Hankel Determinants for a New Subclasses of Analytic Functions Involving a Linear Operator
Download PDF
Authors: L. PARIDA, T. BULBOACA AND A. K. SAHOO
DOI: 10.46793/KgJMat2204.605P
Abstract:
Using the operator L(a,c) defined by Carlson and Shaffer, we defined a new subclass of analytic functions ML(λ,a,c). The well known Fekete-Szegö problem, upper bound of Hankel determinant of order two, and coefficient bound of the fourth coefficient is determined. Our investigation generalises some previous results obtained in different articles.
Keywords:
Analytic functions, differential subordination, Hankel determinant, Fekete-Szegö problem, Carlson-Shaffer operator, Bernoulli’s lemniscate.
References:
[1] C. Carathéodory, Über den variabilitätsbereich der Fourier’schen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193–217.
[2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15(4) (1984), 737–745.
[3] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, USA, 1983.
[4] R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000), 557–560.
[5] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc. 8 (1933), 85–89.
[6] A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, Journal of Inequalities in Pure and Applied Mathematics 7(2) (2006), Article ID 50.
[7] A. Janteng, S. A. Halim and M. Darus, Estimate on the second Hankel functional for functions whose derivative has a positive real part, Journal of Quality Measurement and Analysis 4(1) (2008), 189–195.
[8] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
[9] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101(1) (1987), 89–95.
[10] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions-II, Arch. Math. (Basel) 49 (1987), 420–433.
[11] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), 1–11.
[12] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(2) (1982), 225–230.
[13] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in ????, Proc. Amer. Math. Soc. 87(2) (1983), 251–257.
[14] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Proceedings of the Conference on Complex Analysis, Tianjin, 1992, Int. Press, Cambridge, MA, 1994, 157–169.
[15] T. H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc. 104(3) (1962), 532–537.
[16] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337–346.
[17] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl. 28(8) (1983), 731–739.
[18] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057–1077.
[19] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41(1) (1966), 111–122.
[20] Ch. Pommerenke, Univalent Functions, Vanderhoeck & Ruprecht, Göttingen, 1975.
[21] M. Raza ans S. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013(412) (2013), 1-8.
[22] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1) (1975), 109–115.
[23] A. K. Sahoo and J. Patel, Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, Int. J. Anal. Appl. 6(2) (2014), 170–177.
[24] J. Sokół, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49(2) (2009), 349–353.
[25] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia scientiarum Universitatis Technicae Resoviensis 19 (1996), 101–105.