Chebyshev Polynomials for Certain Subclass of Bazilevic Functions Associated with Ruscheweyh Derivative
Download PDF
Authors: A. R. S. JUMA, S. N. AL-KHAFAJI AND O. ENGEL
DOI: 10.46793/KgJMat2102.173J
Abstract:
In this paper, through the instrument of the well-known Chebyshev polynomials and subordination, we defined a family of functions, consisting of Bazilević functions of type α, involving the Ruscheweyh derivative operator. Also, we investigate coefficient bounds and Fekete-Szegö inequalities for this class.
Keywords:
Analytic functions, univalent functions, Chebyshev polynomials, Ruscheweyh derivative operator, subordination, Fekete-Szegö inequalities, Bazilević functions.
References:
[1] S. Altinkaya and S. Y. Cin, On the chebyshev polynomial bounds for classes of univalent functions, Khayyam J. Math. 2 (2016), 1–5.
[2] S. Altinkaya and S. Y. Cin, Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the chebyshev polynomials, Asia Pacific Journal of Mathematics 4 (2017), 90–99.
[3] S. Altinkaya and S. Y. Cin, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math. 5 (2017), 34–40.
[4] L. A. R. Bucur and D. Breaz, Coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using a new differential operator, Appl. Math. Sci. 9 (2015), 1355–1368.
[5] N. M. S. Bulut and C. Abirami, A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials, J. Fract. Calc. Appl. 8 (2017), 32–39.
[6] N. M. S. Bulut and V. Balaji, Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, J. Class. Anal. 11 (2017), 83–89.
[7] P. Duren, Univalent Functions, Grundlehren der Mathematischen, Wissenschaften 259, Springer-Verlag, New York, Berlin, Tokyo, 2001.
[8] R. El-Ashwah and S. Kanas, Fekete-Szegö inequalities for quasi-subordination functions classes of complex order, Kyungpook Math. J. 55 (2015), 679–688.
[9] R. R. J. Dziok and J. Sokól, Application of chebyshev polynomials to classes of analytic functions, C. R. Math. Acad. Sci. Paris 353 (2015), 433–438.
[10] M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 2 (1933), 85–89.
[11] H. Güney, Initial Chebyshev polynomial cofficient bound estimates for bi-univalent functions, Acta Univ. Apulensis Math. Inform. (2016), 159–165.
[12] F. Keogh and E. Merkes, A coefficient inquality for certain classes of analytic functions, Proc. Amer. Math. Soc. (1969), 8–12.
[13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. (1975), 109–115.
[14] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. (1981), 521–527.
[15] E. Whittaker and G. Watson, A course of modern analysis. an introduction to the general theory of infinite processes and of analytic functions, ZAMM - Journal of Applied Mathematics and Mechanics 43 (1963), 435.