Extremal Graphs for Exponential VDB Indices
Download PDF
Authors: R. CRUZ AND J. RADA
DOI: 10.46793/KgJMat2201.105C
Abstract:
We find the extremal graphs for the exponential of well known vertex-degree-based topological indices over ????n, the set of graphs with n non-isolated vertices.
Keywords:
Vertex-degree-based topological indices, exponential topological indices, extremal graphs.
References:
[1] R. Cruz, T. Pérez and J. Rada, Extremal values of vertex-degree-based topological indices over graphs, J. Appl. Math. Comput. 48 (2015), 395–406.
[2] J. Devillers and A. T. Balaban, Topological Indices and Related Descriptors, in: QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
[3] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011), 613–626.
[4] E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry 37A (1998), 849–855.
[5] B. Furtula, A. Graovac and D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010), 370–380.
[6] B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013), 8973–8978.
[7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972), 535–538.
[8] I. Gutman and J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, Journal of the Serbian Chemical Society 78 (2013), 805–810.
[9] I. Gutman, Degree-based topological indices, Croatica Chemica Acta 86 (2013), 351–361.
[10] L. Kier and L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[11] L. Kier and L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
[12] J. Rada and R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014), 603–616.
[13] J. Rada and S. Bermudo, Is every graph the extremal value of a vertex-degree-based topological index?, MATCH Commun. Math. Comput. Chem. 81 (2019), 315–323.
[14] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019), 29–41.
[15] M. Randić, On characterization of molecular branching, Journal of the American Chemical Society 97 (1975), 6609–6615.
[16] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[17] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[18] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), 1369–1376.
[19] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012), 561–566.
[20] B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252–1270.