Oscillation Criteria for Second Order Impulsive Delay Dynamic Equations on Time Scale


Download PDF

Authors: G. N. CHHATRIA

DOI: 10.46793/KgJMat2104.531C

Abstract:

In this work, we study the oscillation of a kind of second order impulsive delay dynamic equations on time scale by using impulsive inequality and Riccati transformation technique. Some examples are given to illustrate our main results.



Keywords:

Oscillation, delay dynamic equation, impulse, time scales.



References:

[1]   R. P. Agarwal, M. Bohner and A. Peterson, Inequality on time scales: a survey, Math. Inequal. Appl. 4 (2001), 555–557.

[2]   H. A. Agwa, A. M. M. Khodier and H. M. Atteya, Oscillation of second order nonlinear impulsive dynamic equations on time scales, Journal of Analysis & Number Theory 5 (2017), 147–154.

[3]   A. Belarbi, M. Benchohra and A. Ouahab, Extremal solutions for impulsive dynamic equations on time scales, Comm. Appl. Nonlinear Anal. 12 (2005), 85–95.

[4]   M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, On first order impulsive dynamic equations on time scales, J. Difference Equ. Appl. 10 (2004), 541–548.

[5]   M. Benchohra, S. K. Ntouyas and A. Ouahab, Extremal solutions of second order impulsive dynamic equations on time scales, J. Math. Anal. Appl. 324 (2006), 425–434.

[6]   M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.

[7]   M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.

[8]   M. Bohner and C. Tisdell, Oscillation and nonoscillation of forced second order dynamic equations, Pacific J. Math. 230 (2007), 59–71.

[9]   Y. K. Chang and W. T. Li, Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions, Math. Comput. Model. Dyn. Syst. 43 (2006), 337–384.

[10]   Z. He and W. Ge, Oscillation of impulsive delay differential equations, Indian J. Pure Appl. Math. 31 (2000), 1089–1101.

[11]   Z. He and W. Ge, Oscillation in second order linear delay differential equations with nonlinear impulses, Math. Slovaca 52 (2002), 331–341.

[12]   S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.

[13]   M. Huang and W. Feng, Oscillation of second order nonlinear impulsive dynamic equations on time scales, Electron. J. Differential Equations 72 (2007), 1–13.

[14]   M. Huang and W. Feng, Oscillation criteria for impulsive dynamic equations on time scales, Differ. Equ. 169 (2007), 1–9.

[15]   M. Huang, Oscillation criteria for second order nonlinear dynamic equations with impulses, Comput. Math. Appl. 59 (2010), 31–41.

[16]   E. R. Kaufmann, N. Kosmatov and Y. N. Raffoul, Impulsive dynamic equations on a time scale, Electron. J. Differential Equations 69 (2008), 1–9.

[17]   Q. Li and F. Guo, Oscillation of solutions to impulsive dynamic equations on time scales, Electron. J. Differential Equations 122 (2009), 1–7.

[18]   Q. Li and L. Zhou, Oscillation criteria for second order impulsive dynamic equations on time scales, Appl. Math. E-Notes 11 (2011), 33–40.

[19]   M. Peng, Oscillation Criteria for second order impulsive delay difference equations, Appl. Math. Comput. 146 (2003), 227–235.

[20]   S. Sun, Z. Han and C. Zhang, Oscillation of second order delay dynamic equations on time scales, J. Appl. Math. Comput. 30 (2009), 459–468.

[21]   Q. Zhang, L. Gao and L. Wang, Oscillation of second order nonlinear delay dynamic equations on time scales, Comput. Math. Appl. 61 (2011), 2342–2348.