αβ-Weighted $d_g$-Statistical Convergence in Probability
Download PDF
Authors: M. BANERJEE
DOI: 10.46793/KgJMat2202.229B
Abstract:
In this paper we consider the notion of generalized density, namely, the natural density of weight g was introduced by Balcerzak et al. (Acta Math. Hungar. 147(1) (2015) 97–115) and the entire investigation is performed in the setting of probability space extending the recent results of Ghosal (Appl. Math. Comput. 249 (2014) 502–509) and Das et al. (Filomat 31(5) (2017) 1463–1473).
Keywords:
αβ-weighted dg-statistical convergence in probability, αβ-weighted dg-strongly Cesàro convergence in probability, g-weighted Sαβ-convergence in probability, g-weighted Nαβ-convergence in probability.
References:
[1] R. P. Agnew, On deferred Cesàrro means, Ann. of Math. (2) 33(3) (1932), 413–421.
[2] A. Aizpuru, M. C. Listàrn-Garcìa and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37 (2014), 525–530.
[3] H. Aktuǧlu, Korovkin type approximation theorems proved via αβ-statistical convergence, J. Comput. Appl. Math. 259 (2014), 174–181.
[4] M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147(1) (2015), 97–115.
[5] S. Bhunia, P. Das and S. Pal, Restricting statistical convergence, Acta Math. Hungar. 134(1–2) (2012), 153–161.
[6] M. Cinar and M. Et, Generalized weighted statistical convergence of double sequences and applications, Filomat 30(3) (2016), 753–762.
[7] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and its Applications, New Delhi, India, Anamaya Pub. (2010), 121–129.
[8] J. S. Connor, The statistical and strong p-Cesàrro convergence sequence, Analysis (Berlin) 8 (1988), 47–63.
[9] P. Das, S. Ghosal and S. Som, Different types of quasi weighted αβ-statistical convergence in probability, Filomat 31(5) (2017), 1463–1473.
[10] P. Das and E. Savas, On generalized statistical and ideal convergence of metric-valued sequences, Ukrainian Math. J. 68(12) (2017), 1849–1859.
[11] P. Das, S. Som, S. Ghosal and V. Karakaya, A notion of αβ-statistical convergence of order γ in probability, Kragujevac J. Math. 42(1) (2018), 51–67.
[12] M. Et, M. inar and M. Karaks, On λ-statistical convergence of order α of sequences of functions, J. Inequal. Appl. 2013 (2013), Article ID 204.
[13] M. Et and Y. Erol, On deferred statistical convergence of order β of sequences of fuzzy numbers, Journal of Intelligent & Fuzzy systems 35(3) (2018), 3747–3755.
[14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[15] J. A. Fridy, On statistical convergence, Analysis (Berlin) 5 (1985), 301–313.
[16] S. Ghosal, Statistical convergence of a sequence of random variables and limit theorems, Appl. Math. 58(4) (2013), 423–437.
[17] S. Ghosal, Generalized weighted random convergence in probability, Appl. Math. Comput. 249 (2014), 502–509.
[18] S. Ghosal, Weighted statistical convergence of order α and its applications, J. Egyptian Math. Soc. 24(1) (2016), 60–67.
[19] M. Işik and Y. Altin, f(λ,μ)-statistical convergence of order for double sequences, J. Inequal Appl. 2017(1) (2017), Article ID 246, 8 pages.
[20] V. Karakaya and T. A. Chishti, Weighted statistical convergence, Iran. J. Sci. Technol. Trans. A Sci. 33(A3) (2009), 219–223.
[21] M. Kçkaslan and M. Yilmaztrk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), 357–366.
[22] M. Mursaleen, V. Karakaya, M. Erturk and F. Gursoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218 (2012), 9132–9137.
[23] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
[24] H. Sengl and M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B (Engl. Ed.) 34(2) (2014), 473–482.
[25] S. Som, A note on probability convergence defined by unbounded modulus function and αβ-statistical convergence, Kragujevac J. Math. 45(1) (2021), 127–138.
[26] F. Temizsu, M. Et and M. Çinar, Δm-deferred statistical convergence of order α, Filomat 30(3) (2016), 667–673.