On $lambda$-Pseudo Bi-Starlike Functions with Respect to Symmetric Points Associated to Shell-Like Curves
Download PDF
Authors: G. MURUGUSUNDARAMOORTHY, K. VIJAYA AND H. ÖZLEM GüNEY
DOI: 10.46793/KgJMat2101.103M
Abstract:
In this paper we define a new subclass λ−pseudo bi-starlike functions with respect to symmetric points of Σ related to shell-like curves connected with Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients |a2| and |a3| for f ∈????????ℒs,Σλ(α, (z)). Further we determine the Fekete-Szegö result for the function class ????????ℒs,Σλ(α, (z)) and for special cases, corollaries are stated which some of them are new and have not been studied so far.
Keywords:
Analytic functions, bi-univalent, shell-like curve, Fibonacci numbers, starlike functions.
References:
[1] K. O. Babalola, On λ−pseudo-starlike functions, J. Class. Anal. 3(2) (2013), 137–147.
[2] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22 (1970), 476–485.
[3] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2) (1986), 70–77.
[4] P. L. Duren, Univalent functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[5] S. S. Eker and B. Seker, On λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical points, Tbilisi Math. J. 11(1) (2018), 49–57.
[6] R. Jurasiska and J. Stankiewicz, Coefficients in some classes defined by subordination to multivalent majorants, in: Proceedings of Conference on Complex Analysis, Bielsko-Biala, 2001, Ann. Polon. Math. 80 (2003), 163–170.
[7] J. Dziok, R. K. Raina and J. Sokół, On α-convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. Comp. 218 (2011), 996–1002.
[8] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. Lond. Math. Soc. 8 (1933), 85–89.
[9] W. Ma and D. Minda, A Unified treatment of some special cases of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, International Press, Cambridge, USA, 157–169.
[10] S. S. Miller and P. T. Mocanu, Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics 225, Marcel Dekker, New York, 2000.
[11] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
[12] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[13] R. K. Raina and J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca 66 (2016), 135–140.
[14] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis 175 (1999), 111–116.
[15] J. Sokół, On some subclass of strongly starlike functions, Demonstr. Math. 31(1) (1998), 81–86
[16] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Resoviensis 147 (1996), 101–105
[17] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010), 1188–1192.
[18] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficinet estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994.
[19] X-F. Li and A-P Wang, Two new subclasses of bi-univalent functions, International Mathematical Forum 7(30) (2012), 1495–1504.
[20] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21(10) (2014),169–178.