New Integral Equations for the Monic Hermite Polynomials
Download PDF
Authors: K. ALI KHELIL, R. SFAXI AND A. BOUKHEMIS
DOI: 10.46793/KgJMat2201.007K
Abstract:
Keywords:
Linear functional, integral equation, integral representation on the real line, Hermite polynomials, Dawson function, Dirac mass.
References:
[1] K. Ali Khelil, R. Sfaxi and A. Boukhemis, Integral representation of the generalized Bessel linear functional, Bull. Math. Anal. Appl. 9 , 1–15.
[2] N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, London, 1965.
[3] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[4] A. Ghressi and L. Kheriji, Some new results about a symmetric D-semiclassical linear form of class one, Taiwanese J. Math. 11 , 371–382.
[5] M. E. H. Ismail and D. Stanton, Classical orthogonal polynomials as moments, Canad. J. Math. 49 , 520–542.
[6] M. E. H. Ismail and D. Stanton, More orthogonal polynomials as moments, in: Mathematical Essays in Honor of Gian-Carlo Rota, Cambridge, MA, 1996, Birkhäuser Boston, Boston, MA, 1998, 377–396.
[7] M. E. H. Ismail and D. Stanton, q-Integral and moment representations for q-orthogonal polynomials, Canad. J. Math. 45 , 709–735.
[8] N. N. Lebedev, Special Functions and their Applications, Translated from the Russian by Richard A. Silverman, Englewood Cliffs, New Jork, 1965.
[9] P. Maroni, Une théorie algébrique des polynômes orthogonaux, Applications aux polynômes orthogonaux semi-classiques, IMACS: International Association for Mathematics and Computers in Simulation 9 , 95–130.
[10] P. Maroni, Fonctions eulériennes, polynémes orthogonaux classiques, Techniques de l’Ingénieur 154 , 1–30.
[11] P. Maroni, An integral representation for the Bessel form, J. Comput. Appl. Math. 157 , 251–260.
[12] M. Rahman and A. Verma, A q-integral representation for the Rogers q-ultraspherical polynomials and some applications, Constr. Approx. 2 , 1–10.
[13] J. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society, Providence, 1950.
[14] B. Simon, The classical moment as a selfadjoint finite difference operator, Adv. Math. 137 , 82–203.
[15] G. Szegö, Orthogonal Polynomials, Fourth Edition, American Mathematical Society, Providence, 1975.