A Categorical Connection Between Categories $(m, n)$-Hyperrings and $(m, n)$-Ring via the Fundamental Relation $\Gamma^\ast$


Download PDF

Authors: A. ASADI, R. AMERI AND M. NOROUZI

DOI: 10.46793/KgJMat2103.361A

Abstract:

Let R be an (m,n)-hyperring. The Γ-relation on R in the sense of Mirvakili and Davvaz [?] is the smallest strong compatible relation such that the quotient R∕Γ is an (m,n)-ring. We use Γ-relation to define a fundamental functor, F from the category of (m,n)-hyperrings to the category of (m,n)-rings. Also, the concept of a fundamental (m,n)-ring is introduced and it is shown that every (m,n)-ring is isomorphic to R∕Γ for a nontrivial (m,n)-hyperring R. Moreover, the notions of partitionable and quotientable are introduced and their mutual relationship is investigated. A functor G from the category of classical (m,n)-rings to the category of (m,n)-hyperrings is defined and a natural transformation between the functors F and G is given.



Keywords:

(m,n)-rings, (m,n)-hyperrings, Γ-relation, category.



References:

[1]   R. Ameri, A. Borzooei and M. Hamidi, On categorical connections of hyperrings and rings via the fundamental relation, Int. J. Algebraic Hyperstructures Appl. 1(1) (2014), 108–121.

[2]   R. Ameri and M. Norouzi, Prime and primary hyperideals in Krasner (m,n)-hyperrings, European J. Combin. 34 (2013), 379–390.

[3]   S. M. Anvariyeh and B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, J. Algebra 322 (2009), 1340–1359.

[4]   S. M. Anvariyeh, S. Mirvakili and B. Davvaz, ????-relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra 36(2) (2008), 622–631.

[5]   S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Fundamental relation on (m,n)-hypermodules over (m,n)-hyperrings, Ars Combin. 94 (2010), 273–288.

[6]   P. Corsini, Prolegomena of Hypergroup Theory, 2nd Ed. Aviani, Udine, 1993.

[7]   P. Corsini and V. Leoreanu-Fotea, Applications of Hyperstructure Theory, Advances in Mathematics 5, Kluwer Academic Publishers, Dordrecht, 2003.

[8]   A. Connes and C. Consani, The hyperring of Adele classes, J. Number Theory 131(2) (2011), 159–194.

[9]   G. Crombez, On (m,n)-rings, Abh. Akad. Wiss. Hamburg 37 (1972), 180–199.

[10]   G. Crombez and J. Timm, On (m,n)-quotient rings, Abh. Akad. Wiss. Hamburg 37 (1972), 200–203.

[11]   B. Davvaz, Approximations in n-ary algebraic systems, Soft Comput. 12 (2008), 409–418.

[12]   B. Davvaz, W. A. Dudek and S. Mirvakili, Neutral elements, fundamental relations and n-ary hypersemigroups, Internat. J. Algebra Comput. 19 (2009), 567–583.

[13]   B. Davvaz, P. Ghiasvand and S. Mirvakili, Boolean rings obtained from hyperrings with η1,m-relations, Iran. J. Sci. Technol. Trans. A Sci. (to appear).

[14]   B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, Fla, USA, 2007.

[15]   B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (Hv-rings) with α-relation, Comm. Algebra 35(11) (2007), 3307–3320.

[16]   B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci. 30(A2) (2006), 165–174.

[17]   M. De Salvo, Hyperrings and hyperfields, Annales Scientifiques de l’Universite de Clermont-Ferrand II 22 (1984), 89–107.

[18]   W. A. Dudek, On n-ary group with only one skew element, Radovi Matematicki (Sarajevo) 6 (1990), 171–175.

[19]   W. A. Dudek, Unipotent n-ary groups, Demonstr. Math. 24 (1991), 75–81.

[20]   W. A. Dudek, Varieties of polyadic groups, Filomat 9 (1995), 657–674.

[21]   W. A. Dudek, On distributive n-ary groups, Quasigroups Related Systems 2 (1995), 132–151.

[22]   W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Mathematische Zeitschrift 29 (1928), 1–19.

[23]   D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30(8) (2002), 3977–3989.

[24]   E. Kasner, An extension of the group concept, Bull. Amer. Math. Soc. 10 (1904), 290–291.

[25]   M. Koskas, Groupoids, demi-hypergroupes et hypergroupes, J. Math. Pures Appl. 49(9) (1970), 155–192.

[26]   M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci. 6(2) (1983), 307–311.

[27]   V. Leoreanu-Fotea, Canonical n-ary hypergroups, Ital. J. Pure Appl. Math. 24 (2008), 247–257.

[28]   V. Leoreanu-Fotea, B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci. 178 (2008), 4114–4124.

[29]   V. Leoreanu-Fotea and B. Davvaz, n-Hypergroups and binary relations, European J. Combin. 29 (2008), 1027–1218.

[30]   F. Marty, Sur une Generalization de la Notion de Groupe, Huitieme congres des Mathematiciens Scandinaves, Stockholm, 1934, 45–49.

[31]   Ch. G. Massouros, Theory of hyperrings and hyperfields, Algebra Logic 24(6) (1985), 477–485.

[32]   S. Mirvakili, M. Farshi and B. Davvaz, On wearth product of n-polygroups, J. Algebra Appl. 14(4) (2015), DOI 10.1142/S02194988115500607.

[33]   S. Mirvakili and B. Davvaz, Relations on Krasner (m,n)-hyperrings, European J. Combin. 31 (2010), 790–802.

[34]   S. Mirvakili and B. Davvaz, Constructions of (m,n)-hyperrings, Mat. vesnik 67(1) (2015), 1–16.

[35]   C. Pelea and I. Purdea, Multialgebras, universal algebras and identities, J. Aust. Math. Soc. 81 (2006), 121–139.

[36]   E. L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208–350.

[37]   R. Rota, Strongly distributive multiplicative hyperrings, J. Geom. 39(1-2) (1990), 130–138.

[38]   S. A. Rusakov, Some Applications of n-ary Group Theory, Belaruskaya Navuka, Minsk, 1998.

[39]   S. Spartalis, A class of hyperrings, Riv. Mat. Pura Appl. 4 (1989), 55–64.

[40]   M. Stefanescu, Constructions of hyperfields and hyperrings, Studii si Cercetari Stiintifice. Seria: Matematica (16) (2006), 563–571.

[41]   T. Vougiouklis, Hypergroups, hyperrings. Fundamental relations and representations, Quaderni del Seminario di Geometria Combinatoria (1989), 1–20.

[42]   T. Vougiouklis, The Fundamental Relation in Hyperrings. The General Hyperfield, Algebraic Hyperstructures and Applications (Xanthi, 1990), 203–211, World Sci. Publishing, Teaneck, New Jersey, 1991.

[43]   T. Vougiouklis, Hyperstructures and their Representations, Hardonic, Palm Harbor, 1994.