General Classes of Shrinkage Estimators for the Multivariate Normal Mean with Unknown Variance: Minimaxity and Limit of Risks Ratios

Authors: A. BENKHALED AND A. HAMDAOUI
DOI: 10.46793/KgJMat2202.193B
Abstract:
In this paper, we consider two forms of shrinkage estimators of the mean ???? of a multivariate normal distribution X ∼ Np

Keywords:
James-Stein estimator, multivariate Gaussian random variable, non-central chi-square distribution, quadratic risk, shrinkage estimator.
References:
[1] A. J. Baranchik, Multiple regression and estimation of the mean of a multivariate normal distribution, Technical Report 51, Stanford University, Stanford, 1964.
[2] D. Benmansour and A. Hamdaoui, Limit of the ratio of risks of james-stein estimators with unknown variance, Far East Journal of Theoretical Statistics 36 (2011), 31–53.
[3] D. Benmansour and T. Mourid, Etude d’une classe d’estimateurs avec rétrécisseur de la moyenne d’une loi gaussienne, Ann. I.S.U.P. 51 (2007), 83–106.
[4] G. Casella and J. T. Hwang, Limit expressions for the risk of James-Stein estimators, Canad. J. Statist. 4 (1982), 305–309.
[5] D. Fourdrinier, I. Ouassou and W. E. Strawderman, Estimation of a mean vector under quartic loss, J. Statist. Plann. Inference. 138 (2008), 3841–3857.
[6] A. Hamdaoui and D. Benmansour, Asymptotic properties of risks ratios of shrinkage estimators, Hacet. J. Math. Stat. 44 (2015), 1181–1195.
[7] A. Hamdaoui and N. Mezouar, Risks ratios of shrinkage estimators for the multivariate normal mean, Journal of Mathematics and Statistics, Science Publication 13 (2017), 77–87.
[8] A. Hamdaoui, N. Mezouar, D. Benmansour and D. Bouguenna, Examples of shrinkage estimators of the mean, dominating the maximum likelihood estimator in larges dimension, IOSR Journal of Mathematics 12 (2016), 14–28.
[9] B. E. Hansen, The risk of James-Stein and lasso shrinkage, Econometric Rev. 35 (2016), 1456–1470.
[10] W. James and C. Stein, Estimation with quadratic loss, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 1, Berkeley, 1961, 361–379.
[11] T. F. Li and W. H. Kio, Generalized James-Stein estimators, Commun. Statist. Thor. Math. 11 (1982), 2249–2257.
[12] D. Lindley, Discussion on professor Stein’s paper, J. R. Stat. Soc. Ser. B. Stat. Methodol. 24 (1962), 285–287.
[13] K. Selahattin and D. Issam, A new biaised estimator based on ridge estimation, Stat. Papers. (2008), 669–689.
[14] K. Selahattin and D. Issam, The optimal extended balanced loss function estimators, J. Comput. Appl. Math. (2019), 86–98.
[15] K. Selahattin, S. Sadullah, M. R. Özkale and H. Güler, More on the restricted ridge regression estimation, J. Stat. Comput. Simul. 81 (2011), 1433–1448.
[16] C. Stein, Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1 , Berkeley, 1956, 197–206.
[17] C. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statist. 9 (1981), 1135–1151.
[18] W. E. Strawderman, Proper bayes minimax estimators of the multivariate normal mean vector for the case of common unknown variances, Ann. Statist. 6 (1973), 1189–1194.
[19] L. Sun, Risk ratio and minimaxity in estimating the multivariate normal mean with unknown variance, Scand. J. Stat. 22 (1995), 105–120.
[20] H. Tsukuma and T. Kubukaza, Estimation of the mean vector in a singular multivariate normal distribution, J. Multivariate Anal. 140 (2015), 245–258.
[21] X. Xie, S. C. Kou and L. Brown, Optimal shrinkage estimators of mean parameters in family of distribution with quadratic variance, Ann. Statist. 44 (2016), 564–597.