Generalized Averaged Gaussian Formulas for Certain Weight Functions
Download PDF
Authors: R. M. MUTAVDžIć
DOI: 10.46793/KgJMat2202.295M
Abstract:
In this paper we analyze the generalized averaged Gaussian quadrature formulas and the simplest truncated variant for one of them for some weight functions on the interval [0, 1] considered by Milovanović in [?]. We shall investigate internality of these formulas for the equivalents of the Jacobi polynomials on this interval and, in some special cases, show the existence of the Gauss-Kronrod quadrature formula. We also include some examples showing the corresponding error estimates for some non-classical orthogonal polynomials.
Keywords:
Gauss quadrature, Gauss-Kronrod quadrature, averaged Gaussian formulas, truncations of averaged Gaussian formulas.
References:
[1] D. Lj. Djukić, L. Reichel and M. M. Spalević, Truncated generalized averaged Gauss quadrature rules, J. Comput. App. Math. 308 (2016), 408–418.
[2] D. Lj. Djukić, L. Reichela and M. M. Spalević, Internality of generalized averaged Gaussian quadrature rules and truncated variants for measures induced by Chebyshev polynomials, Appl. Numer. Math. 142 (2019), 190–205.
[3] D. Lj. Djukić, L. Reichel, M. M. Spalević and J. D. Tomanović, Internality of generalized averaged Gaussian quadrature rules and truncated variants for modified Chebyshev measures of the second kind, J. Comput. Appl. Math. 345 (2019), 70–85.
[4] S. Ehrich, On stratified extension of Gauss-Laguerre and Gauss-Hermite quadrature formulas, J. Comput. Appl. Math. 140 (2002), 291–299.
[5] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, Oxford, 2004.
[6] D. K. Kahaner and G. Monegato, Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights, Z. Angew. Math. Phys. 29 (1978), 983–986.
[7] D. P. Laurie, Stratified sequences of nested quadrature formulas, Quaest. Math. 15 (1992), 365–384.
[8] D. P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp. 65 (1996), 739–747.
[9] G. Mastroianni and G. V. Milovanović, Interpolation Processes - Basic Theory and Applications, Springer Monographs in Mathematics, Berlin, 2008.
[10] G. V. Milovanović, A note on extraction of orthogonal polynomials from generating function for reciprocal of odd numbers, Indian J. Pure Appl. Math. 50 (2019), 15-22.
[11] T. N. L. Patterson, Stratified nested and related quadrature rules, J. Comput. Appl. Math. 112 (1999), 243–251.
[12] F. Peherstorfer, On positive quadrature formulas, ISNM Birkhäuser, Basel, 112 (1993), 297–313.
[13] F. Peherstorfer and K. Petras, Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions, Numer. Math. 95 (2003), 689–706.
[14] L. Reichel, M. M. Spalević and T. Tang, Generalized averaged Gauss quadrature rules for the approximation of matrix functionals, BIT 56 (2016), 1045–1067.
[15] P. Shashikala, Extraction of orthogonal polynomials from generating function for reciprocal of odd numbers, Indian J. Pure Appl. Math. 48(2) (2017), 177–185.
[16] M. M. Spalević, On generalized averaged Gaussian formulas, Math. Comp. 76 (2007), 1483–1492.
[17] M. M. Spalević, A note on generalized averaged Gaussian formulas, Numer. Algorithms 46 (2007), 253–264.
[18] M. M. Spalević, On generalized averaged Gaussian formulas, II, Math. Comp. 86 (2017), 1877-1885.