The Minimum Edge Covering Energy of a Graph
Download PDF
Authors: S. SABETI, A. B. DEHKORDI AND S. M. SEMNANI
DOI: 10.46793/KgJMat2106.969S
Abstract:
In this paper, we introduce a new kind of graph energy, the minimum edge covering energy, ECE(G). It depends both on the underlying graph G, and on its particular minimum edge covering CE. Upper and lower bounds for ECE(G) are established. The minimum edge covering energy and some of the coefficients of the polynomial of well-known families of graphs like Star, Path and Cycle Graphs are computed.
Keywords:
Minimum edge covering set, minimum edge covering matrix, graph energy, minimum edge covering eigenvalues.
References:
[1] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz 103 (1978), 1–22.
[2] I. Gutman, B. Furtula, E. Zogić and E. Glogić, Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016), 279–290.
[3] R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, Springer, London, 2011.
[4] S. K. Vaidya and K. M. Popat, Some new results on energy of graphs, MATCH Commun. Math. Comput. Chem. 77 (2017), 589–594.
[5] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007), 1472–1475.
[6] A. Jahanbani, Lower bounds for the energy of graphs, AKCE Int. J. Graphs Comb. 5 (2018), 88–96.
[7] K. C. Das and I. Gutman, Bounds for the energy of graphs, Hacet. J. Math. Stat. 45(3) (2016), 695–703.
[8] C. Adiga, A. Bayad, I. Gutman and S. A. Srinivas, The minimum covering energy of graph, Kragujevac Journal of Science 34 (2012), 39–56.
[9] I. Gutman and S. Wagner, The matching energy of a graph, Applied Mathematics 160 (2012), 2177–2187.
[10] J. Zhang, H. Kan and X. Liu, Graphs with extremal incident energy, Filomat 29(6) (2015), 1251–1258.
[11] M. Jooyandeh, D. Kiani and M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009), 561–572.
[12] I. Gutman, D. Kiani and M. Mirzakhah, On incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009), 573–580.
[13] R. Kanna, B. N. Dharmendra and G. Sridhara, Laplacian minimum dominating energy of a graph, International Journal of Pure and Applied Mathematics 89(4) (2013), 565–581.
[14] R. Kanna, B. N. Dharmendra and G. Sridhara, Minimum dominating distance energy of a graph, J. Indian Math. Soc. (N.S.) 20 (2014), 19–29.
[15] R. Kanna, B. N. Dharmendra and G. Sridhara, Minimum dominating energy of a graph, International Journal of Pure and Applied Mathematics 85(4) (2013), 707–718.
[16] S. K. Vaidya and R. M. Pandit, Edge domination in some path and cycle related graphs, Hindawi Publishing Corporation, ISRN Discrete Mathematics (2014), Article ID 975812, 5 pages.