Quantitative Uncertainty Principle for Sturm-Liouville Transform


Download PDF

Authors: A. ABOUELAZ, A. ACHAK, R. DAHER AND N. SAFOUANE

DOI: 10.46793/KgJMat2103.465A

Abstract:

In this paper we consider the Sturm-Liouville transform (f) on +. We analyze the concentration of this transform on sets of finite measure. In particular, Donoho-Stark and Benedicks-type uncertainty principles are given.



Keywords:

Sturm-Liouville transform, Benedicks theorem, Donoho-Stark’s uncertainty principle.



References:

[1]   A. Achak, R. Daher and H. Lahlali, Beurling’s theorem for Bessel-Struve transform, C. R. Math. Acad. Sci. Paris 354(1) (2016), 81–85.

[2]   M. Benedicks, On Fourier transforms of function supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), 180–183.

[3]   A. Beurling, The Collect Works of Arne Beurling, Birkhuser, Boston, 1989.

[4]   A. Bonami and B. Demange, A survey on uncertainty principles related to quadratic forms, Collect. Math. 2 (2006), 1–36.

[5]   M. G. Cowling and J. F. Price, Generalizations of Heisenberg Inequality, Lecture Notes in Mathematics 992 Springer, Berlin, 1983, 443–449.

[6]   D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906–931.

[7]   G. B. Folland and A. Sitaram, The uncertainty principle a mathematical survey, J. Fourier Anal. Appl. 3 (1997), 207–238.

[8]   S. Ghobber and Ph. Jaming, Uncertainty principles for integral operators, Studia Math. 220 (2014), 197–220.

[9]   G. H. Hardy, A theorem concerning Fourier transform, J. London Math. Soc. 8 (1933), 227–231.

[10]   V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.

[11]   T. Kawazoe and H. Mejjaoli, Uncertainty principles for the Dunkl transform, Hiroshima Math. J. 40 (2010), 241–268.

[12]   H. J. Landau and W. L. Miranker, The recovery of distored band-limited signal, J. Math. Anal. App. 2 (1961), 97–104.

[13]   H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty II, Bell System Technical Journal 40 (1961), 65–84.

[14]   H. Mejjaoli Generalized Dunkl-Sobolev spaces of exponential type and applications, Journal of Inequalities in Pure and Applied Mathematics 10(2) (2009), 24 pages.

[15]   A. Miyachi, A generalization of theorem of Hardy, Harmonic Analysis Seminar, Izunagaoka, Shizuoka-Ken, Japan, 1997, 44–51.

[16]   N. Ben Salem. and A. Rashed Nasr, Heisenberg-type inequalities for the Weinstein operator, Integral Transforms Spec. Funct. 26(9) 2015, 700–718.

[17]   A. Papoulis, A new algorithm in spectral analysis and band-limited extrapolation, IEEE Trans. Circuits Syst. I. Regul. Pap. 9 (1975), 735–742.

[18]   D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty I, Bell System Technical Journal 40 (1961), 43–63.

[19]   F. Soltani, Lp uncertainty principles on Sturm-Liouville Hypergroups, Acta Math. Hungar. 142(2) (2014), 433–443.

[20]   E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492.

[21]   K. Tosio, Perturbation Theory for Linear Operators, Springer, New York, 1966.