487–503.

[6]   R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, New York, 2001.

[7]   K. E. Gustafson and D. K. Rao, Numerical range, in: Numerical Range, Springer-Verlag, New York, 1997, 1–26.

[8]   P. Harikrishnan, P. Riyas and K. Ravindran, Riesz theorems in 2-inner product spaces, Novi Sad J. Math. 41 (2011), 57–61.

[9]   Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42 (1999), 353–368 .

[10]   M. E. Omidvar, H. R. Moradi, S. S. Dragomir and Y. J. Cho, Some reverses of the Cauchy-Schwarz and triangle inequalities in 2-inner product spaces, Kragujevac J. Math. 41 (2017), 81–92.