Beurling’s Theorem for the Q-Fourier-Dunkl Transform


Download PDF

Authors: E. M. LOUALID, A. ACHAK AND R. DAHER

DOI: 10.46793/KgJMat2101.039L

Abstract:

The Q-Fourier-Dunkl transform satisfies some uncertainty principles in a similar way to the Euclidean Fourier transform. By using the heat kernel associated to the Q-Fourier-Dunkl operator, we establish an analogue of Beurling’s theorem for the Q-Fourier-Dunkl transform Q on .

Keywords:

Q-Fourier-Dunkl transform, Beurling’s theorem, uncertainty principles.

References:

[1]   

A. Achak, R. Daher and H. Lahlali, Beurling’s theorem for Bessel-Struve transform, C. R. Math. 354(1) (2016), 81–85.

[3]   A. Beurling, The Collected Works of Arne Beurling, Birkhauser, Boston, 1989.

[4]   A. Bonami, B. Demange and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2002), 22–35.

[5]   L. Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 2(2) (1991), 237–240.

[6]   S. Negzaoui, Beurling-Hörmander’s theorem related to Bessel-Struve transform, Integral Transforms Spec. Funct. 27(9) (2016), 685–697.

[2]   E. A. Al Zahrani, H. El Mir and M. A. Mourou, Intertwining operators associated with a Dunkl-type operator on the real line and applications, Far East Journal of Applied Mathematics and Applications 64(2) (2012), 129–144.