Nonlinear Sequential Caputo and Caputo-Hadamard Fractional Differential Equations with Dirichlet Boundary Conditions in Banach Spaces


Download PDF

Authors: C. DERBAZI

DOI: 10.46793/KgJMat2206.841D

Abstract:

This paper is devoted to the existence of solutions for certain classes of nonlinear sequential Caputo and Caputo-Hadamard fractional differential equations with Dirichlet boundary conditions in Banach spaces. Moreover, our analysis is based on Darbo’s fixed point theorem in conjunction with the technique of Hausdorff measure of noncompactness. An example is also presented to illustrate the effectiveness of the main results.



Keywords:

Caputo and Caputo-Hadamard fractional differential equations, Hausdorff measure of noncompactness, Darbo’s fixed point theorem, Banach spaces.



References:

[1]   S. Abbas, M. Benchohra and J. Henderson, Weak solutions for implicit fractional differential equations of Hadamard type, Adv. Dyn. Syst. Appl. 11(3) (2016), 1–13.

[2]   S. Abbas, M. Benchohra, N. Hamidi and J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 21(4) (2018), 1027–1045.

[3]   Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, Journal of Computational Analysis and Applications 21(4) (2016), 661–681.

[4]   A. Aghajani, E. Pourhadi and J. J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 16(4) (2013), 962–977.

[5]   A. Aghajani and E. Pourhadi, Application of measure of noncompactness to 1-solvability of infinite systems of second order differential equations, Bull. Belg. Math. Soc. Simon Stevin 22(1) (2015), 105–118.

[6]   B. Ahmad, A. Alsaedi, S. K. Ntouyas and J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017.

[7]   A. Ardjouni and A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal. 3(1) (2019), 62–69.

[8]   Y. Arioua and N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surv. Math. Appl. 12 (2017), 103–115.

[9]   J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis. John Wiley & Sons, New York, 1984.

[10]   J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997.

[11]   J. Bana`s   and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.

[12]   J. Bana`s  , M. Jleli, M. Mursaleen, B. Samet and C. Vetro, Advances in nonlinear analysis via the concept of measure of noncompactness, Springer, Singapore, 2017.

[13]   M. Benchohra, J. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Comm. Pure Appl. Math. 12(4) (2008), 419–427.

[14]   M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009), 2391–2396.

[15]   M. Benchohra and F.-Z. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach spaces, Opuscula Math. 32(1) (2012), 31–40.

[16]   M. Benchohra, S. Bouriah and J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 112(1) (2018), 25–35.

[17]   W. Benhamida, S. Hamani and J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Advances in the Theory of Nonlinear Analysis and its Applications 2 (2018), 138–145.

[18]   W. Benhamida, J. R. Graef and S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc. 8(1) (2018), 165–176.

[19]   D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Israel J. Math. 108 (1998), 109–138.

[20]   G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Semin. Mat. Univ. Padovaa 24 (1955), 84–92.

[21]   C. Derbazi, H. Hammouche and M. Benchohra, Weak solutions for some nonlinear fractional differential equations with fractional integral boundary conditions in Banach spaces, Journal of Nonlinear Functional Analysis 2019 (2019), 1-11.

[22]   Y. Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2014 (2014), 12 pages.

[23]   J. Hadamard, Essai sur l’etude des fonctions donnees par leur developpment de Taylor, Journal de Mathématiques Pures et Appliquées 8 (1892), 101-186.

[24]   F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2012 (2012), 8 pages.

[25]   H.-P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7(12) (1983), 1351–1371.

[26]   R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co. Inc., River Edge, New Jersey, 2000.

[27]   P. Karthikeyan and R. Arul, Integral boundary value problems for implicit fractional differential equations involving Hadamard and Caputo-Hadamard fractional derivatives, Kragujevac J. Math. 45(3) (2021), 331–341.

[28]   A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38(6) (2001), 1191–1204.

[29]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.

[30]   I. A. Malik and T. Jalal, Application of measure of noncompactness to infinite systems of differential equations in p spaces, Rend. Circ. Mat. Palermo (2) (2019), DOI 10.1007/s12215-019-00411-6

[31]   K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[32]   M. Mursaleen and S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in p spaces, Nonlinear Anal. 75(4) (2012), 2111–2115.

[33]   M. Mursaleen and S. M. H. Rizvi, Solvability of infinite systems of second order differential equations in c0 and 1 by Meir-Keeler condensing operators, Proc. Amer. Math. Soc. 144(10) (2016), 4279–4289.

[34]   M. Mursaleen, B. Bilalov and S. M. H. Rizvi, Applications of measures of noncompactness to infinite system of fractional differential equations, Filomat 31(11) (2017), 3421–3432.

[35]   M. Mursaleen, S. M. H. Rizvi and B. Samet, Solvability of a class of boundary value problems in the space of convergent sequences, Appl. Anal. 97(11) (2018), 1829–1845.

[36]   M. Mursaleen and S. M. H. Rizvi, Existence results for second order linear differential equations in Banach spaces, Appl. Anal. Discrete Math. 12(2) (2018), 481–492.

[37]   R. Saadati, E. Pourhadi and M. Mursaleen, Solvability of infinite systems of third-order differential equations in c0 by Meir-Keeler condensing operators, J. Fixed Point Theory Appl. 21(2) (2019), 16 pages.

[38]   B. Hazarika, R. Arab and M. Mursaleen, Application measure of noncompactness and operator type contraction for solvability of an infinite system of differential equations in p-space, Filomat 33(7) (2019), 2181–2189.

[39]   K. B. Oldham, Fractional differential equations in electrochemistry, Advances in Engineering Software 41(1) (2010), 9–12.

[40]   I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1993.

[41]   J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.

[42]   S. Schwabik and G. Ye, Topics in Banach Space integration, Series in Real Analysis 10, World Scientific Publishing Co. Pte. Ltd., Hackensack, New Jersey, 2005.

[43]   V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg & Higher Education Press, Beijing, 2010.

[44]   J. Tariboon, A. Cuntavepanit, S. K. Ntouyas and W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Spaces 2018, Article ID 6974046, 8 pages.

[45]   J. Wang, L. Lv and Y. Zhou, Boundary value problems for fractional differential equations involving Caputo derivative in Banach spaces, J. Appl. Math. Comput. 38 (2012), 209–224.

[46]   E. Zeidler, Nonlinear Functional Analysis and its Applications, part II/B: Nonlinear Monotone Operators, Springer Verlag, New York, 1989.