Refining some Inequalities for Frames with Specht’s Ratio


Download PDF

Authors: F. SULTANZADEH, M. HASSANI, M. E. OMIDVAR AND R. A. K. GOL

DOI: 10.46793/KgJMat2201.039S

Abstract:

We give a new lower bound in some inequalities for frames in a Hilbert space. If {fi}iI is a Parseval frame for the Hilbert space with frame operator Sf = iIf,fifi, then, for every J I and f , we have

(          )                           ∥∥              ∥∥2
   1-+-2-α-      2    ∑            2   ∥ ∑            ∥
             ∥f ∥  ≤       |⟨f, fi⟩|  + ∥     ⟨f, fi⟩fi∥  ,
   2 + 2 α             i∈J              ∥ i∈Jc          ∥

where α = inf {   (       )                   }
 R    ∥SJcf∥-  : f ∈ ℍ,  J ⊂  I
      ∥SJf ∥ with Specht’s ratio R. Also we obtain some improvements of the inequalities for general frames and alternate dual frames under suitable conditions. Our results refine the remarkable results obtained by Balan et al. and Gavruta.



Keywords:



References:

[1]   R. Balan, P. G. Casazza, D. Edidin and G. Kutyniok, A new identity for Parseval frames, Proc. Amer. Math. Soc. 135 (2007), 1007–1015.

[2]   P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129–201.

[3]   P. G. Casazza and G. Kutyniok, Frames of subspaces, in: Wavelets, Frames and Operator theory, Contemp. Math. 345, Amer. Math. Soc., Providence, RI, 2004, 87–113,.

[4]   O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser/Springer, Basel, 2016.

[5]   I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

[6]   J. Duffin and A. C. Schaeffer, A class of nonharmonic Fiurier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.

[7]   Y. C. Eldar and G. D. Forney, Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory 48 (2002), 599–610.

[8]   Sh. Furuichi, Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.

[9]   P. Gavruta, On some identities and inequalities for frames in Hilbert spaces, J. Math. Anal. Appl. 321 (2006), 469–478.

[10]   L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012), 139–144.

[11]   Q. P. Guo, J. S. Leng and H. B. Li, Some equalities and inequalities for fusion frames, Springer Plus 5 (2016), Article ID 121, 10 pages.

[12]   D. Han and D. R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), 94 pages.

[13]   R. Vale and S. Waldron, Tight frames and their symmetries, Constr. Approx. 21 (2005), 83–112.