Obtaining Voigt Functions Via Quadrature Formula for the Fractional in Time Diffusion and Wave Problem
Download PDF
Authors: H. KUMAR, M. A. PATHAN AND S. K. RAI
DOI: 10.46793/KgJMat2205.759K
Abstract:
In many given physical problems and in the course of dispersion curve through a spectral line under the influence of the Doppler-effect and in collision damping, the Voigt functions have been widely utilized. By taking advantage of the fractional calculus in spectral theory and the Sturm-Liouville problems, in this paper, we obtain the Voigt functions via the quadrature formulae of one dimensional fractional in time evolution diffusion and wave problems consisting of different initial and inhomogeneous boundary conditions.
Keywords:
Caputo fractional derivative, Sturm-Liouville diffusion and wave problem, non-zero zeros of Bessel function, Voigt functions.
References:
[1] R. V. Churchill, Operational Mathematics, International Student Edition, McGraw-Hill Inc., London, 1972.
[2] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin, Heidelberg, 2010.
[3] L. C. Evans, Partial Differential Equations, AMS, Graduate Studies in Mathematics 19, Berkeley, 1997.
[4] W. N. Everrit, A Catalogue of Sturm-Liouville Differential Equations, Sturm-Liouville Theory, Springer Link, Birkh Ãduser, Basel, 2005, 271–331.
[5] C. T. Fulton and S. A. Pruess, Eigenvalues and eigenfunction asymptotics for regular Sturm- Liouville problems, J. Math. Anal. Appl. 188 (1) (1994), 297–340.
[6] R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, 378 of CISM courses and lectures, Springer-Verlag, Berlin, 1997, 223–276.
[7] R. Gorenflo, F. Mainardi and H. M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion wave phenomena, in : The Eight International Colloquium on Differential Equations, Plovdiv, 1997, VSP Publishing Company, Utrecht, 1998, 195–202.
[8] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, New York, 2006.
[9] M. Klimek, A. B. Malinowska and T. Odzijewicz, Application of the fractional Sturm-Louville problem to the space-time fractional diffusion in a finite domain, Fract. Calc. Appl. Anal. 19(2) (2016), 516–550.
[10] D. Klusch, Astrophysical spectroscopy and neutron reactions, integral transforms and Voigt functions, Astrophys. Space Sci. 175 (1991), 229–240.
[11] H. Kumar, M. A. Pathan and H. Srivastava, Application of H-function for obtaining an analytic solution of the space-and-time fractional initial value problem, Jñanabha 39 (2009), 67–76.
[12] H. Kumar, M. A. Pathan and H. Srivastava, A general solution of a space-time fractional anomalous diffusion problem using the series of bilateral eigenfunctions, Commun. Korean Math. Soc. 29(1) (2014), 173–185.
[13] H. Kumar, M. A. Pathan and P. Yadav, Series solution for initial value problems of time fractional generalized anomalous diffusion equations, Le Matematiche LXVII - Fasc. II (2012), 217–229.
[14] Yu. Luchko, Initial-boundary-value problems for the one dimensional time fractional diffusion equation, Fract. Calc. Appl. Anal. 15(1) (2012), 141–160.
[15] Yu. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, International Journal on Geomathematics 1(2) (2011), 257–276.
[16] A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008.
[17] M. D. Milkhailov and N. L. Volehanov, Computational procedure for Sturm-Liouville problems, J. Comput. Phys. 50(3) (1983), 323–336.
[18] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Publication, Inc., New York, 2006.
[19] M. A. Pathan and M. J. S. Shahwan, New representations of the Voigt functions, Demonstr. Math. 39 (2006), 75-80.
[20] M. A. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications: The Sally Series, Pure and Applied Undergraduate Text 15 AMS, Providence, Rhode Island, 2011.
[21] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[22] E. D. Raiville, Special Functions, Chelsea Pub. Co., New York, 1971.
[23] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the Russian original form 1987, Gordon and Breach, Yverdon, 1993.
[24] I. N. Sneddon, Special Functions for Mathematical Physics and Chemistry, Oliver and Boyd Ltd, London, New York, 1961.
[25] H. M. Srivastava and E. A. Miller, A unified presentation of the Voigt functions, Astrophys. Space Sci. 135 (1987), 111–115.
[26] H. M. Srivastava, M. A. Pathan and M. Kamarujjma, Some unified presentations of the generalized Voigt functions, Comm. Appl. Anal. 2 (1998), 49–64.
[27] C. Zeng and Y. Q. Chen, Global Padé approximations of the generalized Mittag-Leffler function and its inverse, Fract. Calc. Appl. Anal. 18(6) (2015), 1492–1506.
[28] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs 121, AMS, United States, 2005.